
International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.1, February 2015

DOI : 10.5121/ijcsea.2015.5101 1

A NATURAL LANGUAGE REQUIREMENTS

ENGINEERING APPROACH FOR MDA

María Carmen Leonardi, Marcela Ridao, María Virginia Mauco, Laura Felice

1

1
INTIA; UNCPBA; Argentina

ABSTRACT

A software system for any information system can be developed following a model driven paradigm, in

particular MDA (Model Driven Architecture). In this way, models that represent the organizational work

are used to produce models that represent the information system. Current software development methods

are starting to provide guidelines for the construction of conceptual models, taking as input requirements

models. In MDA the CIM (Computation Independent Model) can be used to define the business process

model. Though a complete automatic construction of the CIM is not possible, we have proposed in other

papers the integration of some natural language requirements models and we have defined a strategy to

derive a CIM from these models. In this paper, we present an improved version of our ATL transformation

that implements a strategy to obtain a UML class diagram representing a preliminary CIM from

requirements models allowing traceability between the source and the target models.

KEYWORDS

ATL transformations, MDA, Natural Language Requirements Models, Traceability

1. INTRODUCTION

A software system is always embedded in an environment; therefore, its requirements can not be

defined without a proper consideration of the environment in which the system is embedded [21].

Definition of the system context, also called Universe of Discourse (UofD), may be considered

the first phase in a software development process, and the models generated during this phase

serve as an input for later phases, such as conceptual modeling [8]. The participation of

stakeholders is crucial in this phase, as they have the knowledge and the needs of the

organization. Natural language models can be considered as stakeholder-oriented models, because

their expressiveness and semi informal style allow stakeholders to be involved in their definition.

However, the construction of this kind of models consumes time and effort, both crucial and

value resources of an organization, discouraging, in consequence, their adoption in a real project.

MDD (Model Driven Development) [18] paradigm allows to partially reduce this disadvantage,

because it adds a new value to these models: they not only serve to document and communicate

the knowledge of the organization but also they become the initial models from which the later

models of the software development process can be derived. This added value improves the

investment return of the requirements models definition, favoring, in consequence, their

incorporation [24].

Model-driven requirements engineering is a relatively novel approach that has started once

model-driven conceptual modeling has been proved to be successful [7]. It is concerned with the

definition of business knowledge through the CIM (Computation Independent Model) that can be

the basis for a MDA (Model Driven Architecture) development. This model represents the system

context. Generally this model is obtained manually and it is the first model in MDA development

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.1, February 2015

2

process. Although it is not possible to define a completely automatic transformation to obtain a

CIM, some works that may contribute in this way have been published, as for example [1, 3, 6, 8,

23].

We have been working in the use of natural language requirements oriented models in an object

oriented software development, defining a strategy to derive a class diagram from these

requirements models [14, 15]. In order to automate the strategy, some rules have been formalized,

choosing ATL [2] as target language. In this way, we provide a transformation from natural

language oriented models to a CIM represented with an UML business class diagram [5]. We

have continued working in this transformation by adjusting the existent rules and by incorporating

a traceability mechanism.

In this work we present an improved version of the ATL transformation that aims to define an

UML class diagram representing the structural aspects of a CIM starting from natural language

requirements models. With this transformation, we enhance a MDA software development

process by obtaining an UML class diagram that will be the basis for a PIM (Platform

Independent Model). Many proposals have been made to provide transformations from

requirements models to class diagram models in MDA context, such as [1, 3, 8, 23]. The main

difference between these proposals and ours is the source requirements model used in the

transformation.

The paper is structured as follows: Section II describes the natural language requirements models

and contains a brief description of Requirements Engineering in the context of MDD. Section III

describes an overview of the transformation process that was improved with a traceability

mechanism; Section IV presents the ATL transformation process and the associated metamodels.

Section V shows the application of the transformation to a case study. Finally, in Sections VI and

VII we present some conclusions and outline possible future work.

2. BACKGROUND

In this section we describe the two natural language oriented requirements models used in this

work, and we briefly present the state of the art concerning requirements in MDD.

A. Natural Language Requirements Models

The use of natural language for documenting requirements has several key advantages compared

to using a formal specification language, but it also has some key disadvantages [21]. Natural

language allows stakeholders document any kind of knowledge concerning the requirements of

the system; however, this documentation may be ambiguous because natural language is

inherently ambiguous. Some techniques may be applied in order to reduce the ambiguity, such as

glossaries, syntactic Requirements Patterns and controlled languages. The models we use in this

proposal address the first two techniques. In the original strategy, three natural language oriented

models were proposed to define different aspects of the system context: a glossary called LEL

(Language Extended Lexicon) [13] to define the terms of the organization, a scenario model [13]

to define the behavior, and a business rule model to define the policies of the organization [14].

Up to now, we have incorporated the LEL and Scenario models into the ATL transformation.

Language Extended Lexicon (LEL)

The Language Extended Lexicon, called LEL, is a structure that allows the representation of

significant terms of the UofD. The purpose of the lexicon is to help the understanding of the

UofD vocabulary and its semantics, leaving the comprehension of the problem for a future step. It

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.1, February 2015

3

unifies the language allowing communication with stakeholders. LEL is composed of a set of

symbols. Symbols are, in general, words or phrases that stakeholders repeat or emphasize. Each

symbol has the following structure: symbol name that is a word or phrase and a set of synonyms,

notion that describes the denotation of the symbol, and behavioral response or impact describing

the symbol connotation, i.e., how does the symbol impact on the UofD. In the description of

notions and impacts there are two basic rules that must be followed simultaneously: the "closure

principle" that encourages the use of LEL symbols when defining other LEL symbols, and the

"minimum vocabulary principle" where the use of external symbols to the UofD language is

minimized, and the ones used should refer to a very small and well accepted general core. LEL

defines a general classification for the symbol: objects (passive entities), subjects (active entities),

verbal phrases and states. Table 1 shows the heuristics to define each type of symbol.

Table 1. Heuristics to describe LEL symbols

Subject Notions: who the subject is.

Behavioral responses: register actions executed by the subject.

Object Notions: define the object and identify other objects with which the former has a

relationship.

Behavioral responses: describe the actions that may be applied to this object.

Verb Notions: describe who executes the action, when it happens, and procedures involved in the

action.

Behavioral responses: describe the constraints on the happening of an action, which are the

actions triggered in the environment and new situations that appear as consequence.

State Notions: what it means and the actions which triggered the state.

Behavioral responses: describe situations and actions related to it.

Fig. 1 shows an example taken from the case study described in Section 5. Underlined words represent

other LEL symbols, following the “closure principle” previously mentioned.

Figure 1 - Example of LEL Symbols

Scenario Model

A scenario describes UofD situations. Scenarios use natural language as their basic

representation. They are naturally connected to LEL. Table 2 describes the components of a

scenario.

 Meeting (Object)

Notion:
- Gathering of people with a goal.
- It has place, date and time established.

- Appears in a meeting schedule.

- ?It has a list of topics
Behavioral response:

- The participants present the assigned subjects with their
material to exhibit.

-? The participants hand out the material to distribute.

Requester/Meeting initiator (Subject)

Notion:
- Person who invites potential meeting attendees to a meeting.

Behavioral response:
- Defines the meeting goal, the subjects to be discussed, the

potential meeting attendees/attendee, the material to exhibit,
and the material to distribute.

- Records the meeting goal and the potential meeting
attendees in the agenda.

- Performs the meeting scheduling.
- Organizes the meeting.

- Records the substitute in the agenda.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.1, February 2015

4

Table 2 - Scenario Definition

Notions of Constraints and Exceptions may be added to some of the components of a scenario. A

constraint refers to non-functional requirements and may be applied to context, resources or

episodes. An exception, applied to episodes, causes serious disruptions in the scenario, asking for

a different set of actions which may be described separately as an exception scenario. Fig. 2

shows one scenario of the proposed case study. Underlined words represent LEL symbols.

Figure 2 - Example of a Scenario

The scenario construction process starts from the application lexicon, producing a first version of

scenarios derived exclusively from the LEL. These scenarios are improved using other sources of

information and organized in order to obtain a consistent set of scenarios that represents the

application. The complete process is described in [13].

B. Requirements Engineering in Model-Driven Development

There is an agreement about the idea that software requirements definitions have a great impact

on final product quality if they are properly managed, well-documented and easily understandable

[4]. However, requirements engineering is one of the software engineering disciplines in which

model-based approaches are still not well-known. Textual requirements are generally regarded as

text fragments that are interpreted and manually managed by stakeholders and developers [16]. A

variety of methods and model-driven techniques have been published in literature. However, only

a few of them explicitly include the requirements discipline in the Model-Driven Development

(MDD) process. The systematic review by [16] analyses several proposals of requirements

engineering techniques that have been employed in MDD approaches and their actual level of

automation. There are several proposals that integrate different models of RE into MDD, most of

them suggest goal oriented models [1,6] or natural language oriented model [12] to define the

requirements models that will be the source model for the transformation process that derives, in

most cases, UML models. But, the systematic review found a lower level of automation of the

Title: identifies a scenario. In the case of a sub-scenario, the title is the same as the

sentence containing the episode.

 Goal: describes the purpose of the scenario.

Context: defines geographical and temporal locations and preconditions.

Resources: identify passive entities with which actors work.

Actors: detail entities actively involved in the scenario, generally a person or an

organization.

Set of episodes: each episode represents an action performed by actors using

resources. An episode may be explained as a scenario; this enables a scenario to be

split into sub-scenarios.

 Title: ORGANIZE THE MEETING

Goal: Guarantee an efficient development of the meeting.
Context: MEETING SCHEDULING must have been done.

Resources: equipment, physical space.
Actors: requester, secretary, potential participants

Episodes:
The requester instructs the secretary about the meeting call.

CALL TO THE MEETING.
NOTIFY ASSISTANCE.

NOTIFY ABSENCE.

[ASK FOR EQUIPMENT.]
[REMIND THE MEETING]

[The secretary assures that the equipment is available for the meeting date.]
The secretary assures that the physical space is available for the meeting date.

…

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.1, February 2015

5

proposed transformations (45% automated transformations against 37% manual, and 17%

interactive ones). Traceability is tackled by several proposals but it is still an open problem with

several challenges to be addressed [25]. This research is summarized in [7], with the conclusion

that model driven requirements engineering is an active research topic with several open research

challenges: a) There is a need for technological support for model transformations (automatic or

interactive transformations), b) There is a need for better technological support for requirements

traceability (guidelines for forward and backward post requirements traceability), and c) There is

a need for empirical validations of model driven requirements engineering proposals.

Requirements integration with MDD continues growing; for a complete list of approaches refer to

[16].

3. AN OVERVIEW OF THE DERIVATION PROCESS

We have been working in the integration of natural language requirements models and object

models, proposing a strategy to define a conceptual object oriented model from LEL, scenarios,

and business rules. Our proposal begins with the definition of the classes, its methods and

attributes starting from the LEL symbols. Then, the Scenario Model is used in order to complete

the methods and collaborations between classes. Finally, the functional business rule model is

considered to refine the classes and/or to define new classes modeling a set of related business

rules.

Relationships between classes are modeled from LEL information. The result of these steps is a

conceptual object model that serves as a basis for object-oriented development, reducing the gap

between analysis and design phases. The full work may be found in [14]. In [15] we presented

five rules for defining an UML class diagram in an automatic way. These rules are a

simplification of the derivation process with the objective of defining an automatic transformation

aligned with MDA. Derivation rules take LEL and Scenario models as input and define the

classes, attributes, methods and relationships necessary to describe a class diagram that defines

the structural aspects of a CIM. In order to be aligned with MDA, we defined the ATL

transformation for some rules of the strategy [5]. In this work, we improve this ATL

transformation by providing a simple trace mechanism that creates a trace relationship between

the elements of the source and target metamodels.

A. The Transformation Rules

Rule 1: Subject to Class Transformation

Description: LEL subjects correspond to actors in Scenario Model. They represent individuals or

part of the organization. Within the scope of conceptual modeling, these entities are those that

carry out the main actions of the organization; for this reason, their representation as classes is

automatic. Attributes are taken from the LEL notion.

Transformation

- Each LEL subject is transformed into an UML class.

- For each entry in the notion of this type of LEL symbol that does not reference another LEL

symbol, the rule identifies each noun and defines it as an attribute.

Rule 2: Object to Class Transformation

Description: LEL objects represent significant entities of the UofD, modeling a necessary

resource so that subject symbols can perform their behavior. Attributes are taken from the LEL

notion and basic methods are defined from them.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.1, February 2015

6

Transformation

- Each LEL object is transformed into an UML class.

- For each entry in the notion of this type of LEL symbol that does not reference another LEL

symbol, the rule identifies each noun and defines it as an attribute.

- Methods to access and modify each attribute are defined by adding to the name of the attributes

the prefixes GET and SET respectively.

Rule 3: Subject Behavioral Response to Method Transformation

Description: The behavioral response of subject LEL symbols defines the main actions

performed by them in the UofD. As each of these terms was modeled as a class in Rule 1, then,

each impact is defined as a method of the corresponding class.

Transformation

- Each entry in the behavioral response of a LEL subject that was modeled as a class by Rule 1, is

modeled as a method of that class.

Rule 4: Subject Information to Method Parameter Transformation

Description: Scenarios are defined from the entries of behavioral response of LEL subjects;

therefore they describe all the necessary data to complete the behavior.

Transformation

- Each scenario comes from an entry in the behavioral response of a LEL subject that was

modeled as an UML class.

- The rule models actors and resources of each scenario as parameters of the method obtained by

Rule 3 from the entry in the behavioral response that originated the scenario. The actor referring

to the subject LEL symbol in consideration is excluded.

Rule 5: LEL Relationships to Class Associations Transformation

Description: The notion of the LEL symbol describes relationships with other LEL symbols by

referencing them in its description. This information is used to define association between classes.

Transformation

- The entries in the notion of each symbol in the LEL modeled as a class are analyzed in order to

find other symbols in the LEL modeled as classes.

- For each detected LEL symbol, this rule defines a relationship between the corresponding

classes, analyzing the verb involved to determine the type of relationship. In the ATL

transformations presented in this paper, inheritance and association relationships are detected.

B. Traceability

Traceability plays a crucial role in requirements engineering [25]. The transformation process we

have proposed allows a simple trace mechanism, based on [10] by creating a trace relationship

between the source and the target elements of the corresponding metamodel according to each

transformation rule. For example, each class in the class diagram is related with one subject LEL

symbol or one object LEL symbol because the class was originated from one of them. Each of

these relationships has its own semantics, and there may be more than one relationship between

those components, depending on the rules. Table 3 shows each trace relationship between

elements of the source and target metamodels: the first column represents the source elements and

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.1, February 2015

7

the top row the target elements. Cells with data indicate a trace relationship. Trace shows the

relationships that give rise to new elements in the target metamodel from elements in the source

metamodel, i.e. forward relationships, but from them backward traceability ones may be also

obtained.

For each trace relationship the following item are described:

- Cardinality of source: how many elements were used to create the new element (Table 3, in the

left side of the parenthesis)

- Cardinality of target: how many elements are created in that relationship (Table 3, in the right

side of the parenthesis)

- Name of the rule that originated the trace relationship

Table 3 - Trace Relationship between LEL and Scenario Metamodels and the UML Class Diagram

generated by the application of the Rules

Target

Source

Class attributes methods Method

parameter

association

LEL subject

 (1/ 0..1)

Rule1: Subject to

Class

Noun of LEL

subject symbol

 (0..1/1)

Rule1:

Subject to

Class

LEL object (1/0..1)

Rule2: Object to

Class

Noun of LEL

object symbol

 (0..1/1)

Rule2: Object

to Class

(0..1/1)

Rule2: Object to

Class

Entry in

behavioral

response of LEL

subject

 (1/1)

 Rule3: Subject

Behavioral

Response to

Method

Actor of scenario

 (0..N/1)

Rule4: Subject

Information to

Method

Parameter

resource of

scenario

 (0..N/1)

Rule4: Subject

Information to

Method

Parameter

Entry in the

notion LEL

symbol

 (0..1/1)

 Rule5: LEL

Relationships to

Class Associations

4. FORMALIZING THE TRANSFORMATION PROCESS WITH ATL

This section describes the ATL transformation that obtains a class diagram from LEL and

Scenario Model. This ATL definition represents the five rules described before and it is a single

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.1, February 2015

8

module involving several ATL Rules (both matched and lazy rules) along with a set of helpers. In

order to define the transformation and execute it, we must define the source and target models as

an Ecore Metamodel. Traceability is also implemented as a separate model, as we describe later

in this section.

 A. Source and Target Models

Figure 3 - LEL and Scenarios Metamodel

Figure 4 - UML Metamodel

Fig. 3 shows a diagram with the Metamodel of LEL and scenarios defined for the ATL

transformation. We have defined an Ecore Metamodel for the UML class diagram by using the

simplified version extracted from [22]. Fig. 4 shows this metamodel.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.1, February 2015

9

B. The ATL Transformation

In this section, we describe the ATL transformation explaining each of the defined rules and

helpers. The transformation contains two matched primary rules that guide the entire process of

transformation, the rule Subject2Classand the rule Object2Class. These rules allow the matching

of all subject and object LEL symbols and define for each of them an UML class. For each class,

the rules identify its name, and perform the corresponding associations with its attributes, its

methods and its relationships. To define these attributes, methods and relationships, we define

several matched and lazy rules as well as helpers.

RULE Subject2Class: This rule matches subject LEL symbols and associates each of them with

an UML class, setting the class name as the name of the symbol. Then, it sets the new class

associations that will allow to relate to methods, attributes and relationships that will be defined

by the rest of the rules and helpers: a) The helper getnouns extracts the nouns from notions of the

corresponding LEL symbol. b) The lazy rule noun2Attribute defines attributes from nouns that

belong to the notion of the LEL symbol which originated the UML class. c) The helper

getSymbolSuper returns, if any, the symbol that establishes a hierarchy relationship. The UML

class corresponding to that symbol will be associated as a superclass to the subclass in

Subject2Class rule. d) BehavioralResponse2Method rule transforms the behavioral response of

a Subject to methods. This rule is complemented by the helpers scenarioresource and

scenarioactor which return the actors and resources of the scenario created from the entry in the

behavioral response, and by the lazy rules Resource2Parameter and Actor2Parameter that

transform the actors and resources into the parameters of the defined method. The lazy rule

assocend defines the associations from the entries in the notion of a symbol that has references to

other LEL symbols (we define a helper getNotionswithRefnonHierarchy, which returns the

entry in the notion of a symbol that refers to other symbols disregarding those that correspond to a

hierarchy relationship). This rule is complemented by the helper getSymbol that gets the symbol

that is part of the association and the helper firstVerb that returns the name of the verb which

becomes the name of the association. The lazy rule unnamed_assocend is used when there is no

verb included in the mentioned notion. In this case, the name of the association is set with the

concatenation of the names of the involved classes. Fig. 5 presents the ATL code for

Subject2Class rule.

Figure 5 - ATL Code for Subject2Class Rule

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.1, February 2015

10

RULE Object2Class: This rule matches object LEL symbols and associates each of them with an

UML class, setting the class name as the symbol name. Then, it sets the new class associations

that will allow relating methods, attributes and relationships that will be defined by the rest of the

rules. In addition to the rule assocend and its associated helpers, the lazy rule Noun2Attribute

and helpers getnouns} and getSymbolSuper, the following rules and helpers are defined in order

to complete the definition of a class derived from an object LEL symbol: a) The lazy rule

GetMethod defines an access method for each attribute of the new class. b) The lazy rule

setMethod defines a set method for each attribute of the new class. Fig. 6 shows the ATL code

for Object2Class rule.

Figure 6 - ATL Code for Object2Class Rule

C. Implementing the Traceability Mechanism

To implement traceability in our transformation process, we follow Jouault proposal [10]. In this

work a trace mechanism is defined by considering traceability information as a separate model,

and the code to generate trace relationship is added directly to the transformation rules. Following

this idea, we have defined our trace metamodel, as shown in Fig. 7 and added the corresponding

code to the rules in order to define the trace relationship presented in Table 3.

Figure 7- Trace Metamodel

All the matched and lazy rules that create elements of the class diagram are modified in order to

define the trace information. We present the rule Subject2Class.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.1, February 2015

11

Figure 8 - ATL Code for Subject2Class Rule including traceability generation

Table 4 shows the implementation of traceability for each transformation shown in Table 3. For

example, during the transformation of a LEL object to an UML class, trace information is

generated for getMethod, setMethod, Noun2Attribute, assocend, and unnamed_assocend lazy

rules, besides Object2Class rule.

Table 4 - Trace Relationship between LEL and Scenario Metamodels and the UML Class Diagram

generated by the application of the Rules

Target

Source

Class Attribute Method Method Parameter Association

LEL

subject

 (1/ 1)

rule

Subject2Class

Noun of

LEL

subject

symbol

 (0..1/1)

rule

Subject2Class

lazy rule

Noun2Attribute

LEL

object

(1/1)

rule

Object2Class

Noun of

LEL

object

symbol

 (0..1/1)

rule
Object2Class

lazy rule

Noun2Attribute

(0..1/1)

rule Object2Class

lazy rule getMethod

lazy rule setMethod

Entry in

behaviou

 (1/1)

rule Behavioral

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.1, February 2015

12

ral

response

of LEL

subject

Response2Method

Actor of

scenario

 (0..N/1)

rule

BehavioralResponse2Method

lazy rule Actor2Parameter

Resource

of

scenario

 (0..N/1)

rule

BehavioralResponse2Method

lazy rule Resource2Parameter

Entry in

notion of

LEL

symbol

 (0..1/1)

rule

Object2Class

lazy rule

assocend

rule

Object2Class

lazy rule

unnamed_ass

ocend

rule

Subject2Clas

s

lazy rule

assocend

rule

Subject2Clas

s

lazy rule

unnamed_ass

ocend

5. APPLICATION OF THE TRANSFORMATION TO A CASE STUDY

We applied the ATL transformation described in this paper to the case study "Meeting

Scheduler", as it is a well known one. In particular, we used the version proposed in [9]. Fig. 1

and Fig. 2 were taken from this work.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.1, February 2015

13

Figure 9 - Fragment of XMI for Requester LEL Symbol

For this example, we consider the scenario ORGANIZE THE MEETING (Fig. 2) derived,

following the derivation Scenario strategy, from one of the entries in the behavioral response of

the subject Requester.

These LEL symbols and scenarios were defined in an XMI format to be used as source in the

derivation of the UML class diagram. For example, the XMI definition for the symbol Requester

is in Fig. 9. The same definition, using the Sample Reflective Ecore Model, is presented in Fig.

10.

0. <has name="Requester" clasification="subject">

0. <describedBy references="//@has.1 //@has.2">

0. <composedBy definition="Person" type="noun"/>

1. <composedBy definition="who"/>

2. <composedBy definition="invites" type="verb"/>

3. <composedBy definition="potential meeting attendees" type="noun"/>

4. <composedBy definition="to"/>

5. <composedBy definition="a"/>

6. <composedBy definition="meeting"/>

 </describedBy>

 <synonyms>Meeting initiator</synonyms>

0. <hasImpact description="Defines the meeting goal, the subjects to be discussed, the potential meeting

attendees, the material to exhibit, and the material to distribute"/>

1. <hasImpact description="Records the meeting goal and the potential meeting attendees in the agenda"/>

2. <hasImpact description="Performs the meeting scheduling"/>

3. <hasImpact description="Organizes the meeting">

0. <originates title="Organize the Meeting" context="Precondition: MEETING SCHEDULING

must have been done" objective="Guarantee an efficient development of the meeting">

0. <executedBy name="Requester"/>

1. <executedBy name="secretary"/>

0. <uses name="equipment"/>

1. <uses name="physical space"/>

0. <describedBy description="The requester instructs secretary about the meeting call"/>

1. <describedBy description="CALL TO THE MEETING"/>

2. <describedBy description="[ASK FOR EQUIPMENT]"/>

3. <describedBy description="[REMIND THE MEETING]"/>

…

 </originates>

4. </hasImpact>

5. <hasImpact description="Records the substitute in the agenda"/>

</has>

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.1, February 2015

14

Figure 10 - Sample Reflective Ecore Model for Requester LEL Symbol

Fig. 11 shows the XMI description for one of the UML classes obtained after applying the ATL

transformation to LEL and Scenarios for Meeting Scheduler. For the sake of brevity, we have

only included the output for the Requester symbol and the scenario Organizes the Meeting.

Figure 11 - Fragment of XMI for Meeting Scheduler UML Model

<?xml version="1.0" encoding="ISO-8859-1"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:uml="http://uml/1.0">

0 <uml:Operation name="Defines the meeting goal, the subjects to be discussed, the potential meetingattendees, the

material to exhibit, and the material to distribute" owner="/18"/>

1 <uml:Operation name="Records the meeting goal and the potential meeting attendees in the

agenda"owner="/18"/>

2 <uml:Operation name="Performs the meeting scheduling" owner="/18"/>

3 <uml:Operation name="Organizes the meeting" owner="/18" contains="/21 /22 /23 /24"/>

4 <uml:Operation name="Records the substitute in the agenda" owner="/18"/>

…

18 <uml:Class name="Requester" features="/0 /1 /2 /3 /4" associationEnd="/52/@associationEnd.0"/>

…

21 <uml:Parameter name="equipment"/>

22 <uml:Parameter name="physical space"/>

…

52 <uml:Association name="invites_asoc">

<associationEnd name="ae_Requester" isNavigable="true" class="/18"/>

<associationEnd name="ae_Potential meeting attendee" class="/19"/>

</uml:Association>

…

</xmi:XMI>

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.1, February 2015

15

Fig. 12 presents an extract of the trace information also produced after the ATL transformation

for the symbol Requester and the scenario Organizes the Meeting. Each trace link includes a

reference to an element in the source model (LEL and Scenarios), and another one to an element

in the target (UML Model). For example, tracelink with ruleName SubjectToClass has a

reference to the LEL symbol 0, shown in Fig. 9, as sourceElement, and another reference to UML

class 18, shown in Fig. 11, as the targetElement.

<?xml version="1.0" encoding="ISO-8859-1"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:trace="http://trace/1.0">
<trace:traceLink ruleName="SubjectToClass">
 <sourceElements href="MeetingScheduler-LandE.xmi#//@has.0"/>

 <targetElements href="MeetingScheduler-UML.xmi#/18"/>
</trace:traceLink>
…

<trace:traceLink ruleName="BehavioralResponseToMethod">
 <sourceElements href="MeetingScheduler-LandE.xmi#//@has.0/@hasImpact.0"/>
 <targetElements href="MeetingScheduler-UML.xmi#/0"/>

</trace:traceLink>
…

<trace:traceLink ruleName="ResourceToParameter">
<sourceElements href="MeetingScheduler-LandE.xmi#//@has.0/@hasImpact.3/

@originates/@uses.0"/>

 <targetElements href="MeetingScheduler-UML.xmi#/21"/>
</trace:traceLink>
…

Figure 12 - Fragment of XMI for Meeting Scheduler Trace Model

6. DISCUSSING THE TRANSFORMATION PROCESS

The execution of the ATL transformation rules allows an automatic definition of a tentative

object-oriented CIM. Though a manual derivation produces a better and more accurate model

definition [14], ATL transformation is a starting point to deal with the great amount of

requirements information by providing a systematic and consistent way of defining CIM´s in

MDA framework. The CIM should be later refined by a software engineer, who will correct and

complete it.

Considering our experience with manual derivation strategies and the automatic transformation

we propose in this paper, we want to discuss the following issues:

• Our proposal is mainly based in the metamodel of LEL. The transformation rules were

defined considering the way in which the concepts of the Universe of Discourse are described,

explicitly defining structural and behavioral aspects of them. For example, definition of classes is

based on the classification of LEL symbols, automatically modeling one class per each subject or

object LEL symbol. The strategy to find methods and parameters is also based on the structure of

the models. However, to identify attributes we have to analyze the text of notions. In this first

approach, we follow a basic linguistic strategy to find nouns in notion. One of the main problems

is that this mechanism misses groups of nouns. As the helper getnouns only detects separate

nouns, every noun is a potential attribute, thus generating more and sometimes inappropriate

attributes. However, groups of nouns detection may be included following linguistic approaches

[11].

• We think the free style to express the content of notions and behavioral responses of LEL

symbols makes difficult the automatic processing of the information they describe. Manual

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.1, February 2015

16

heuristics could use human intelligence to take the final decision. In some cases, it would be

possible to define a standard form of writing without restricting the power of expression of

natural language [21].

• Though LEL and scenarios have a precise structure, the use of natural language allows

the same semantics to be usually expressed with many different natural language sentences. For

example, in some cases the same concept may be described with a noun or a verbal phrase since

each essential concept has a root expression as a noun, a verb or even as an adjective [11]. The

manual strategies already mentioned use human judgment to decide if a verbal phrase should be

modeled as a class or as a method. An automatic transformation takes always the same decision

loosing, in some cases, the real meaning of the essential concept. In our proposal LEL verbal

phrases remain as methods of classes modeling subject LEL symbols because they appear as

entries of the behavioral responses of the Subject LEL symbol. We take this decision to avoid the

definition of classes with only one method, as advised in [17]. Later, this may be modified by the

software engineer.

7. CONCLUSIONS

Natural language oriented models are widely used in requirements modeling due to their well-

known advantages [21]. They allow representing the system context as a conceptual model, a

crucial issue for the success of a software system development. This kind of requirements models

have to be reinterpreted by software engineers into a more formal design on the way to a

complete implementation, and in the context of MDA this reinterpretation may be done as model

transformation. Therefore, an automatic transformation to map their knowledge into conceptual

object models would be really useful. Several approaches have been proposed in order to

incorporate Requirements Engineering into MDA, for example [1, 2, 3, 12, 23]. In this paper we

propose a natural language requirements engineering approach for MDA, and we present an ATL

transformation to obtain a CIM starting from natural language oriented requirements, more

concretely LEL and scenario models. This CIM serves as the basis for the development of

software systems, aligning our transformation process with the MDA framework. The main

difference with existent approaches is in the natural language requirements models used as source

models in our proposal.

We must refine some ATL rules in order to obtain a better definition of the relationships between

UML classes, implementing the manual strategy proposed in [14]. Also, in the manual strategy,

we have another model, the Business Rule Model to define the policies that govern the structure

and behavior of the organization. We plan to incorporate this model into the ATL transformation,

extending the requirements metamodel and defining the corresponding ATL transformation rules.

Traceability plays a crucial role in requirements models and in MDD [25]. The transformation

process we have proposed and implemented in the ATL rules allows the trace between the source

and the target. Trace information is easily created but, until the moment it is not managed. We

must incorporate trace supporting in order to recorded traces became useful for the entire

development process.

We accept that LEL and scenarios models are non-standard notations, thus reducing a broader use

of them. For this reason, we plan to adopt the Business Process Modeling Notation (BPMN) [19]

to support scenario models and SVBR [20] to model the Lexicon and to adapt the transformation

process. But a careful investigation needs to be carried out to adopt the notation while preserving

the philosophy that scenario and LEL models is based on.

OMG is actively working in projects concerning business modeling and MDA. These results will

help us to enhance our proposal.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.1, February 2015

17

REFERENCES

[1] Alencar F, O. Pastor, B. Marín, G. Giachetti, J. Castro, and J. Pimentel (2009). “From i*

Requirements Models to Conceptual Models of a Model Driven Development Process”. Lecture

Notes in Business Information Processing, Vol.39, Part 4. pp.99-114.

[2] ATL A Model Transformation Technology (2014). Last access September 2014 at

http://www.eclipse.org/atl/.

[3] Bousetta Brahim, EL Beggar Omar, GADI Taoufiq (2013). “A methodology for CIM modelling

and its transformation to PIM” Journal of Information Engineering and Applications www.iiste.org.

ISSN 2224-5782 (print) ISSN 2225-0506 (online) Vol.3, No.2.

[4] Davis A.M., Dieste O., Hickey A., Juristo N., and Moreno, A.M (2009). “Effectiveness of

Requirements Elicitation Techniques: Empirical Results Derived from a Systematic Review”.

Proceedings of the 14th International Requirements Engineering Conference. pp.176-185.

[5] Debnath N, Leonardi M.C., Ridao M, Mauco M.V, Felice F, Montejano G, and Riesco D (2009).

“An ATL Transformation from Natural Language Requirements Models to Business Models of a

MDA Project”. Proceedings of 11th International Conference on ITS Telecommunications, Russia.

pp.633-639.

[6] Decreus K, Snoeck M, Poels G (2009). “Practical Challenges for Methods Transforming i* Goal

Models into Business Process Models”. 17th IEEE International Requirements Engineering

Conference. pp. 15-23.

 [7] España S. (2011).“Methodological Integration Of Communication Analysis into a Model Driven

Software Development Framework”. Doctoral Thesis, Departamento de Sistemas Informáticos y

Computación, Universitat Politécnica de Valencia.

http://www.upv.es/entidades/DSIC/menu_urlc.html?/pls/oalu/sic_ted.infoent_menu?P_IDIOMA=C&

P_VISTA=MS.

[8] González A, España S , Ruiz M, and Pastor O (2011). “Systematic Derivation of Class Diagrams

from Communication in Business-Process and Information Systems Modeling”. Proceedings of 12th

International Conference Enterprise, Business-Process and Information Systems Modeling, BPMDS

2011, and 16th International Conference EMMSAD 2011, CAiSE 2011, London, UK. pp.246-260.

[9] Hadad G. “Uso de Escenarios en la Derivación de Software” (Use of Scenarios in Software

Derivation) (2008). Doctoral Thesis. Universidad Nacional de La Plata, Argentina.

[10] Jouault F (2005). “Loosely Coupled Traceability for ATL”. Proceedings of the European Conference

on Model Driven Architecture, Workshop on Traceability, ECMDA, Nuremberg, Germany. pp.29-37.

[11] Juristo N., Juzgado, Moreno A.M., and López M (2000). “How to Use Linguistic Instruments for

Object-Oriented Analysis.” IEEE Software Vol.17, No.3, pp.80-89.

[12] Kleiner, M. (2009): “ATL Use Case - Production of UML Class Diagrams from Syntactical Models

of English Text or SBVR Models”. Last access September 2014 at on

http://www.eclipse.org/atl/usecases/Syntax2SBVR2UML/.

[13] Leite, J.C.S., Doorn J., Kaplan G, Hadad G, and Ridao. M (2004). “Defining System Context using

Scenarios”. Perspectives on Software Requirements, Kluwer Academic Press. pp.169-199.

[14] Leonardi M.C (2003). “Enhancing RUP Business Model with Client-Oriented Requirements Models”.

Chapter 6, UML and the Unified Process, IRM Press, USA. pp.80-115.

[15] Leonardi M.C, Mauco M.V (2009). “Integrating Natural Language Requirements Models with

MDA”. Encyclopedia of Information Science and Technology, Second Edition, IGI Global, USA.

pp.2091-2102.

[16] Loniewski, E. Insfran, and S. Abrahão (2010). “A Systematic Review of the Use of Requirements

Engineering Techniques in Model-Driven Development,Model Driven Engineering Languages and

Systems”. Lecture Notes in Computer Science, Vol.6395. pp.213-227.

[17] Meyer B (1997). Object-oriented Software Construction, Prentice Hall.

[18] Model Driven Architecture (2014). Last access September 2014 at http://www.omg.org/mda.

[19] OMG Business Process Modeling Notation (BPMN) version 2.0.2 (2014). Last access July 2014 at

http://www.omg.org/spec/BPMN/2.0.2/.

[20] OMG Semantics of Business Vocabulary and Rules (SBVR) (2014). Last access July 2014 at

http://www.omg.org/spec/SBVR/1.2.

 [21] Pohl K. (2010). “Requirements Engineering: Fundamentals, Principles and Techniques”. Springer-

Verlag,Berlin.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.1, February 2015

18

[22] Pons C, Giandini R, and Pérez G (2010). “Desarrollo de Software dirigido por Modelos - Conceptos

Teóricos y su Aplicación Práctica” (Model driven Software Development: Concepts and

Applications). EDULP & McGraw-Hill Education.

[23] Raj A, T.V. Prabhakar, and S. Hendryx (2008). “Transformation of SBVR Business Design to UML

Models”. Proceedings of the 1st Conference on India Software Engineering Conference, ISEC '08,

ACM, New York, USA. pp.29-38.

[24] Ruiz M, S. España, A. González, O. Pastor (2010). “Análisis de Comunicaciones como un Enfoque de

Requisitos para el Desarrollo Dirigido por Modelos.” Actas de los Talleres de las Jornadas de

Ingeniería de Software y Bases de Datos, España. Vol2, pp.70--77.

[25] Winkler S, von Pilgrim, J (2010). A Survey of Traceability in Requirements Engineering and Model-

Driven Development. Software and Systems Modeling, Vol.9, No.4. pp.529-565.

