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ABSTRACT 

 
This paper discusses the design of observer-based reduced order controllers for the stabilization of large 

scale linear discrete-time control systems. This design is carried out via deriving a reduced-order model 

for the given linear plant using the dominant state of the linear plant. Using this reduced-order linear 

model, sufficient conditions are derived for the design of observer-based reduced order controllers. A 

separation principle has been established in this paper which demonstrates that the observer poles and 

controller poles can be separated and hence the pole-placement problem and observer design are 

independent of each other.   
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1. INTRODUCTION 

 
The reduced order controller design and observer design are active research problems in the linear 

systems literature and there has been a significant attention paid in the literature on these two 

problems during the past four decades [1-10].   In the recent decades, there has been a 

considerable attention paid to the control problem of large scale linear systems. This is mainly 

owing to the practical and technical issues like data acquisition, sensing, computing facilities, 

information transfer networks and the cost associated with them, which arise from the use of full 

order controller design. Thus, there is a great demand in the industry for the control of large scale 

linear systems with the use of reduced-order controllers rather than full-order controllers. 

 

A recent approach for obtaining the reduced-order controllers is via the reduced-order model of a 

linear plant preserving the dynamic as well as static properties of the system and then devising 

controllers for the reduced-order model thus obtained [4-8]. This approach has practical and 
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technical benefits for the reduced-order controller design for large-scale linear systems with high 

dimension and complexity.  

The observer-based reduced-order controller design is motivated by the fact that the dominant 

state of the linear plant may not be available for measurement and hence for implementing the 

pole placement law, only the reduced order exponential observer can be used in lieu of the 

dominant state of the given discrete-time linear system. 

 

In this paper, we derive a reduced-order model for any linear discrete-time control system and our 

approach is based on the approach of using the dominant state of the given linear discrete-time 

control system, i.e. we derive the reduced-order model for a given discrete-time linear control 

system keeping only the dominant state of the given discrete-time linear control system. Using 

the reduced-order model obtained, we characterize the existence of a reduced-order exponential 

observer that tracks the state of the reduced-order model, i.e. the dominant state of the original 

linear plant. We note that the reduced-order observer design detailed in this paper is a discrete-

time analogue of the results of Aldeen and Trinh [8] for the observer design of the dominant state 

of continuous-time linear control systems.  

 

Using the reduced-order model of the original linear plant, we also characterize the existence of a 

stabilizing feedback control law that uses only the dominant state of the original plant. Also, 

when the plant is stabilizable by a state feedback control law, the full information of the dominant 

state may not be always available. For this reason, we establish a separation principle so that the 

state of the exponential observer may be used in lieu of the dominant state of the original linear 

plant, which facilitates the implementation of the stabilizing feedback control law derived. The 

design of observer-based reduced order controllers for large scale discrete-time linear systems 

derived in this paper has important practical, industrial applications. 

 

This paper is organized as follows. In Section 2, we describe the construction of the reduced-

order plant of a given linear discrete-time control system. In Section 3, we derive necessary and 

sufficient conditions for the exponential observer design for the reduced-order linear control 

plant. In Section 4, we derive necessary and sufficient conditions for the reduced-order plant to be 

stabilizable by a linear feedback control law and we also present a separation principle for the 

observer-based reduced order controller design. In Section 5, we describe a numerical example. 

In Section 6, we summarize the main results derived in this paper. 

 

2. REDUCED ORDER MODEL FOR DISCRETE-TIME LINEAR SYSTEMS 
In this section, we consider a large scale linear discrete-time control system 1S  given by 

 

   
( 1) ( ) ( )

     ( ) ( )

x k Ax k Bu k

y k Cx k

+ = +

=
               (1) 

where 
n

x R∈ is the state,  
m

u R∈ is the control or input and  
p

y ∈R is the system output. We 

assume that ,A B and C are constant matrices with real entries having dimensions 

,  n n n m× × p n× respectively.   

 

First, we suppose that we have made an identification of the dominant (slow) and non-

dominant (fast) states of the original linear system (1) using the modal approach as 

described in [9]. 

 

Without loss of generality, we may assume that  
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         ,
s

f

x
x

x

 
=  
 

 

where r

sx R∈ represents the dominant state and 
n r

fx R
−∈ represents the non-dominant 

state of the system. 

Then the linear system (1) becomes 

        

( 1) ( )
( )

( 1) ( )

( )
          ( )

( )

s ss sf s s

f fs ff f f

s

s f

f

x k A A x k B
u k

x k A A x k B

x k
y k C C

x k

+       
= +       +       

 
 =   

 

          (2) 

From (2), we can write the plant equations as 

( 1) ( ) ( ) ( )

( 1) ( ) ( ) ( )

       ( ) ( ) ( )

s ss s sf f s

f fs s ff f f

s s f f

x k A x k A x k B u k

x k A x k A x k B u k

y k C x k C x k

+ = + +

+ = + +

= +

     (3) 

Next, we shall assume that the matrix A  has a set of n linearly independent eigenvectors.   

In most practical situations, the matrix A has distinct eigenvalues and this condition is 

immediately satisfied. 

Thus, it follows that A  is diagonalizable. 

Thus, we can find a non-singular (modal) matrix P consisting of n  linearly independent 

eigenvectors of A  such that 

1 ,P AP
− = Λ  

where Λ is a diagonal matrix consisting of the n eigenvalues of .A  

Now, we introduce a new set of coordinates on the state space given by 

  
1

P xξ −=                 (4) 

In the new coordinates, the plant (1) becomes  

           

1( 1) ( ) ( )

     ( ) ( )

k k P Bu k

y k CP k

ξ ξ

ξ

−+ = Λ +

=
                 

Thus, we have 
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1
( 1) 0 ( )

( )
( 1) 0 ( )

( )
          ( )

( )

s s s

f f f

s

f

k k
P Bu k

k k

k
y k CP

k

ξ ξ

ξ ξ

ξ

ξ

−
+ Λ     

= +     + Λ     

 
=  

 

                                                     (5) 

where sΛ and fΛ are r r× and ( ) ( )n r n r− × − diagonal matrices respectively, consisting of the 

dominant and non-dominant eigenvalues of .A  

Define matrices , ,s f sΓ Γ Ψ and fΨ by 

1 s

f

P B
−

Γ 
=  Γ 

 and 
s f

CP  = Ψ Ψ        (6) 

where , ,s f sΓ Γ Ψ and fΨ are ,  ( ) ,  r m n r m p r× − × × and ( )p n r× − matrices respectively. 

From (5) and (6), we see that the plant (3) has the following simple form in the new coordinates 

(4). 

  

( 1) ( ) ( )

( 1) ( ) ( )

       ( ) ( ) ( )

s s s s

f f f f

s s f f

k k u k

k k u k

y k k k

ξ ξ

ξ ξ

ξ ξ

+ = Λ + Γ

+ = Λ + Γ

= Ψ + Ψ

      (7) 

Next, we make the following assumptions: 

(H1) As ,k → ∞ ( 1) ( ),f fk kξ ξ+ ≈ i.e. fξ takes a constant value in the steady-state. 

(H2) The matrix fI − Λ is invertible. 

Then it follows from (7) that for large values of ,k we have 

         ( ) ( ) ( )f f f fk k u kξ ξ≈ Λ + Γ                                                                                    

i.e. 

         
1( ) ( )   ( )f f fk I u kξ −≈ − Λ Γ            (8) 

Substituting (8) into (7), we obtain the reduced-order model of the linear plant (1) in the 

ξ coordinates as 

        
1

( 1) ( ) ( )

      ( ) ( ) ( ) ( )

s s s s

s s f f f

k k u k

y k k I u k

ξ ξ

ξ −

+ = Λ + Γ

= Ψ + Ψ − Λ Γ
     (9) 
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To obtain the reduced-order model of the linear plant (1) in the x coordinates, we proceed as 

follows. 

By the linear change of coordinates (4), it follows that 

  
1 .P x Qxξ −= =    

Thus, we have 

  
( ) ( ) ( )

( ) ( ) ( )

s s ss sf s

f f fs ff f

k x k Q Q x k
Q

k x k Q Q x k

ξ

ξ

       
= =       

       
     (10) 

Using (9) and (10), it follows that 

1( ) ( ) ( ) ( ) ( )f fs s ff f f fk Q k Q k I u kξ ξ ξ −= + = − Λ Γ      

or 

  
1( ) ( ) ( ) ( )ff f fs s f fQ k Q x k I u kξ −= − + − Λ Γ       (11) 

Next, we assume the following: 

(H3) The matrix 
ffQ is invertible. 

Using the assumption (H3), the equation (11) becomes 

        
1 1 1( )  ( )  ( ) ( )f ff fs s ff f fx k Q Q x k Q I u k− − −= − + − Λ Γ        (12) 

To simplify the notation, we define the matrices 

  
1

ff fsR Q Q−= −  and  
1 1( )fff fS Q I− −= − Λ Γ      (13) 

Using (13), the equation (12) can be simplified as 

  ( ) ( ) ( )f sx k Rx k Su k= +        (14) 

Substituting (14) into (3), we obtain the reduced-order model 2S of the given linear system 1S as 

  
( 1) ( ) ( )

      ( ) ( ) ( )

s s s s

s s s

x k A x k B u k

y k C x k D u k

∗ ∗

∗ ∗

+ = +

= +
       (15) 

where the matrices , ,s s sA B C
∗ ∗ ∗

and sD
∗

are defined by 
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s ss sf

s s sf

s s f

s f

A A A R

B B A S

C C C R

D C S

∗

∗

∗

∗

= +

= +

= +

=

        (16) 

3. REDUCED ORDER OBSERVER DESIGN 

 
In this section, we state a new result that prescribes a simple procedure for estimating the 

dominant state of the given linear control system 1S that satisfies the assumptions (H1)-(H3) 

described in Section 2. 

 

Theorem 1. Let 1S  be the linear system described by 

( 1) ( ) ( )

     ( ) ( )

x k Ax k Bu k

y k Cx k

+ = +

=
       (17) 

Under the assumptions (H1)-(H3), the reduced-order model 2S of the linear system 1S can be 

obtained (see Section 2) as 

   
( 1) ( ) ( )

      ( ) ( ) ( )

s s s

s s

x k A x k B u k

y k C x k D u k

∗ ∗

∗ ∗

+ = +

= +
       (18) 

where , ,s s sA B C
∗ ∗ ∗

and sD
∗

are defined as in (16). 

To estimate the dominant state sx of the system 1,S consider the candidate observer 3S defined 

by 

         ( 1) ( ) ( ) ( ) ( ) ( )
s s s s s s s s

z k A z k B u k K y k C z k D u k
∗ ∗ ∗ ∗ ∗ + = + + − −           (19) 

Let the estimation error be defined as  

  s se z x= −     

Then ( ) 0e k → exponentially as k → ∞  if and only if the matrix sK
∗
is such that 

s s sE A K C
∗ ∗ ∗= −  is convergent. If ( ),

s s
C A

∗ ∗
is observable, then we can always construct an 

exponential observer of the form (19) having any desired speed of convergence.  

Proof. From Eq. (2), we have 

( 1) ( ) ( ) ( )s ss s sf f sx k A x k A x k B u k+ = + +      (20) 

Adding and subtracting the term ( ) ( )sf s f sA K C Rx k∗− in the RHS of Eq. (20), we get 
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( 1) ( ) ( ) ( ) ( ) ( ) ( )
s ss sf s f s sf f sf s f s s

x k A A R K C x k A x k A K C Rx k B u k∗ ∗+ = + − + − − +  (21) 

Subtracting (21) from (19) and simplifying using the definitions (16), we get 

   ( 1) ( ) ( ) ( )[ ( ) ( ) ( )]s s s sf s f f se k A K C e k A K C x k Rx k Su k∗ ∗ ∗ ∗+ = − − − − −   (22) 

As proved in Section 2, the assumptions (H1)-(H3) yield 

( ) ( ) ( )f sx k Rx k Su k≈ +        (23) 

Substituting (23) into (22), we get 

  ( 1) ( ) ( ) ( )s s se k A K C e k Ee k
∗ ∗ ∗+ = − =       (24) 

which yields 

( ) ( ) (0) (0)k k

s s se k A K C e E e
∗ ∗ ∗= − =       (25) 

From Eq. (25), it follows that ( ) 0e k → as k → ∞ if and only if E is convergent. 

If ( ),
s s

C A
∗ ∗

is observable, then it is well-known [10] that we can find an observer gain matrix sK
∗
 

that will arbitrarily assign the eigenvalues of the error matrix 
s s sE A K C
∗ ∗ ∗= − . In particular, it 

follows from Eq. (25) that we can find an exponential observer of the form (19) having any 

desired speed of convergence.   

     

4. OBSERVER-BASED REDUCED ORDER CONTROLLER DESIGN 

 
In this section, we first state an important result that prescribes a simple procedure for stabilizing 

the dominant state of the reduced-order linear plant derived in Section 2. 

Theorem 2. Suppose that the assumptions (H1)-(H3) hold. Let 1S and 2S be defined as in 

Theorem 1. For the reduced-order model 2 ,S the state feedback control law 

( ) ( )s su k F x k
∗= −         (26) 

stabilizes the dominant state sx of the reduced-order model 2S having any desired speed of 

convergence.   

         

In practical applications, the dominant state sx of the reduced-order model 2S may not be directly 

available for measurement and hence we cannot implement the state feedback control law (26). 

To overcome this practical difficulty, we derive an important theorem, usually called as the 

Separation Principle, which first establishes that the observer-based reduced-order controller 

indeed stabilizes the dominant state of the given linear control system 1S and also demonstrates 

that the observer poles and the closed-loop controller poles can be separated. 
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Theorem 3 (Separation Principle). Suppose that the assumptions (H1)-(H3) hold. Suppose that 

there exist matrices 
sF
∗
and 

sK
∗
such that 

s s sA B F
∗ ∗ ∗− and 

s s sA K C
∗ ∗ ∗− are both convergent 

matrices. By Theorem 1, we know that the system 
3S defined by (19) is an exponential observer 

for the dominant state 
sx of the control system 

1.S Then the observer poles and the closed-loop 

controller poles are separated and the control law 

  ( ) ( )s su k F z k
∗= −         (27) 

also stabilizes the dominant state 
sx of the control system 

1.S  

 

Proof. Under the feedback control law (27), the observer dynamics (19) of the system 3S  

becomes 

    ( )( 1) ( ) ( ) ( )
s s s s s s s s s s s s s f f

z k A B F K C K D F z k K C x k C x k
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗  + = − − − + +   (28) 

By (14), we know that 

    ( ) ( ) ( ) ( ) ( )f s s s sx k Rx k Su k Rx k SF z k∗≈ + = −      (29) 

Substituting (29) into (28) and simplifying using the definitions (16), we get 

    ( 1) ( ) ( ) ( )s s s s s s s s s sz k A B F K C z k K C x k
∗ ∗ ∗ ∗ ∗ ∗ ∗+ = − − +     (30) 

Substituting the control law (27) into (3), we also obtain 

    ( 1) ( ) ( )s s s s s sx k A x k B F z k
∗ ∗ ∗+ = −        (31) 

In matrix representation, we can write equations (30) and (31) as 

( 1) ( )

( 1) ( )

s ss s s

s ss s s s s s s

x k x kA B F

z k z kK C A B F K C

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

+  −   
=     + − −    

    (32) 

Since the estimation error e is defined by ,s se z x= − it is easy to see from equation (32) that the 

error e satisfies the equation 

  ( )( 1) ( )
s s s

e k A K C e k
∗ ∗ ∗+ = −        (33) 

Using the ( , )x e coordinates, the composite system (32) can be simplified as 

( 1) ( ) ( )

( 1) ( ) ( )0

s s ss s s s s

s s ss s s

x k x k x kA B F B F
M

e k e k e kA K C

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

+  − −     
= =      + −      

   (34) 

where 
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.
0

s s s s s

s s s

A B F B F
M

A K C

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

 − −
=  

− 
      (35) 

Since the matrix M is block-triangular, it is immediate that 

          ( ) ( )eig( ) eig eig
s s s s s s

M A B F A K C
∗ ∗ ∗ ∗ ∗ ∗= − −U      (36) 

which establishes the first part of the Separation Principle namely that the observer poles are 

separated from the closed-loop controller poles. 

To show that the observed-based control law (27) indeed works, we note that the closed-loop 

regulator matrix s s sA B F
∗ ∗ ∗− and s s sA K C

∗ ∗ ∗− are both convergent matrices. From Eq. (36), it is 

immediate that M is also a convergent matrix. From Eq. (35), it is thus immediate that 

( ) 0sx k →  and ( ) 0se k → as k → ∞ for all (0)sx and (0).e    

   

5. NUMERICAL EXAMPLE 

 
In this section, we consider a fourth-order linear discrete-time control system described by 

             
( 1)  ( )  ( )

     ( ) ( )

x k A x k B u k

y k Cx k

+ = +

=
                                                                             (37) 

where 

              

2.0 0.6 0.2 0.3 1

0.4 0.4 0.9 0.5 1
,    

0.1 0.3 0.5 0.1 1

0.7 0.9 0.8 0.8 1

A B

   
   
   = =
   
   
   

 and   [ ]1 2 1 1 .C =   (38) 

The eigenvalues of the matrix A  are  

  
1 2 32.4964,   1.0994,   0.3203λ λ λ= = =  and 

4 0.2161.λ = −    (39) 

From (39), we note that 
1 2,λ λ are unstable (slow) eigenvalues and 

3 4,λ λ are stable (fast) 

eigenvalues of the system matrix .A   

For this linear system, the dominant and non-dominant states are calculated. A simple calculation 

using the procedure in [9] shows that the first two states{ }1 2,x x are the dominant (slow) states, 

while the last two states  { }3 4,x x are the non-dominant (fast) states for the given system (37). 

Using the procedure described in Section 2, the reduced-order linear model for the given linear 

system (37) can be obtained as 
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( 1) ( ) ( )

      ( ) ( ) ( )

s s s

s s

x k A x k B u k

y k C x k D u k

∗ ∗

∗ ∗

+ = +

= +
       (40) 

where 

             
2.0077 1.1534 0.8352

,    
0.3848 1.5581 1.1653

s sA B
∗ ∗   

= =   
   

    

              [ ]1.0092 4.0011sC∗ =  and 0.2904sD
∗ = −  

The step responses of the original plant and the reduced order plant are plotted in Figure 1, which 

validates the reduced-order model obtained for the given linear plant. 

Figure 1. Step Responses for the Original and Reduced Order Linear Systems 

We note also that the reduced-order linear system (40) is completely controllable and completely 

observable. Thus, reduced-order observers and observer-based controllers for this plant can be 

easily constructed as detailed in Sections 3 and 4.    

   

6. CONCLUSIONS 

 
In this paper, using the dominant state analysis of the given large-scale linear plant, we obtained 

the reduced-order model of the linear plant. Then we derived sufficient conditions for the design 

of observer-based reduced-order controllers. The observer-based reduced order controllers are 

constructed by combining the reduced order controllers for the original linear system which 
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require the dominant state of the original system and reduced order observers for the original 

linear system which provide an exponential estimate of the dominant state of the original linear 

system. We also established a separation principle in this paper which shows that the pole 

placement problem and observer problem are independent of each other. 
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