
International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.2, April 2012

DOI : 10.5121/ijcseit.2012.2212 129

PAGE NUMBER PROBLEM: AN EVALUATION OF

HEURISTICS AND ITS SOLUTION USING A HYBRID

EVOLUTIONARY ALGORITHM

Dharna Satsangi

1
, Kamal Srivastava

2
 and Gursaran

3

Department of Mathematics, Dayalbagh Educational Institute,

Agra, India
1dharna.satsangi@gmail.com

2kamalsrivast@gmail.com
3gursaran.db@gmail.com

ABSTRACT

The page number problem is to determine the minimum number of pages in a book in which a graph G can

be embedded with the vertices placed in a sequence along the spine and the edges on the pages of the book

such that no two edges cross each other in any drawing. In this paper we have (a) statistically evaluated

five heuristics for ordering vertices on the spine for minimum number of edge crossings with all the edges

placed in a single page, (b) statistically evaluated four heuristics for distributing edges on a minimum

number of pages with no crossings for a fixed ordering of vertices on the spine and (c) implemented and

experimentally evaluated a hybrid evolutionary algorithm (HEA) for solving the pagenumber problem. In

accordance with the results of (a) and (b) above, in HEA, placement of vertices on the spine is decided

using a random depth first search of the graph and an edge embedding heuristic adapted from Chung et al.

is used to distribute the edges on a minimal number of pages. The results of experiments with HEA on

selected standard and random graphs show that the algorithm achieves the optimal pagenumber for the

standard graphs. HEA performance is also compared with the Genetic Algorithm described by Kapoor et

al. It is observed that HEA gives a better solution for most of the graph instances.

KEYWORDS

Graph layout, Page number problem, Book embedding of a graph, Hybrid Evolutionary Algorithm

1. INTRODUCTION

The book embedding problem consists of embedding a graph in a book with its vertices placed on

a line along the spine of the book and its edges placed on the pages of the book in such a way that

edges residing on the same page do not cross. The pagenumber of a graph G is the minimum

number of pages of the book into which G can be embedded. This problem abstracts layout

problems arising in direct interconnection networks, fault-tolerant processor arrays, fault tolerant

VLSI design, sorting with parallel stacks and single row routing [1]. The problem of obtaining the

pagenumber is NP-complete for general graphs [1]. However, this problem has been studied for

some standard graphs and their pagenumbers have been found. Pagenumbers of FFT (Fast Fourier

Transforms), Benes, Barrel Shifter networks [2], complete graphs, grids, hypercubes, trees, X-

trees, pinwheel graphs [3], planar graphs, deBruijn and shuffle-exchange graphs [4,5] are known.

Shahrokhi et al. [6] have given polynomial time algorithms to generate near optimal drawing of

graphs on books. Berhart et al. [7] showed that the pagenumber is less than or equal to one if and

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.2, April 2012

130

only if the graph is outerplanar. Swaminathan et al. [8] have shown that bandwidth-k graphs can

be embedded in a book of k-1 pages, though it is not a tight bound when considered on standard

graphs with known bandwidth. Upper and lower bounds on the pagenumber of k-ary hypercubes

are given by Bettayeb et al. [9]. In order to deal with the problem of obtaining the pagenumber for

general graphs, a genetic algorithm (GA) for finding the pagenumber has been proposed by

Kapoor et al. [1].

The pagenumber problem (PNP) is formally defined as follows. Let G=(V, E) be an undirected

graph with vertex set � and edge set �. A labeling of the vertices (called vertex labelling or

vertex ordering or vertex layout) of an undirected graph with n=|V| vertices, is a bijective

function �: � � ��	
 �1,2,… , ��. The pagenumber is the minimum number of pages used in

placing all the edges of edge set � of the graph � for the vertex ordering � such that there is no

crossing between the edges on any page in any drawing. We will refer to this as the optimal

pagenumber of G. A pair of edges �� and �� cross in a drawing iff 1 � ���� � ���� �
���� � ���� � � and both lie on the same page.

The length of an edge �� for a labeling � is defined as ����, �, ��
 |���� � ����|, �� �
�. Let �′
 ��� � ���� 1 �⁄ ����, �, �� � ��. We store the edges of �′ in a matrix ��

 !"#$%&′'(% where !") and !"(are the end vertices of the *+, edge. The following formula counts

the number of crossings for labeling � when all the edges are embedded on a single page.

- - �!",),
|&.|

#/"0)

|&.|

"/)
!",(�∆�!#,), !#,(�

where,

��, ��∆��, ��
 21, ���� � ���� � ���� � ����
0, 456!78*9! :

 ���� ���� ���� ����

Figure 1. Edge crossing condition ���� � ���� � ���� � ����

In devising an embedding for minimizing the page number two main factors are important: 1)

placement of vertices on the spine and 2) distribution of edges over the pages of the book. Once

the order of the vertices on the spine is fixed, the pages required to embed the graph (without any

crossings) depend on the manner in which the edges are assigned a page. This paper addresses the

two factors and the meta-heuristic generation of solutions to the page number problem and is

divided in three parts:

a) In the first part, described in Section 2 and Section3, five heuristics for vertex ordering

are statistically evaluated on a suite of test graphs that includes standard as well as

random graphs. A vertex ordering x is considered to be better than vertex ordering y if the

number of edge crossings with x is smaller than that with y when all the edges are placed,

or embedded, on one page. The results of the experiments were statistically analyzed and

the best technique was used for experiments carried out in the second part of the work.

Results show that the vertex ordering obtained by a depth first search of the graph

provides significantly fewer crossings than the other heuristics.

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.2, April 2012

131

b) In the second part, described in Section 4 and Section 5, four heuristics for edge

distribution are statistically evaluated on the suite of test graphs, described in part (a)

above, for fixed vertex orderings determined by depth first search. Experiments reveal

that an edge distribution heuristic based on the strategy proposed by Chung et al. [3],

which was proposed to distribute edges of a complete graph across a minimal number of

pages, is highly effective. This heuristic outperforms the remaining three heuristics

evaluated in this work.

c) In the third part, described in Section 6, 7 and 8, a Hybrid Evolutionary Algorithm (HEA)

has been implemented and experimentally evaluated for the pagenumber problem (PNP).

Experimental results show that HEA outperforms genetic algorithm proposed by Kapoor

et al. [1] for PNP on the graphs on which the two were compared.

Section 9 presents the conclusions of the work described in the paper.

2. Heuristics for Vertex Ordering

Five heuristics were evaluated for generating vertex orderings for a given graph G=(V,E). These

are:

1. Random depth first vertex ordering (rdfs)

The graph is traversed in depth first order wherein the root vertex and the neighbors of

the vertices are visited randomly. The order in which a vertex is visited by the search

becomes the label of the vertex.

2. Random breadth first vertex ordering (rbfs)

The graph is traversed in the breadth first order wherein the root vertex and the neighbors

of the vertices are visited randomly. The order in which a vertex is visited by the search

becomes the label of the vertex.

3. Random vertex ordering (rand)

The vertices of the graph are labeled randomly.

4. Vertex cover based vertex ordering (Vcover)

 i=1;

 while(V is not empty)

 find vertex v in V having highest degree

 ����
 *;
i=i+1;

V=V-{v};

end
 Vertices with equal degrees are chosen randomly whereas isolated vertices are taken in

 sequential order.

5. Max-neighboring vertex ordering (maxNbr)

 At each step find vertex v of G (V, E) having highest degree and label it. Now find

 neighbors of v and sort them in descending order of their degrees and assign the labels

 accordingly. Remove v and all its neighbors from the graph. Vertices with equal degrees

 are chosen randomly whereas isolated vertices are taken in sequential order.

3. Experiments and Results on Heuristics for Vertex Ordering

As defined earlier, vertex ordering x is considered to be better than vertex ordering y if the

number of edge crossings with x is smaller than that with y when all the edges are placed, or

embedded, on one page. In order to determine if there is a significant difference in the number of

crossings for vertex orderings generated using the five heuristics identified in Section 2 and also

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.2, April 2012

132

to possibly identify the best heuristic, a number of experiments were carried out on a suite of

standard and random graphs. These experiments together with the results are described in this

section.

3.1. Suite of Test Graphs

The test suite consists of standard and random graphs. Standard graphs were chosen whose

pagenumber results are known or can be computed. However, for these graphs the minimum

crossing number on a single page is not known.

3.1.1. Standard Graphs

• Complete: A complete graph with n vertices denoted by Kn, is a simple graph in which every

two distinct vertices are joined by exactly one edge. It is regular graph of degree n-1, and

total edges equal to n(n-1)/2.

• Complete bipartite: A complete bipartite graph, Km,n with |V|=m+n is a simple bipartite graph

such that two vertices are adjacent if and only if they are in different partite sets.

• Cycle: A cycle Cn is a graph with an equal number of vertices and edges whose vertices can

be placed around a circle so that two vertices are adjacent if they appear consecutively along

the circle.

• Hypercubes: The hypercube, Qd, of dimension d, is a d-regular graph with 2d vertices and

d2d-1
 edges. Each vertex is labeled by a distinct d-bit binary string, and two vertices are

adjacent if they differ in exactly one bit.

• Cube-connected cycles: The cube-connected cycle CCd, of dimension d is formed from Qd by

replacing each vertex u with a d-cycle of vertices in CCd and then joining each cycle vertex of

the corresponding neighbor of u in Qd.

• Complete binary tree: The binary tree, B(n) is a tree structure in which each node has at most

two child nodes. The binary tree is complete if the nodes are well balanced.

• X-trees: The depth-d X-tree, X(d) is the edge augmentation of the depth-d complete binary

tree that adds edges going across each level of the tree in left-to-right order.

• Pinwheel: The depth-n pinwheel graph, P(n) has 2n vertices

{a1,a2,…,an}

 and

{b1,b2,…,bn}

and edges connecting each pair of vertices of the form

ai –bi 1≤i≤n,

ai—bn-i+1 1≤i≤n,

ai—ai+1 1≤i<n,

bi—bi+1 1≤i<n.

• Star: The star graph Sk is a complete bipartite graph K1,k-1, a tree with one internal node and k-

1 leaves. It has k vertices and k-1 edges.

• Triangulated triangle: The Triangulated triangle graphs, Tl is a graph whose vertices are the

triples of non-negative integers summing to l, with an edge connecting two triples if they

agree in one coordinate and differ by one in the other two coordinates.

• Toroidal Mesh: A 2-dimensional toroidal mesh is defined by Cm'Cn with |V|=mn.

• Shuffle Exchange S(D) : Its vertices are 0-1 vectors of length D. There is an edge between any

vertex (v0, ..., vD-1) and vertex (v1, ..., vD-1, v0). Also, there is an edge between any vertex (v0,

..., vD-1) and the vertex (v1, ..., vD-2, ;), ; < vD-1.

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.2, April 2012

133

3.1.2 Random Graphs

Random graphs of 40, 50 and 60 vertices and edge density 30%, where edge density is taken as

2m/ n (n-1) were generated for the experiment. It was also ensured that the generated graph is

connected and undirected.

3.2. Methodology and Results

The following methodology was adopted for the experiments:

1. For each test graph and each heuristic, fifty different vertex orderings were randomly

generated

2. For each vertex ordering the crossings on a single page was determined.

3. Basic statistical analysis was then carried out for each graph and each heuristic over the

fifty vertex orderings. This included determining the minimum crossing, mean crossing

and standard deviation. Further ANOVA was used to determine if there was a significant

difference in the means. The reason behind collecting the mean, standard deviation (Sd)

and the ANOVA statistics was also to determine if a method can result in vertex

orderings with large variation in number of crossings. A method would not be acceptable

if the mean is high and the standard deviation is also high and also if the mean is high and

the standard deviation is low. Both cases imply that vertex orderings are more likely to be

generated that lead to a large number of crossings.

In this section we first report the results on standard graphs and then on random graphs.

3.2.1. Standard Graphs

From Figures 2 to 8, the following observations can be made:

• rdfs gives the least value for all the graph instances. In 66 (77.6%) instances it gives the least

value among all the techniques. All these instances are small sized graphs.

• The mean value for rdfs is a minimum for all the instances.

• In the case of rdfs for X-tree, shuffle exchange and triangulated triangle, it can be observed

that the Sd increases as the number of vertices increase. This can also be seen in Figure 9 and

Figure 10. This implies that as the number of vertices increase, rdfs may give a layout for

which the number of crossings is large. However, since the mean and minimum value is least

for all the selected instances, rdfs seems to be an obvious choice for obtaining a layout. This

is also supported by Figure 9. In Figure 9 we can see that as the number of vertices increase,

rbfs and rand generate layouts with larger crossing numbers for all fifty layouts.

• maxNbr gives a low value of Sd but high mean for most of the graph instances. This is

because of the nature of the algorithm which generates almost identical vertex orderings of

the graphs in each simulation.

• rand results in a large minimum value, large Sd and high mean for most of the instances. rdfs

as benchmarked against rand gives very good results.

• Vcover gives highest minimum value for almost (except seven cases) all the graph instances.

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.2, April 2012

134

Figure 2. Mean crossings for cycle graphs

Figure 3. Mean crossings for complete bipartite graphs

Figure 4. Mean crossings for binary trees, X-trees and pinwheel graphs

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.2, April 2012

135

Figure 5. Mean crossings for triangulated triangle graphs

Figure 6. Mean crossings for toroidal meshes

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.2, April 2012

136

Figure 8. Mean crossings for hyper cubes and cube-connected cycle graphs

To test whether the difference in mean number of crossings for different vertex ordering

techniques is significant, we ran one way ANOVA to compute F and p values. From these

ANOVA values it can be concluded that the difference is significant. This together with the mean

and minimum values gives another reason to choose rdfs over all the other techniques.

Figure 9. Scatter plot for X-tree (d=2, … , 6) for rdfs, rbfs and rand

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.2, April 2012

137

Figure 10. Scatter plot for X-tree (d=2, … , 6) for rdfs

3.2.2. Random Graphs

To further test the performance of the vertex ordering techniques mentioned above, we generated

three random connected graphs, one each of 40, 50 and 60 vertices and edge density 30%. For

each graph fifty layouts were generated with each of the vertex ordering techniques and a

statistical analysis was carried out. The results of this analysis are shown in Table 1. From the

table it is clear that the minimum and the mean value is the lowest for rdfs. ANOVA also shows

that there is a significant difference in the means obtained by various techniques. Thus rdfs is

chosen as the technique for generating layouts for further experiments on PNP.

Table 1. Results on random graphs for different heuristics for vertex ordering

n=|V| rdfs rbfs rand Vcover maxNbr F-value p-

value

40 Mean 6694 8520 8220 10889 8695 514.513 0.00

 Sd 334.4334 400.1506 435.5663 20.54105893 15.00097

 Min 6009 7804 7101 10779 8599

50 Mean 17430 21506 20819 26441 20780 17407.723 0.00

 Sd
699.9343 723.1122 863.5149 731.591 686.8343067

 Min 16261 20132 19228 24759 19331

60 Mean 38298 45197 43673 54837 42419 45766.676 0.00

 Sd 1290.958 1202.054 1595.302 14.89122 25.56647

 Min 35345 42858 39852 54800 42332

4. Edge distribution heuristics

We now describe four edge distribution heuristics. Using these heuristics, an attempt is made to

distribute edges on a minimal number of pages such that there are no crossings on any page for

any drawing.

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.2, April 2012

138

1. Greedy edge distribution (gr)

One edge of the graph at a time is picked in a random order and is placed on a page

where it does not cross with any of the already placed edges. If no such page exists then a

new page is taken for placing the edge.

2. Edge-length based edge distribution (eg)

This technique is motivated by edge-length heuristic proposed by Cimikowski et al. [10]

for 2-page crossing number problem. The edges of the graph are taken in the decreasing

order of their length and are placed one at a time on the page where it does not cause any

crossing. A new page is added whenever required.

3. Ceil-floor edge distribution (cf)

This edge embedding strategy is proposed by Kapoor et al. [1]. The sequence in which

the edges are considered for edge embedding depends on their lengths which are given

as:

=�/2?, @�/2A, =�/2?- 1, @�/2A+ 1, =�/2?- 2, @�/2A+ 2, …

4. Circular edge distribution (circ)

This heuristic is motivated by the edge distribution strategy for pagenumber [3] of

complete graphs.

Steps:

• Consider a labeling � =1, 2, …, n of vertices in graph G.

• Now for a complete graph with vertex labels 1, 2, …, n, place the edges (xB C

denotes an edge with endpoints x and y)of Kn in a sequence S according to the

procedure given below:

Initialize S to the empty sequence;

for v=1 to @�/2A
 S+=vB(v+1) B(v-1) B(v+2) B(v-2) B… B (v+@�/2A-1)
 B(�-@�/2A+1) B(�+@�/2A)
endfor
where += means concatenate with the sequence obtained from the previous step and

addition and subtraction are modulo operators assuming labels are placed in a circle.

Note that includes all the edges in a complete graph of n vertices with some edges

possibly included more than once.

• Now E (G) D E (Kn). Insert edges in E (G) in the same sequence as they appear in S

in edge matrix Q, without duplicating the edges.

• Place the edges in Q one by one, in sequence, starting on page one using the

following rule: Assign page one to the first edge. For each ei in Qi, 2� i �|E|, assign

the lowest numbered page to ei if adding ei to the page does not result in a crossing.

Otherwise assign a new page to ei.

• Pagenumber = total number of pages assigned.

5. Experiments and results for edge distribution heuristics

The results obtained by these heuristics for standard graphs with their upper bounds/ optimal

values are shown in the Table 2. These upper bounds/ optimal values for the pagenumber are

given in [1, 3, 4, 5, and 8].

5.1. Standard Graphs

Bold values in the table indicate lowest value of pagenumber obtained by the experiments. From

Table 2 it is clear that the minimum pagenumber is obtained with the circular edge distribution

heuristic of Chung et al. [3], except for P(16), T4 and T5.

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.2, April 2012

139

Table 2. Results on standard graphs for different edge distribution heuristics

Graphs cf

circ

eg

gr

Upper bound/

Optimal

S6 1 1 1 1 2

S10 1 1 1 1 4

S30 1 1 1 1 14

T3 2 2 2 2 3

T4 3 3 2 2 4

T5 4 3 2 2 5

T6 4 4 4 4 6

T7 4 3 3 4 7

T8 7 6 7 8 8

T10 6 5 5 6 10

K25,25 30 25 29 40 18

K40,40 47 40 47 67 28

C10 1 1 1 1 1

C20 1 1 1 1 1

C50 1 1 1 1 1

B(3) 1 1 1 1 1

B(6) 1 1 1 1 1

K8 6 4 6 5 4

K10 7 5 7 8 5

K16 13 8 13 13 8

K20 15 10 14 17 10

K40 34 20 35 37 20

K60 48 30 54 59 30

K100 86 50 85 102 50

K150 135 75 137 154 75

Q3 2 2 2 2 2

Q4 4 4 4 6 3

Q5 7 7 8 9 4

X(5) 5 5 5 5 2

X(7) 8 6 6 7 2

S(4) 1 1 1 1 3

S(7) 3 3 4 3 3

S(10) 7 5 5 6 3

S(20) 13 10 13 15 3

S(30) 19 15 19 22 3

CC3 3 3 3 3 5

CC4 8 8 8 8 5

CC5 16 15 15 18 5

P(8) 2 2 2 2 3

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.2, April 2012

140

P(16) 3 4 3 4 3

P(32) 6 5 5 5 3

5.2. Random Graphs

One random connected graph for each of 40, 50, 60, 70 vertices having an edge density of 30%

was generated. For each graph fifty different vertex orderings were generated and each edge

distribution heuristic was run on each vertex ordering. Since each edge distribution heuristic was

run on the same set of vertex orderings, paired t-test was carried out to test significance in

difference of means. The results of the analysis are shown in Table 3. In paired t-test the

confidence level is taken as 99% and Dunn-Sidak adjusted probabilities are calculated using

SYSTAT 9. The mean pagenumber by these techniques is used to compare the pagenumber of

graphs.

Table 3. Results of paired t-test on random graphs for edge distribution heuristics

Techniques t-value Dunn-Sidak Adjusted

Probability

cf and circ 30.147 0.0

cf and eg -6.149 0.0

eg and circ -31.347 0.0

cf and gr -33.297 0.0

circ and gr -37.561 0.0

eg and gr -31.244 0.0

It is clear from Table 3 that the difference in means is significant for all heuristics. Considering

the plot in Figure 11, it is evident that circular edge distribution heuristic (circ) gives the best

results for mean and Figure 12 shows that it gives the smallest value for page number. Figure 13

shows the complete statistics for circular edge distribution heuristic. circ, as described earlier, is

based on the strategy proposed by Chung et al. [3] for complete graphs.

Figure 11. Mean Page number of Random Graphs

10

15

20

25

30

35

40

45

30 40 50 60 70 80

M
e

a
n

 P
a

g
e

 N
u

m
b

e
r

vertices

cf

circ

eg

gr

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.2, April 2012

141

Figure 12. Minimum Page number of Random Graphs

Figure 13. Box Plot of random graphs for circular edge distribution heuristic

6. Hybrid Evolutionary Algorithm for PNP

In this section we describe a hybrid evolutionary algorithm for PNP, followed by its

implementation details in Section 7. Evolutionary algorithms (EAs) are the approximate

optimization algorithms that are based on evolutionary principles. They are inspired by nature's

capability to evolve living beings well adapted to their environment. At the core of EA is a

population of individuals. In each iteration in the algorithm, reproduction operators are applied to

the individuals of the current population to generate the individuals of the next generation.

Recombination operators may also be used to recombine two or more individuals to produce new

individuals. The algorithm may also use mutation operators that cause self-adaptation of

individuals. The driving force in the EAs is the selection of individuals based on their fitness

(which might be based on the objective function or some kind of simulation experiment).

Individuals with higher fitness have a higher probability to be chosen as members of the next

generation (parents) which corresponds to the principle of survival of fittest in natural selection.

Simulated annealing (SA) proposed by Kirkpatrik et al. [11] is another powerful technique used

to solve optimization problems. The algorithm is of sequential nature and converges slowly. The

robustness of EAs is usually enhanced when they are hybridized with other meta heuristics such

as tabu search [12], SA etc. Yip and Pao [13] proposed to incorporate the process of SA into the

selection process of EA and to utilize its power to guide local search. A detailed outline of the

algorithm involving the hybridization of EA with SA in the context of PNP is given in Section

6.2 followed by its pseudo code.

0

10

20

30

40

40 50 60 70m
in

im
u

m
 p

a
g

e
n

u
m

b
e

r

vertices

cf

circ

eg

gr

0

10

20

30

40 50 60 70

vertices

median

q1

min

max

q3

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.2, April 2012

142

6.1. Solution Representation

In HEA, for a graph G(V, E), V={V1, V2, ..., Vn}, each solution, E=(R, Q) is represented in two

components:

1) An array R of length n that represents a labeling �. Vertices are placed on the spine in the

label sequence 1,2, …, n.

2) An |E|'3 array Q, where each row contains the end vertices of an edge in the first two

columns and the third column stores the page index in which the edge is placed.

The page number of a solution E is FGHIi Q[i][3].

6.2. The Algorithm

HEA starts with building an initial population of parents P0 consisting of pop_size number of

solutions produced by rdfs and then applying circ to distribute the edges on the pages. The SA

parameters namely, initial temperature Ti, final temperature Tf, and cooling ratio α are initialized.

Also a non-zero positive integer k is assigned to ch_num[i], 1�i� pop_size, where ch_num[i]

indicates the number of children to be produced by parent Pt[i] in the t
th
 generation. It means

initially each parent is given an equal chance to produce children. Clearly, the total number of

children to be produced by the parents P0 is k' pop_size. After generating the initial population

of parents P0 the iterative process (steps 7 to 23) starts in which each parent Pt[i] generates

ch_num[i] number of children using idfs (see section 3.3) and circ. We refer to the population of

children as Ct, where Ct [i][j] denotes the jth child of parent Pt[i]. Now for each i, 1�i�pop_size,

child with lowest pagenumber (best_Ct [i]) is determined for finding the parents for the next

generation. This child becomes the parent for the next generation if its pagenumber is less than

that of parent; otherwise there is a probability that the child will be selected to become a parent

(Steps 12 to 20). Next important step is to decide ch_num[i] for the next generation of parents

Pt+1. This decision is based on the competition between parents wherein the performance of a

parent is measured by comparing the pagenumber of each of its children with the

best_pagenumber, where best_pagenumber is the lowest pagenumber obtained so far in this

process. Pseudo code for computing ch_num[i] is given in the procedure find_ch_num at the end

of this section. The iterative process is repeated until no improvement in the best_pagenumber is

observed for a specified count (cnt) of generations or when final temperature is reached.

The pseudo code for HEA

1. Initialize pop_size, number of children to be produced by each parent of the initial

generation k, cooling ratio α, initial temperature Ti, final temperature Tf.

2. Set t J0; T J Ti;

3. for i=1 to pop_size

4. ch_num[i] J k;

5. endfor

6. Generate initial population of parents Pt[i] using rdfs and then apply circ to distribute the

edges on the pages

7. Repeat

8. for i=1 to pop_size

9. Apply idfs on Pt[i], ch_num[i] times to create children Ct [i][j], 1�j� ch_num[i]

 and then apply circ to distribute the edges on the pages

10. endfor

11. Apply mutation on k'pop_size'rm number of children from Ct.

12. for i=1 to pop_size

13. Find child with lowest pagenumber i.e. best_ Ct [i]

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.2, April 2012

143

14. K Jpg_no (G, Pt[i]) – pg_no (best_ Ct [i]);

15. if K >0 or exp (K/L)>M // M is a random number lying between 0 and 1

16. Pt+1[i] J best_ Ct [i];

17. else

18. Pt+1[i] J Pt[i];

19. endif

20. endfor

21. Update best_pagenumber

22. T J αT ; t Jt+1;

23. Until (stopping criteria is satisfied)

Procedure find_ch_num()

1. sumJ0;

2. for i=1 to pop_size

3. count[i]J0

4. for j=1 to ch_num[i]

5. K J best_pagenumber – pg_no (G, Ct [i][j]);

6. if K >0 or exp (K/L)>M

7. count[i]J count[i]+1

8. endif

9. endfor

10. sumJsum+ count[i]

11. endfor
12. for i=1 to pop_size

13. ch_num[i] Jk'pop_size'count[i]/sum

14. endfor

7. Implementation of Hybrid Evolutionary Algorithm

7.1. Initial Population

An initial population P0[i], i=1, ..., pop_size, consists of pop_size solutions. For each P0[i]= (Ri,

Qi), Ri is generated using rdfs and circ is used to generate Qi. In this section we take an example,

shown in Figure 14a, to illustrate the components of a solution.

(a) (b)

Figure 14. (a) A graph and (b) its dfs tree

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.2, April 2012

144

Starting from vertex 1, rdfs of the graph (dfs tree is shown in Figure 14(b)) provides the following

labeling:

In Figure 14b, for each vertex, the number in regular font are the vertex identifiers and the

number in the parenthesis corresponds to its depth first index, i.e., the label of the vertex.

circ gives the distribution of edges in the array Q as

Q= Edges 1 2 5 7 7 2 1 7 5 2 10 8 8 4 4 6 1 9 5 5 6

 2 3 9 8 11 6 6 9 6 4 11 10 9 5 6 7 8 10 7 11 11

 Page # 1 1 1 1 1 1 2 1 1 3 2 2 1 1 2 2 3 1 1 4 2

The page number for this solution is 4.

7.2. Generating Children

We use a unary reproduction operator, intermediate depth first search (idfs) to produce children

from the parents, which is explained as follows:

Let the parent par_pop[i] and the child child_pop[i] are denoted by arrays S_par and S_child

respectively. A vertex v (1 v n) is selected randomly. The label of this vertex is S_par[v].

Labels of vertices with labels less than or equal to S_par[v] are copied from S_par to S_child at

the respective positions. These vertices are referred to as visited and remaining ones are referred

to as unvisited. This process is shown in pseudo code below:

1. for u � V

2. if S_par[u] S_par[v]

3. S_child [u] S_par[u]

4. endif

5. endfor

Now starting from the vertex v, dfs of the unvisited vertices of the graph is carried out. The

labeling of the unvisited vertices starts from S_par[v] +1 and the labels are stored at the

respective positions of array S_child. This ensures that a new obtained child solution also has a

dfs based labeling. Thus idfs helps to explore various possible dfs trees of the graph starting with

the same root vertex.

Figure 15 shows a dfs tree obtained from that shown in Figure 14(b) when the rdfs is carried out

after the randomly chosen vertex 6.

R= 1 2 11 5 4 3 6 8 9 10 7

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.2, April 2012

145

Figure 15. A dfs tree obtained by applying idfs on the tree of Figure 14.

The labelling obtained is

Application of circ on this layout provides the following edge distribution over the pages. The

page number for this solution is 3.

7.3. Mutation

In HEA, insert mutation is used to perturb the population of children Ct. In this, a vertex is

selected randomly and is placed at another randomly chosen position on the spine. This facilitates

the entry of non-dfs solutions in the population. Mutation is applied on k'pop_size'rm number

of randomly selected children, where rm is mutation rate.

8. Experiments and Results for HEA

In this section, we present the results of our experiments for HEA and GA [1] which is preceded

by the results of parameter tuning and GA settings.

8.1 GA Settings and Parameter Tuning

To compare HEA with the GA of Kapoor et al [1], we coded the GA with cyclic crossover and

insert mutation operator as no specific operator is mentioned in their paper. Furthermore, as other

GA parameters such as population size, mutation rate etc. are also not specified, the various

parameters involved in HEA and GA are set after performing preliminary experiments on the

randomly generated graphs. The size of initial population (pop_size) is set as n=|V| and the

mutation rate (rm) of 0.5 is used in both the algorithms. The number of children generated

R= 1 2 11 10 9 3 4 7 8 6 5

Q= Edges 1 2 4 5 5 9 8 2 1 8 6 5 7 6 1 4 10 7 7 5 2

 2 3 6 7 11 10 10 6 6 9 7 9 11 11 8 5 11 8 9 6 4

 Page # 1 1 1 1 1 1 1 1 2 1 1 1 1 2 2 1 1 3 3 1 1

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.2, April 2012

146

initially (i.e. k) is fixed at 3. The SA parameters, namely, initial temperature (Ti), final

temperature (Tf), and cooling ratio (α) are chosen as 1, .01 and 0.99 respectively. In both the

algorithms, the iterative process is repeated until no improvement is observed in best_page

number for 50 consecutive iterations.

8.2 Results

The results of HEA and GA on various graphs are shown in Table 4 through Table 7. The results

of standard graphs with known optimal page numbers are given in Table 4. HEA performs better

than GA in most of the cases. The results in bold indicates the cases for which an algorithm has

better performance than the other. HEA attains optimal page number for most of the graphs. The

page number for complete graphs are all optimal as expected since circ is based on edge

distribution strategy for the optimal page number of these graphs. GA does not perform well, for

the huper cubes as the page numbers obtained by it are substantially higher than the optimal page

number which is d-1. HEA attains these values easily when tested for d 6. Both the algorithms

attain the optimal page number 1 for the complete binary trees and star graphs which are obvious

as these graphs are outer planar. HEA is able to obtain optimal page numbers of pinwheel graphs

P(n) tested for n = 8, 16 and 32.

Table 5 contains the results of those classes of standard graphs for which optimal page numbers

are not known and for which some upper bounds are available for them. The results for shuffle

exchange and triangulated triangles are much less than their known upper bounds. HEA and GA

both give large page numbers of complete bipartite graphs. The reason for this may be attributed

to the fact that the optimal page number is obtained with a non-dfs layout. Mean values of page

number for random graphs of sizes 40 and 50 obtained by GA and HEA are shown in Table 6 and

Table 7 respectively. Results (Figure 16) clearly demonstrate that HEA outperforms GA in terms

of solution quality though the elapsed time of HEA is more than that of GA. The difference in the

page numbers obtained by HEA and GA is more significant in the case of higher density graphs.

Table 4. Comparison of GA and HEA for the standard graphs with known optimal page numbers

Graphs GA HEA Optimal

K12 7 6 6

K13 7 7 7

K14 8 7 7

K15 9 8 8

K20 13 10 10

K25 18 13 13

K30 22 15 15

K35 26 18 18

K40 31 20 20

K100 86 50 50

K150 135 75 75

P(8) 2 2 3

P(16) 3 3 3

P(32) 6 3 3

Q3 2 2 2

Q4 3 3 3

Q5 7 4 4

Q6 13 5 5

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.2, April 2012

147

Table 5. Comparison of GA and HEA for the standard graphs with the upper bounds on

the page numbers

Graphs GA HEA Upper Bound

CC3 4 3 5

CC4 7 5 5

S(4) 1 1 3

S(5) 2 2 3

S(6) 3 3 3

S(7) 3 3 3

T4 3 3 4

T5 3 3 5

T6 3 2 6

T7 4 3 7

T8 4 4 8

T9 4 4 9

T10 4 4 10

T11 5 5 11

K4,4 3 4 3

K5,5 4 5 4

K6,6 5 6 5

K7,7 6 7 5

K8,8 7 8 6

K9,9 8 9 7

K10,10 9 10 7

Table 6. Comparison of GA and HEA for the random graphs (|V|=40)

Edge density

(%)

Pagenumber Elapsed Time (in sec.)

GA HEA GA HEA

10 6.6 6.6 147.278 202.65

20 11.2 10.8 244.8094 347.581

30 14 13.2 391.4998 492.0376

50 18.6 16.4 736.2366 795.784

Table 7. Comparison of GA and HEA for the random graphs (|V|=50)

Edge density

(%)

Pagenumber Elapsed Time (in sec.)

GA HEA GA HEA

10 9.4 9.2 220.4186 490.2936

20 14.8 14 455.9404 845.9158

30 19 16.8 1.0004e+003 1.20776e+003

50 24.2 20.8 1.86306e+003 1.9547e+003

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.2, April 2012

148

Figure 16. Edge density vs Pagenumber graph for HEA and GA of sizes (a) 40 and (b) 50

9 Conclusions

In this paper we have (a) statistically evaluated five heuristics for ordering vertices on the spine

for minimum number of edge crossings with all the edges placed in a single page, (b) statistically

evaluated four heuristics for distributing edges on a minimum number of pages with no crossings

for a fixed ordering of vertices on the spine and (c) implemented and experimentally evaluated a

hybrid evolutionary algorithm (HEA) for solving the page number problem.

The results described in Section 3 indicate that a depth first search (dfs) based technique for

placing the vertices on the spine seems to be helpful in minimizing the number of crossings when

edges are placed in a single page as it helps in generating vertex orderings in which there are

edges between adjacent nodes.

The performance of edge distribution heuristics is presented in section 5. These experiments show

that circ outperforms the other heuristics. Although, Chung et al. [3] have given an edge

embedding strategy that provides the optimal page number for complete graphs results show that

this strategy can be adapted to give good results for other graphs also.

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.2, April 2012

149

We have presented a hybrid evolutionary algorithm (HEA) for the page number problem in which

a rdfs is used to determine vertex ordering and circ is employed for edge distribution. Results

show that the algorithm achieves the optimal page number for most of the standard graphs tested

by us. HEA also outperforms the GA described by Kapoor et al. [1] in terms of solution quality

for most of the instances tested.

Acknowledgement

This work is supported by University Grants Commission (UGC), New Delhi vide letter no 36-

66/2008 (SR).

References

[1] Kapoor N, Russell M, Stojmenovic I, (2002) A Genetic Algorithm for finding the Page number of

Interconnection Networks. Journal of Parallel and Distributed Computing, Vol. 62, pp. 267-283.

[2] Games RA, (1986) Optimal Book Embeddings of the FFT, Benes, and Barrel Shifter Networks.

Algorithmica, Vol. 1, pp. 233–250.

[3] Chung FRK, (1987) Leighton FT and Rosenberg AL. Embedding Graphs In Books: A Layout

Problem With Applications To VLSI Design. Siam Journal on Algebraic and Discrete Methods, Vol.

8, No. 1, pp. 33-58.

[4] Hasunuma T, Shibata Y, (1997) Embedding de Brujin, kautz and shuffle-exchange networks in

books. Discrete Applied Mathematics, Vol. 78, pp. 103-116.

[5] Obrenic B, (1991) Embedding deBrujin and shuffle-exchange graphs in five pages. SPAA’91

Proceedings of the third annual ACM symposium on Parallel algorithms and architectures.

[6] Shahrokhi F, Shi W, (2000) On Crossing Sets, Disjoint Sets and the Page number. Journal of

Algorithms, Vol. 34, pp. 40–53.

[7] Bernhart F, Kainen P C, (1979) The book thickness of a graph, Journal of Combinatorial Theory,

Vol. 27, No. 3, pp. 320–331.

[8] Swaminathan RP, Giriraj D, Bhatia DK, (1995) The page number of the class of bandwidth-k graphs

is k-1. Information Processing Letters, Vol. 55, pp. 71-74.

[9] Bettayeb S, Hoelzeman DA, (2009) Upper and Lower Bound on the Page number of the Book

Embedding of the k-ary Hypercube. Journal of Digital Information Management, Vol. 7, No. 1, pp.

31-35.

[10] Cimikowski R, (2002) Algorithms for the Fixed Linear Crossing Number Problem. Discrete Applied

Mathematics, Vol. 122, Issues 1-3,pp. 93-115.

[11] Kirkpatrick, S., Gelatt, C.D., Vechhi, M.P. (1983), Optimization by Simulated Annealing. Science,

Vol. 220, No. 4598, pp. 671-680.

[12] Glover, F., laguna M., (1997) Tabu Search. Second ed., Kluwer, Boston.

[13] Percy, P.C., Yip, Pao, Yoh-Han. (1995) Combinatorial Optimization with use of Guided Evolutionary

Simulated Annealing, IEEE Transactions on Neural Networks, Vol. 6, No. 2.

