
International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012 

 

DOI : 10.5121/ijcseit.2012.2602                                                                                                                     13 

 

 

EFFICIENT SCHEMA BASED KEYWORD SEARCH IN 

RELATIONAL DATABASES 
 

Myint Myint Thein1 and Mie Mie Su Thwin2 

 

1University of Computer Studies, Mandalay, Myanmar 
mmyintt@gmail.com 

2University of Computer Studies, Mandalay, Myanmar 
drmiemiesuthwin@mmcert.org.mm 

 

ABSTRACT 

 

Keyword search in relational databases allows user to search information without knowing database 

schema and using structural query language (SQL). In this paper, we address the problem of generating 

and evaluating candidate networks. In candidate network generation, the overhead is caused by raising the 

number of joining tuples for the size of minimal candidate network. To reduce overhead, we propose 

candidate network generation algorithms to generate a minimum number of joining tuples according to the 

maximum number of tuple set. We first generate a set of joining tuples, candidate networks (CNs). It is 

difficult to obtain an optimal query processing plan during generating a number of joins. We also develop a 

dynamic CN evaluation algorithm (D_CNEval) to generate connected tuple trees (CTTs) by reducing the 

size of intermediate joining results. The performance evaluation of the proposed algorithms is conducted 

on IMDB and DBLP datasets and also compared with existing algorithms. 

 
KEYWORDS 

 
Candidate Network, Connected Tuple Tree, Joining Tuples, Keyword Query, Keyword Search, Relational 

Database   

 
 

1. INTRODUCTION 
 
The most critical and valuable amount of data such as business data has been stored in relational 
databases. Relational database management system (RDBMS) is a DBMS in which data is saved 
in tables and the relationships among the data are saved in tables. The data can be reassembled 
and accessed in many different ways without change the table forms. Most commercial relational 
database management system uses SQL to access the database. With more and more data being 
stored in relational database, it has become crucial for users to be able to search and browse the 
information stored in them. Keyword search in relational databases enables ordinary users, who 
do not understand the database schema and SQL, to find the connected tuple sets among the 
tuples stored in relations, with a given set of keywords. The existing methods of keyword search 
in relational databases can be broadly classified into two categories that are schema based method 
and graph based method. 
 
In schema based keyword search in relational database, it has a common method that is 
generating candidate network in schema graph transformed from relations. Data is stored in the 
form of columns, tables and primary key to foreign key relationships in relational databases. 
According to develop the schema graph, we illustrate two schema graphs as examples. Figure 1 
shows the schema graph of publication database from DBLP dataset. It consists of six relation 



International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012 

14 
 

schemas that are Person, InProceeding, RelaitonPersonInProceeding, Proceeding, Publisher and 
Series. Each relation has a primary key from except RelationPersonInProceeding relation. 
InProceeding relation has one foreign key that refers to the primary key defined on Proceeding 
relation. Proceeding relation has two foreign key that refers to the primary key defined on both 
Publisher and Series relations. The movies database schema graph of IMDB dataset shows in 
Figure 2. It consists of six relation schemas: Movies, Directors, Movies-Directors, Movies-
Genres, Actors and Roles. Each relation has a primary key from except Movies-Directors 
relation. Roles relation has one foreign key that refers to the primary key defined on Actors 
relation. 
 
The logical unit of answers needed by users is not limited to an individual column value or ever 
an individual tuple for a given keyword query. It may be multiple tuples joined together. Given 
keyword search in relational databases, generating minimum joining tuples sets of relations that 
contained keyword is called candidate network, such as SQL. A candidate network must satisfy 
the two conditions, total and minimal. Because it is meaningless if two tuples in a candidate 
network are too far away from each other, the maximum numbers of tuples allowed in a candidate 
network are needed to specify [18].  
 
Suppose user wants to get the papers written by “Jinlin Chen” from DBLP database. The system 
generates the relevant CNs, such as Person ⋈ Relation-Person-InProceeding ⋈ InProceeding, 
with multiple tuples from different relations joined by foreign keys. Generating all valid 
candidate networks that are called connected tuple trees by joining tuples from multiple relations. 
DISCOVER [4], S-KWS [10], Liu et al.[7], and SPARK2 [9] are systems that support keyword 
search on relational database. They generated tuple trees as answer for the CN generation. The 
first two systems need to reduce the cost of generating minimal CNs, while the last two systems 
cannot solve the growing number of CNs for small CN size. Existing candidate network 
generation, CN’s size is unbounded and the number of CNs grows very large for small CN’s size. 
This fact brings large overhead for CNs generation. Due to large number of generated CNs to be 
evaluated, multi-query optimization problem is caused on the CNs evaluation. 
 
In this paper, we focus on generating the valid CNs on the data bond and producing the minimal 
connected tuple trees. We develop algorithms in order to generate all minimum connected trees of 
tuples in the database with no more than the maximum number of tuple set. We proposed 
candidate network generation algorithms to find relevant answers on-the-fly by joining tuples in 
the database. We also proposed the dynamic CN evaluation algorithm (D_CNEval) by evaluating 
the number of generated CNs. We conduct the experimental results on DBLP and IMDB 
databases and present the analysis of worst case time for these algorithms. 
 
The rest of the paper is organized as follows: Section 2 discusses the related work. Section 3 
presents the basic concept of keyword query and CN. The overview of proposed system is 
specified in Section 4. Section 5 presents the Candidate Network Generation. Section 6 illustrates 
the query execution and Section 7 shows the experimental results. Section 8 concludes this paper. 
 

2. RELATED WORK 
 
The main goal of a keyword search system is to find a set of closely inter-connected tuples that 
collectively match the keywords. One type of methods is based on modeling data as a graph, and 
the results as subtrees or sub-graphs. Another type of methods is based on relational databases 
where structured data are stored. 
 
Several researchers have been done on early keyword search systems for relational databases [2, 
7, 8, 15]. Yu et al. [18] surveyed the developments on finding structural information among tuples 



International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012

 

in an RDB using an l-keyword query. They discussed the keyword search systems by comparing 
between schema-based keyword search and graph
evaluated the sets of answers by defining all minimal total joining networks of tuples between 
CNs and the latter showed how to answer keyword queries using graph algorithms focused on 
weighted directed graph. DBXplorer [1] used undirected graph to 
according to each tuple tree. This system accessed to symbol table to get tuples’ information, and 
then calculated tuple tree according to schema graph. 
 
DISCOVER [4] proposed the CN generation algorithm based on a breadth
search space. This proposed algorithm expanded the partial CNs generated to larger partial CNs 
until all CNs are generated. As the number of partial CNs can be exponentially large, arbitrarily 
expanding will make the algorithm extremel
the cost of generating the set of CNs is high and kept in memory for further extension. 
S-KWS [10] developed an algorithm that reduces the number of partial results generated by 
expanding from part of the nodes in a partial tree and avoid isomorphism testing by assigning a 
proper expansion order. Although it reduced the generated partial results, it existed overhead for 
generating minimal CNs to the query. 
 
Liu et al. [7] described the answer graph ge
they produced duplication-free CNs by assigning the different alias, they had not considered the 
efficiency of answer generation. SPARK2 [9] developed the duplication
canonical form but it did not solve the number of CNs grow
 

3. PRELIMINARIES 
 

3.1. Data Model 
 
A relational database can be viewed as a graph which represents a relational model such as 
schema graph Gs (V, E) [4, 8, 16, 18]. A relation 
relation in the database corresponds to a vertex in G
{R1,R2,…}. Edges represent the foreign key to primary key relationships between pairs of 
relation schemas, Ri and Rj, denoted R
relation schema, such as a set of tuples, conforming to the relation schema. The graph can be as a 
directed or undirected graph. It can be captured every granularity level of the schema
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Publication Database Schema Graph

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012

keyword query. They discussed the keyword search systems by comparing 
based keyword search and graph-based keyword search in RDB. The 

evaluated the sets of answers by defining all minimal total joining networks of tuples between 
CNs and the latter showed how to answer keyword queries using graph algorithms focused on 
weighted directed graph. DBXplorer [1] used undirected graph to construct each SQL statements 
according to each tuple tree. This system accessed to symbol table to get tuples’ information, and 
then calculated tuple tree according to schema graph.  

DISCOVER [4] proposed the CN generation algorithm based on a breadth-first traversal in the 
search space. This proposed algorithm expanded the partial CNs generated to larger partial CNs 
until all CNs are generated. As the number of partial CNs can be exponentially large, arbitrarily 
expanding will make the algorithm extremely inefficient. The problem with this algorithm is that 
the cost of generating the set of CNs is high and kept in memory for further extension. 

KWS [10] developed an algorithm that reduces the number of partial results generated by 
the nodes in a partial tree and avoid isomorphism testing by assigning a 

proper expansion order. Although it reduced the generated partial results, it existed overhead for 
generating minimal CNs to the query.  

Liu et al. [7] described the answer graph generation algorithm to generate tuple trees. Although 
free CNs by assigning the different alias, they had not considered the 

efficiency of answer generation. SPARK2 [9] developed the duplication-free algorithm by 
it did not solve the number of CNs grows very large for small CN size.

A relational database can be viewed as a graph which represents a relational model such as 
(V, E) [4, 8, 16, 18]. A relation database is a collection of relations. Each 

relation in the database corresponds to a vertex in Gs, denoted as the set of relation schemas 
{R1,R2,…}. Edges represent the foreign key to primary key relationships between pairs of 

denoted Ri→Rj. A relation on relation schema Rj is an instance of the 
relation schema, such as a set of tuples, conforming to the relation schema. The graph can be as a 
directed or undirected graph. It can be captured every granularity level of the schema

 
Figure 1. Publication Database Schema Graph 

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012 

15 

keyword query. They discussed the keyword search systems by comparing 
based keyword search in RDB. The former 

evaluated the sets of answers by defining all minimal total joining networks of tuples between 
CNs and the latter showed how to answer keyword queries using graph algorithms focused on 

construct each SQL statements 
according to each tuple tree. This system accessed to symbol table to get tuples’ information, and 

rst traversal in the 
search space. This proposed algorithm expanded the partial CNs generated to larger partial CNs 
until all CNs are generated. As the number of partial CNs can be exponentially large, arbitrarily 

y inefficient. The problem with this algorithm is that 
the cost of generating the set of CNs is high and kept in memory for further extension.  

KWS [10] developed an algorithm that reduces the number of partial results generated by 
the nodes in a partial tree and avoid isomorphism testing by assigning a 

proper expansion order. Although it reduced the generated partial results, it existed overhead for 

neration algorithm to generate tuple trees. Although 
free CNs by assigning the different alias, they had not considered the 

free algorithm by 
s very large for small CN size. 

A relational database can be viewed as a graph which represents a relational model such as 
database is a collection of relations. Each 

, denoted as the set of relation schemas 
{R1,R2,…}. Edges represent the foreign key to primary key relationships between pairs of 

is an instance of the 
relation schema, such as a set of tuples, conforming to the relation schema. The graph can be as a 
directed or undirected graph. It can be captured every granularity level of the schema elements. 



International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Movies Database Schema Graph

We use directed schema graphs that show in Figure 1 and Figure 2 as the schema graph of 
publication database and movies 
key and foreign key attributes are made of same attribute with attribute of related relation. There 
are no self loops and at most one primary
 
3.2. Connected Tuple Tree 

 
A keyword query (Q) consists of a list of keywords {k
tuples that contain the given keywords. For a given query Q, a result is the set of all possible 
joining networks of tuples. A joining network of tuple is a connected tuple tree. Each node 
tuple in the database, and each pair of adjacent tuples in 
primary key relationship. Suppose (Ri,Rj) is an edge in the schema graph. Let ti 
(ti join tj) Є (Ri join Rj). Then (ti
the number of tuples involved. Note that a single tuple is the connected tuple tree with size 1. The 
size of CTT can have arbitrarily large size, when there exists a many to many relationship in the 
schema graph. Therefore, the size of conn
 
3.3. Candidate Network 

 
Each connected tuple tree is the sets consisting of relational names that produced by a relational 
algebra expression, if each tuple in one relation contains a term of the keywords. Fo
keyword query Q, the query tuple set
contain at least one keyword of the query 
tuples in relation R and we use R
a free tuple set. A candidate network 
node must be a query tuple set. Every edge (R
schema graph Gs. The size of a CN is the number of its tuple sets.  
 
In the framework of RDBMS, a keyword query is processed in the two main steps that are 
candidate network generation and candidate network evaluation. In candidate network generation 
step, it generates a set of CNs over schema graph G
and duplicate-free upon the maximal size. In candidate network evaluation step, it evaluates the 
generated CNs by reducing the size of intermediate joining results
minimal number of CNs and how to evaluate the generated CNs in Section 
 

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012

 
Figure 2. Movies Database Schema Graph 

 

We use directed schema graphs that show in Figure 1 and Figure 2 as the schema graph of 
publication database and movies database schema graph. For simplicity, we assume all primary 
key and foreign key attributes are made of same attribute with attribute of related relation. There 
are no self loops and at most one primary-foreign key relationship between any two relations.

A keyword query (Q) consists of a list of keywords {k1,k2,…,kq}, and searches interconnected 
tuples that contain the given keywords. For a given query Q, a result is the set of all possible 
joining networks of tuples. A joining network of tuple is a connected tuple tree. Each node 

ach pair of adjacent tuples in CTT is connected via a foreign key to 
primary key relationship. Suppose (Ri,Rj) is an edge in the schema graph. Let ti Є Ri, tj 

(Ri join Rj). Then (ti,tj) is an edge in the connected tuple tree. The size
the number of tuples involved. Note that a single tuple is the connected tuple tree with size 1. The 
size of CTT can have arbitrarily large size, when there exists a many to many relationship in the 
schema graph. Therefore, the size of connected tuple tree is needed to only data bound.

Each connected tuple tree is the sets consisting of relational names that produced by a relational 
algebra expression, if each tuple in one relation contains a term of the keywords. Fo

query tuple set RN
 is a set of all tuples which belong to relation 

contain at least one keyword of the query Q. We denote RF
 the free tuple set which is the set of all 

RQ to denote a tuple set, which can be either a non-free tuple set or 
candidate network is a tree of tuple sets RN or RF with the restriction that every 

node must be a query tuple set. Every edge (Ri
Q,Rj

Q) in a CN corresponds to an edge (R
of a CN is the number of its tuple sets.   

In the framework of RDBMS, a keyword query is processed in the two main steps that are 
candidate network generation and candidate network evaluation. In candidate network generation 

p, it generates a set of CNs over schema graph Gs. The set of CNs shall be sound or complete 
free upon the maximal size. In candidate network evaluation step, it evaluates the 

generated CNs by reducing the size of intermediate joining results. We present how to generate 
minimal number of CNs and how to evaluate the generated CNs in Section 5 and Section 

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012 

16 

We use directed schema graphs that show in Figure 1 and Figure 2 as the schema graph of 
database schema graph. For simplicity, we assume all primary 

key and foreign key attributes are made of same attribute with attribute of related relation. There 
foreign key relationship between any two relations. 

}, and searches interconnected 
tuples that contain the given keywords. For a given query Q, a result is the set of all possible 
joining networks of tuples. A joining network of tuple is a connected tuple tree. Each node ti is a 

is connected via a foreign key to 
Ri, tj Є Rj, and 
ize of a CTT is 

the number of tuples involved. Note that a single tuple is the connected tuple tree with size 1. The 
size of CTT can have arbitrarily large size, when there exists a many to many relationship in the 

ected tuple tree is needed to only data bound. 

Each connected tuple tree is the sets consisting of relational names that produced by a relational 
algebra expression, if each tuple in one relation contains a term of the keywords. For a given 

is a set of all tuples which belong to relation R that 
which is the set of all 

free tuple set or 
with the restriction that every 

) in a CN corresponds to an edge (Ri,Rj) in the 

In the framework of RDBMS, a keyword query is processed in the two main steps that are 
candidate network generation and candidate network evaluation. In candidate network generation 

. The set of CNs shall be sound or complete 
free upon the maximal size. In candidate network evaluation step, it evaluates the 

. We present how to generate 
and Section 6. 



International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012

 

4. PROPOSED SYSTEM OVER

 
In this section, we demonstrate the overview of keyword search on relational databases that is 
shown in Figure 3. The system supports free
trees with user typed keywords. In this system, the final results are eliminated by processing the 
four phases that are following. The query cleaning phase filters out as
removed stopwords query. This process reduces the size of the indexing structure considerably.
The indexing unit in a relational document can be a field, attribute, tuple, table, or any 
combination of these. After the system has b
relation, the indexer produces the matched tuple sets by using the filtered input query. The system 
generates a set of CNs by traversing on the schema graph in order to the tuple sets. Query 
executing phase executes queries for each CNs and generate the connected tuple trees as executed 
queries. Finally, the system returns the minimal connected tuple trees to the user for a given 
query. 

 

Figure 3. Proposed System Overview

5. CANDIDATE NETWORK 

 
In schema-based keyword search in relational database, the generating all candidate networks for 
keyword query Q satisfy the two properties, such as complete and duplication
listed below. 
  

Property 1. The set contains all CNs w
Property 2. Every two CNs are not isomorphic to each other (duplication
 

In this paper, we propose CN generation algorithms for schema
relational database. Existing keyword search systems, such as DISCOVER and S
CNs temporarily through a breadth
of CNs set is to avoid the generation of redundant joining networks of tuple sets. As the number 
of query keywords or maximum size of CN increases, or the database schema becomes 

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012

PROPOSED SYSTEM OVERVIEW 

In this section, we demonstrate the overview of keyword search on relational databases that is 
Figure 3. The system supports free-style keyword search by generating connected tuple 

trees with user typed keywords. In this system, the final results are eliminated by processing the 
four phases that are following. The query cleaning phase filters out as potential index terms as 
removed stopwords query. This process reduces the size of the indexing structure considerably.
The indexing unit in a relational document can be a field, attribute, tuple, table, or any 
combination of these. After the system has built the inverted index files as posting table for each 
relation, the indexer produces the matched tuple sets by using the filtered input query. The system 
generates a set of CNs by traversing on the schema graph in order to the tuple sets. Query 

phase executes queries for each CNs and generate the connected tuple trees as executed 
queries. Finally, the system returns the minimal connected tuple trees to the user for a given 

 
Figure 3. Proposed System Overview 

 

CANDIDATE NETWORK GENERATION 

based keyword search in relational database, the generating all candidate networks for 
keyword query Q satisfy the two properties, such as complete and duplication-free, which are 

ns all CNs with no more than MAXN (completeness). 
Property 2. Every two CNs are not isomorphic to each other (duplication-free).  

In this paper, we propose CN generation algorithms for schema-based keyword search in 
relational database. Existing keyword search systems, such as DISCOVER and S-KWS, generate 
CNs temporarily through a breadth-first traversal of schema graph for any user query. The result 
of CNs set is to avoid the generation of redundant joining networks of tuple sets. As the number 
of query keywords or maximum size of CN increases, or the database schema becomes 

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012 

17 

In this section, we demonstrate the overview of keyword search on relational databases that is 
style keyword search by generating connected tuple 

trees with user typed keywords. In this system, the final results are eliminated by processing the 
potential index terms as 

removed stopwords query. This process reduces the size of the indexing structure considerably. 
The indexing unit in a relational document can be a field, attribute, tuple, table, or any 

uilt the inverted index files as posting table for each 
relation, the indexer produces the matched tuple sets by using the filtered input query. The system 
generates a set of CNs by traversing on the schema graph in order to the tuple sets. Query 

phase executes queries for each CNs and generate the connected tuple trees as executed 
queries. Finally, the system returns the minimal connected tuple trees to the user for a given 

 

based keyword search in relational database, the generating all candidate networks for 
free, which are 

based keyword search in 
KWS, generate 

query. The result 
of CNs set is to avoid the generation of redundant joining networks of tuple sets. As the number 
of query keywords or maximum size of CN increases, or the database schema becomes 



International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012 

18 
 

complicated, it will take much more time to generate CNs for a query Q. There can be two ways 
to reduce the time for the generation of CNs. One is to develop a more efficient CN generation 
algorithm and the other is to develop preprocessing techniques to generate CNs in advance. In 
this section, we develop the efficient CN generation algorithms to address the above problem. 
 

5.1. Heuristic_CNGen Algorithm 
 
In this section, we describe a new CN generation algorithm (Heuristic_CNGen) to generate valid 
CNs [13]. Given a keyword query Q, the system first receives all the query tuple set RQ

 for all 
relations R as input. We use RNorQ to define a tuple set, if CN is a result then each node belongs to 
the non-free query tuple set RN and the free query tuple set RF of each relation R for a given 
query. Note that the free query tuple set in CN cannot contain the query keyword, but they 
support to the non-free query tuple set as primary-foreign keys relationship.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Heuristic_CNGen Algorithm 

Heuristic_CNGen(MAXN, f_limit, f_new) 

Input: schema graph SG, query Q 

Output: a set of candidate networks CN 

1. E: queue generated all non-free tuple sets{R1
N,R2

N, …,Rn
N}and all 

free tuple sets{R1
F,R2

F,…,Rn
F } for Q. 

2.  While E is not empty{     

3.    Pop head T from E 

4.    If T > MAXN Then T is pruned 

5.     Else 

6.    If T is a valid network graph Then add T to CN 

7.          For each Ri
NorQ in T do 

8.   For each Rj
N that is adjacent to Ri

N in SG do 

9.           f_new = h(Rj
N ) 

10.           g(Rj
N ) = c(Rj

N  , Ri
N ) 

11.          f(Rj
N ) =  g(Rj

N ) + f_new 

12.         If f(Rj
N )  ≤  f_limit Then  

13.            Add Rj
N in front of E 

14.                  Else  

15.            Add Ri
N in front of E 

16.            f_new = f(Rj
N )  

17.            f_limit = MAX.VALUE  

18.                         End if 

19.    End for                 

 20.        End for 

 21.   End if 

         }    

22. For each network graph in CN, if there is more than one network 

graph in CN, then the same network graph is pruned. 

23. Return CN. 



International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012

 

We identify a network graph as a joined expression of the query tuple sets that produces 
candidate networks as result. We define the size of a network graph as the number of nodes the 
same as the generated CN’s size. In Figure 4, we present the candidate network generat
algorithm based on IDA* algorithm [3, 6] to generate all network graphs for a given query Q and 
schema graph SG. 
 
We set up three parameters: MAXN, f_limit and f_new. First, the maximum number of tuple sets, 
denote MAXN, in a network graph to reduce 
Rj

N add in front of queue E, if the estimated cost of the cheapest solution through node R
than given f_limit value. If the estimated cost of node R
that is adjacent node Rj

N in SG add in front of E. Third, f_new assign heuristic value of a new 
node that is adjacent by the existing node in schema graph. Finally, the number of CNs is only 
data bounded by the query and database. The Properties 1 and 2 prove t
duplication-free on the results of the algorithm, if we do not violate any 
 
5.2. AT_CNGen Algorithm 

 
We present another CN generation algorithm (AT_CNGen) to improve the performance of 
Heuristic_CNGen. In CN generation, we 
computation cost and memory cost. This algorithm generated the valid CN in order to complete 
and duplication-free. It computes a heuristic value to estimate the cost of a new node that is 
adjacent by the existing node in SG at once. If the two nodes in SG have same heuristic value, the 
algorithm expands these nodes iteratively. We observe that this algorithm is not efficient because 
it does not reduce the large overhead for the above shortcomings. Theref
CN generation algorithm (AT_CNGen) based on adjacent tuple list to address the efficiency of 
CN generation. 
 
We can identify an adjacent tuple following the primary and foreign keys into the schema graph, 
because the relational database is designed as a schema graph SG. An adjacent tuple is defined a 
set of adjacent tuple connected by primary
recognize an adjacent tuple as a joined expression of the query tuple sets that produces CNs as 
result. We define the size of an adjacent tuple as the number of tuples the same as the generated 
CN’s size.  
 

Figure 5. Adjacent Tuple List for DBLP

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012

network graph as a joined expression of the query tuple sets that produces 
candidate networks as result. We define the size of a network graph as the number of nodes the 
same as the generated CN’s size. In Figure 4, we present the candidate network generat
algorithm based on IDA* algorithm [3, 6] to generate all network graphs for a given query Q and 

We set up three parameters: MAXN, f_limit and f_new. First, the maximum number of tuple sets, 
denote MAXN, in a network graph to reduce generating meaningless results. Second, the node 

add in front of queue E, if the estimated cost of the cheapest solution through node R
than given f_limit value. If the estimated cost of node Rj

N is more than f_limit value, the node R
in SG add in front of E. Third, f_new assign heuristic value of a new 

node that is adjacent by the existing node in schema graph. Finally, the number of CNs is only 
data bounded by the query and database. The Properties 1 and 2 prove the completeness and 

free on the results of the algorithm, if we do not violate any constraints. 

 

We present another CN generation algorithm (AT_CNGen) to improve the performance of 
Heuristic_CNGen. In CN generation, we used Heuristic_CNGen algorithm in order to reduce the 
computation cost and memory cost. This algorithm generated the valid CN in order to complete 

free. It computes a heuristic value to estimate the cost of a new node that is 
e existing node in SG at once. If the two nodes in SG have same heuristic value, the 

algorithm expands these nodes iteratively. We observe that this algorithm is not efficient because 
it does not reduce the large overhead for the above shortcomings. Therefore, we propose a new 
CN generation algorithm (AT_CNGen) based on adjacent tuple list to address the efficiency of 

We can identify an adjacent tuple following the primary and foreign keys into the schema graph, 
se is designed as a schema graph SG. An adjacent tuple is defined a 

set of adjacent tuple connected by primary-foreign key relationship in SG. In this way, we 
recognize an adjacent tuple as a joined expression of the query tuple sets that produces CNs as 
esult. We define the size of an adjacent tuple as the number of tuples the same as the generated 

 

Figure 5. Adjacent Tuple List for DBLP 

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012 

19 

network graph as a joined expression of the query tuple sets that produces 
candidate networks as result. We define the size of a network graph as the number of nodes the 
same as the generated CN’s size. In Figure 4, we present the candidate network generation 
algorithm based on IDA* algorithm [3, 6] to generate all network graphs for a given query Q and 

We set up three parameters: MAXN, f_limit and f_new. First, the maximum number of tuple sets, 
generating meaningless results. Second, the node 

add in front of queue E, if the estimated cost of the cheapest solution through node Rj
N is less 

is more than f_limit value, the node Ri
N 

in SG add in front of E. Third, f_new assign heuristic value of a new 
node that is adjacent by the existing node in schema graph. Finally, the number of CNs is only 

he completeness and 
 

We present another CN generation algorithm (AT_CNGen) to improve the performance of 
used Heuristic_CNGen algorithm in order to reduce the 

computation cost and memory cost. This algorithm generated the valid CN in order to complete 
free. It computes a heuristic value to estimate the cost of a new node that is 

e existing node in SG at once. If the two nodes in SG have same heuristic value, the 
algorithm expands these nodes iteratively. We observe that this algorithm is not efficient because 

ore, we propose a new 
CN generation algorithm (AT_CNGen) based on adjacent tuple list to address the efficiency of 

We can identify an adjacent tuple following the primary and foreign keys into the schema graph, 
se is designed as a schema graph SG. An adjacent tuple is defined a 

foreign key relationship in SG. In this way, we 
recognize an adjacent tuple as a joined expression of the query tuple sets that produces CNs as 
esult. We define the size of an adjacent tuple as the number of tuples the same as the generated 

 



International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012

 

Consider the publication database schema graph in Figure 1 and the movies database schema 
graph in Figure 2, where we can iteratively get each tuple in SG followed by primary
keys relationship and obtain the adjacent tuple. For example, we illustrate the adjacent tuple list 
for query Q = “Chen Web Springer
Jack David” in IMDB that are shown in Figure 5 and Figure 6.
 

Figure 6. Adjacent Tuple List for IMDB

The adjacent tuple list based method has some features. First, adjacent tuple lists is effective to 
generate candidate networks as 
isomorphic. Second, the relationships between adjacent tuples through primary
be identified, so we can efficiently generate the valid candidate networks. Third, a set of adjacen
tuple list is no larger than the total primary
 
 

 

 

 

 

 

 

 

 

 

AT_CNGen()

Input:    A set of adjacent tuple list D

Output: A set of CN

1. CN ← Φ 

2.  For each T 

3.       For each D 

4.      For each  d  

5.             

6.    

7.               

8.                        

9. End if 

10.           

11.      End for

12. End for

13. Return CN.

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012

Consider the publication database schema graph in Figure 1 and the movies database schema 
Figure 2, where we can iteratively get each tuple in SG followed by primary

keys relationship and obtain the adjacent tuple. For example, we illustrate the adjacent tuple list 
Chen Web Springer” in DBLP and the adjacent tuple list for query Q = “Black 

Jack David” in IMDB that are shown in Figure 5 and Figure 6. 

 
Figure 6. Adjacent Tuple List for IMDB 

 
The adjacent tuple list based method has some features. First, adjacent tuple lists is effective to 
generate candidate networks as they capture structures. They can depict a meaningful and non
isomorphic. Second, the relationships between adjacent tuples through primary-foreign keys can 
be identified, so we can efficiently generate the valid candidate networks. Third, a set of adjacen
tuple list is no larger than the total primary-foreign keys relationships in the underlying database.

 
 

Figure 7. AT_CNGen Algorithm 

AT_CNGen() 

Input:    A set of adjacent tuple list D 

A set of CN 

  

2.  For each T Є getTupleSet(ki) do   

3.       For each D Є getAdjacentList(T) do 

For each  d  Є  D do 

            If( d is a valid CN and d∉CN ) Then 

    Add d into CN.  

              Else 

                       d is pruned. 

End if 

End for 

End for 

End for 

Return CN. 

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012 

20 

Consider the publication database schema graph in Figure 1 and the movies database schema 
Figure 2, where we can iteratively get each tuple in SG followed by primary-foreign 

keys relationship and obtain the adjacent tuple. For example, we illustrate the adjacent tuple list 
r query Q = “Black 

 

The adjacent tuple list based method has some features. First, adjacent tuple lists is effective to 
they capture structures. They can depict a meaningful and non-

foreign keys can 
be identified, so we can efficiently generate the valid candidate networks. Third, a set of adjacent 

foreign keys relationships in the underlying database. 



International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012 

21 
 

We demonstrate this algorithm to generate all CNs for a given query Q and schema graph SG that 
is shown in Figure 7.  In order to generate valid CNs, AT_CNGen algorithm first accepts the 
adjacent tuple lists as input. During each CN generation, AT_CNGen calls getTupleSet(K) to get 
a query tuple sets T for a given query Q. And then it calls getAdjacentList(T,MAXN) to take the 
adjacent tuple list for getting query tuple sets. Each adjacent tuple list d adds CN, if d is a valid 
CN and is duplicated on each others. If d is invalid and identical, d is pruned. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. getTupleSet Algorithm 
 

In Figure 8, getTupleSet(K) returns a set of query tuple set T for a keyword query Q. We set up 
one parameter K that is the number of keyword. We receive all the non-free query tuple set RN 
and the free query tuple set RF of each relation R for a given query. First, the algorithm checks the 
length of input keyword query. If length of keyword query is one, it produces the non-free query 
tuple sets Ri

N by using the inverted index for that keyword. And it returns the query tuple sets. 
Where keyword’s length is more than one, the non-free query tuple sets Ri

N is made by indexing 
for each keyword query.  At that time, the algorithm returns T by adding Ri

N which are not 
identical. 
 
getAdjacentList(T,MAXN) is put two parameter: T and MAXN that is shown in Figure 9. It first 
receives the non-free query tuple sets T and schema graph SG as input. For each tuple set Ri

N, it 
takes Rj

NorF that is adjacent tuple Ri
N in schema graph as adjacent tuple d. Next the algorithm 

checks each adjacent tuple d, which is not identical and no more than the maximum number of 
tuple sets. And it removes an invalid adjacent tuple. The algorithm returns the valid adjacent tuple 
list subsequently.  

getTupleSet(K) 

Input: query Q={k1,k2,….,ki} Є K, all non-free tuple sets 

{R1
N, R2

N,…,Ri
N}and all free tuple sets {R1

F, R2
F,…, Ri

F } 

for Q  

Output: A set of query tuple set T 

1. T ← Φ  

2. While (K.length is not empty){ 

3.          If (K.length = 1) Then 

4.                     Ri
N  ←  Index(ki) 

5.                     Add Ri
N   into T. 

6.                 Else 

7.                       Ri
N  
←

  Index(ki) 

8.                       If (Ri
N ∉T  ) Then 

9.                                  Add Ri
N   into T. 

10.                           Else 

11.                                     Ignore Ri
N. 

12.                                    End  if 

13.           End if 

14.     } 

15. Return T.           



International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012 

22 
 

Eventually, AT_CNGen algorithm generates all candidate networks no more than the maximal 
number of tuple sets for the user input keywords. The generated CNs is only data bounded by 
following Properties 1 and 2.  
 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. getAdjancentList Algorithm 

 

6. QUERY EXECUTION 
 
In this section, we present the generating CTTs by executing the generated CNs in order 
to get the results. For instance, consider the query Q = “Jinlin Content”. The 
corresponding result consists of the connected tuple trees: P1→I1, P1→I2. Each 
connected tuple trees corresponds to a tree at schema level. For example, both of the 
above trees correspond to the schema level tree Person{Jinlin} 

→ Relation-Person-
InProceeding{} ← InProceeding{Content}, where each Ri

K consists of the tuples of Ri that 
contain all keywords of K and no other keyword of Q.  
 
Given a query Q, all possible tuple sets Ri

K are computed, where Ri
K = {t | t Є Ri∧∀wk Є 

K, t contains wk∧∀wj Є Q\K, t does not contain wj} [12]. After selecting a keyword 
query wl, all tuple sets Ri

K for which wl Є K are located. These are the initial connected 
tuple tree with only one node. Then, these trees are expanded either by adding a tuple set 
that contains at least another keyword query or a tuple set that is free tuple set. These 
trees can be further expanded. The connected tuple trees that contain all keywords query 
are returned. 
 
In RDBMS, the problem of evaluating all CNs in order to get all connected tuple trees is 
a multi-query optimization problem. There are two main issues: (1) How to share 
common sub-expressions among CNs generated in order to reduce computational cost 
when evaluating. (2) How to find a proper join order to fast evaluate all CNs. For a 

getAdjacentList(T,MAXN) 

Input: Tuple set T: {R1
N, R2

N,…,Ri
N} Є T, Schema graph SG 

Output: Adjacent tuple list D 

1. D ← Φ  

2.  For each  Ri
N  in  T do 

3. For each Rj
NorF   that is adjacent to Ri

N in SG do                         

4.            Add Rj
Nor F with an edge into d. 

5.            If ( d ∉D and d < MAXN)  Then 

6.                         Add d into D. 

7.                Else 

8.                          Ignore d. 

9.                   End  if 

10. End for 

11.  End for 

12. Return D.           



International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012

 

keyword query, the number of CNs generated can be very large. Given a large number of
joins, it is extremely difficult to obtain an optimal query processing plan.
one best plan for a CN may make others slow down, if its subtrees are shared by others 
CNs [11]. 
 

The idea of evaluating the sub
DISCOVER [4] proposed the algorithm 
algorithm. In this algorithm, 
evaluated first and may generate the smallest number of result
S-KWS [10] constructed an operator mesh
evaluating all CNs. When evaluating all CNs in a mesh, a projected relation with the 
smallest number of tuples is selected to start and to
evaluating all CNs using only joins may
tuples. They proposed to use semijoin/join sequences to evaluate a
 
In this paper, we present the algorithm for executing CN in order to CN evaluation 
strategy. It is observed that there is substantial evaluating the common join expressions 
among CNs. As a consequence, the computational efforts can be saved if multiple CNs 
can be executed in a calculated way that minimizes the sizes of joining intermediate 
results. 
 

6.1. Evaluating Candidate Network
 
We present the D_CNEval algorithm based on the idea of dynamic query optimization algorithm 
[14] for CN evaluation that is shown in F
perform this task. In general, it will return the result of query execution. 
 
We set up one parameter such as CN and use the non
CN. The algorithm evaluates the size of CN. If the size of CN is equal to one, the algorithm can 
directly return the executed result for the CN. But if the size of CN is more than one, non
tuple sets of each relation in CN are projected
intermediate results. These projected results are executed as SQL queries and also are merging all 
results. If the algorithm executes an empty tuple set, it can stop the current state and it will start t
execute the next relation in CN. As a consequence, the algorithm returns all executed results for 
each CN. The examples of evaluated CN for Q = “Chen Web Springer” in DBLP and Q = “
Jack David” in IMDB that are shown in Figure 10 and Figure 11.
 

Figure 10. Processing of Evaluated CN on DBLP

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012

keyword query, the number of CNs generated can be very large. Given a large number of
joins, it is extremely difficult to obtain an optimal query processing plan. It is because 
one best plan for a CN may make others slow down, if its subtrees are shared by others 

The idea of evaluating the sub-expressions is a well-known topic in query optimization. 
the algorithm to evaluate all CNs together using a greedy 

algorithm. In this algorithm, sub-expressions that are shared by most CNs should be 
may generate the smallest number of results should be evaluated first. 

an operator mesh in order to share the computatio
evaluating all CNs in a mesh, a projected relation with the 

smallest number of tuples is selected to start and to join. Qin et al. [11] observe
evaluating all CNs using only joins may always generate a large number of temporary 

to use semijoin/join sequences to evaluate a CN.  

paper, we present the algorithm for executing CN in order to CN evaluation 
strategy. It is observed that there is substantial evaluating the common join expressions 
among CNs. As a consequence, the computational efforts can be saved if multiple CNs 

executed in a calculated way that minimizes the sizes of joining intermediate 

Evaluating Candidate Network 

We present the D_CNEval algorithm based on the idea of dynamic query optimization algorithm 
[14] for CN evaluation that is shown in Figure 12. The D_CNEval algorithm is devised to 
perform this task. In general, it will return the result of query execution.  

We set up one parameter such as CN and use the non-free tuple sets as input, which belong to that 
CN. The algorithm evaluates the size of CN. If the size of CN is equal to one, the algorithm can 
directly return the executed result for the CN. But if the size of CN is more than one, non

relation in CN are projected, which contain keyword query, to reduce the size of 
intermediate results. These projected results are executed as SQL queries and also are merging all 
results. If the algorithm executes an empty tuple set, it can stop the current state and it will start t
execute the next relation in CN. As a consequence, the algorithm returns all executed results for 
each CN. The examples of evaluated CN for Q = “Chen Web Springer” in DBLP and Q = “

” in IMDB that are shown in Figure 10 and Figure 11. 

igure 10. Processing of Evaluated CN on DBLP 

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012 

23 

keyword query, the number of CNs generated can be very large. Given a large number of 
It is because 

one best plan for a CN may make others slow down, if its subtrees are shared by others 

known topic in query optimization. 
gether using a greedy 

expressions that are shared by most CNs should be 
s should be evaluated first. 

order to share the computational cost of 
evaluating all CNs in a mesh, a projected relation with the 

observed that 
always generate a large number of temporary 

paper, we present the algorithm for executing CN in order to CN evaluation 
strategy. It is observed that there is substantial evaluating the common join expressions 
among CNs. As a consequence, the computational efforts can be saved if multiple CNs 

executed in a calculated way that minimizes the sizes of joining intermediate 

We present the D_CNEval algorithm based on the idea of dynamic query optimization algorithm 
igure 12. The D_CNEval algorithm is devised to 

belong to that 
CN. The algorithm evaluates the size of CN. If the size of CN is equal to one, the algorithm can 
directly return the executed result for the CN. But if the size of CN is more than one, non-free 

which contain keyword query, to reduce the size of 
intermediate results. These projected results are executed as SQL queries and also are merging all 
results. If the algorithm executes an empty tuple set, it can stop the current state and it will start to 
execute the next relation in CN. As a consequence, the algorithm returns all executed results for 
each CN. The examples of evaluated CN for Q = “Chen Web Springer” in DBLP and Q = “Black 

 



International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012

 

Figure 11. Processing of Evaluated CN on IMDB
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. D_CNEval Algorithm

We perform a worst case time analysis of the D_CNEval algorithm. If the size of CN is equal 1, 
we assume that we execute the result in time 
every relation in CN, where |CN| is the size of candidate netw
attributes of relation are projected by the non
result. In each step, we assign the query results with the same array lists. Evaluating the query 
results in Ri

N takes time T, where T is the number of tuples, that are contained keyword, in 

D_CNEval(CN) 

Input: non-free tuple sets{R

Output: result of query execution EQ

1. EQ   =   Φ 

2.  n     =   sizeof(CN)

3. If (EQ.isEMPTY()) then 

4.  Return Φ 

5 .Else { 

6. If ( n = 1 ) then

7.    EQ = executeTo( R

8. Else{           

9.               

10.      

11.      

12.       

13.        

14.      

 } 

15. Return EQ. 

   

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012

 

 
Figure 11. Processing of Evaluated CN on IMDB 

Figure 12. D_CNEval Algorithm 
 

We perform a worst case time analysis of the D_CNEval algorithm. If the size of CN is equal 1, 
we assume that we execute the result in time O(1). The for-loop is executed at most |CN| times for 
every relation in CN, where |CN| is the size of candidate network. Given a n-relation in CN, the 
attributes of relation are projected by the non-free tuple set Ri

N that are executed due to projected 
result. In each step, we assign the query results with the same array lists. Evaluating the query 

time T, where T is the number of tuples, that are contained keyword, in 

 

free tuple sets{R1
N,R2

N,…,Ri
N}, in which belongs to  CN 

Output: result of query execution EQ 

2.  n     =   sizeof(CN) 

3. If (EQ.isEMPTY()) then  

If ( n = 1 ) then 

EQ = executeTo( Ri
N ) 

Else{            

              For each Ri
N 
Є CN { 

    Ri
N
′ = projectTo (Ri

N ) 

    EQ′ = executeTo( Ri
N ′  )  

     If (EQ′.isEMPTY()) then continue 

      Else 

      EQ = EQ ∪ EQ′ } }   

 

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012 

24 

 

We perform a worst case time analysis of the D_CNEval algorithm. If the size of CN is equal 1, 
loop is executed at most |CN| times for 

relation in CN, the 
that are executed due to projected 

result. In each step, we assign the query results with the same array lists. Evaluating the query 
time T, where T is the number of tuples, that are contained keyword, in 



International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012 

25 
 

relation. Hence we check if a query result is empty in Ri
N and reduce its time in O(1). The query 

result is merged at most |T| times. Hence the total execution time takes in the worst case time 

O(|CN|.|T|).The D_CNEval algorithm may output the results of query execution by reducing the 
size of intermediate joining results. 
 
6.2. Generating Connected Tuple Trees 
 
We display the processing of generated CTT as shown in Figure 13. For a given query Q, the 
connected tuple tree is generated according to an evaluated CN that is some tuples coming from 
different relations. For each pair of adjacent tuple sets Ri, Rj in connected tuple tree, there is an 
edge (Ri,Rj) in SG. Each CTT that defined satisfaction as follow: 
 

Property 3. If a node in connected tuple tree is one of    tuples in relation, it contains at least 
one keyword in query Q (completeness). 

Property 4. There is no duplicate tuple with each other in the connected tuple tree 
(duplication-free).  

 
In Figure 14, CTT1 and CTT2 for Query 1 and Query 2 in DBLP are presented as examples. In 
CTT1, a node P2 contains the keyword “Peter”, and I3 contains keyword “XML” and U1 contains 
the keyword “Springer” in Query 1. In CTT2, the nodes P3 and I4 contain the keywords “David” 
and “Modelling”, and U1 contains the keyword “Springer” in Query 2 respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 13. Processing of Generated CTT 

 
For IMDB, CTT3 and CTT4 for Query 3 and Query 4 are illustrated as examples in Figure 15. In 
CTT3, a node M1 contains the two keywords “Love” and “Story”, and D1 contains keyword 
“Elley” in Query 3. In CTT4, the nodes A2 and M3 contain the keywords “Black” and “Jack”, 
and D2 contains the keyword “David” in Query 4 respectively. Except primary-foreign relation 
nodes, all remaining nodes contain the keywords in given query, and there are no duplicate nodes. 
In this paper, we consider a connected tuple tree as a result as long as it fulfills the properties. 



International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012 

26 
 

 
 

 

 

 

 

 

 

 
Figure 14. Queries, CTTs and CNs for DBLP 

 
 

 

 

 

 

 

 

 
 

 
Figure 15. Queries, CTTs and CNs for IMDB 

 

7. PERFORMANCE EVALUATION 
 
7.1. Evaluation Setup 
 
We evaluate the search efficiency of proposed algorithms on DBLP and IMDB datasets. All 
queries generating algorithms were implemented in Java, and JDBC was used to connect to the 
database. We conducted all the experiments on Core(TM) 2 Duo CPU and 2GB memory laptop 
running XP. We take the average executing time on running 15 times. 
 
Dataset: We use two real datasets the Original Digital Bibliography and Library Project (DBLP) 
dataset [5] and the Internet Movie Database (IMDB) [17] in our evaluation. DBLP contains 
publications records. IMDB contains movies records. Table 1 and Table 2. show the schema and 
statistic of two datasets. 
 
Query Set: We manually picked a large number of queries for evaluation. We attempted to 
include a wide variety of keywords and their combinations in the query sets, such as the 
selectivity of keywords, the size of the most relevant answers, the number of potential relevant 
answers, etc. We focus on a subset of the queries in this experiment. There are 20 queries with 
query length ranging from 2 to 6. 
 
 

Query 1:        “Peter XML Springer” 

CTT1:               P2→RPI←I3→R2→U1 

CN1:             PN 
⋈ RPIF 

⋈ IN 
⋈ RF 

⋈ UN 

Query 2:          “David Modelling Springer” 

CTT2:       P3→ RPI←I4→R4→U1 

CN2:             PN ⋈ RPIF ⋈ IN ⋈ RF
⋈ UN 

Query 3:        “Elley love Story” 

CTT3:               M1→MD←D1 

CN3:             MN 
⋈ MDF 

⋈DN  

Query 4:          “Black Jack David” 

CTT4:       A2→ R←M3→MD→D2 

CN4:             AN 
⋈ RF

⋈ MN
⋈ MDF 

⋈ DN 



International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012 

27 
 

Table 1.  Statistics of  DBLP Dataset 
 

 
 
 
 
 
 
 

 

 
 

Table 2.  Statistics of IMDB Dataset 
 

 

 

 

 

 

 

 

7.2. Evaluation 

 
We implement the Heuristic_CNGen and AT_CNGen algorithms for CN generation. In practical, 
we observe that AT_CNGen algorithm is small overhead than Heuristic_CNGen algorithm. To 
compare the performance of these algorithms, we analyze the worst case time of 
Heuristic_CNGen algorithm and AT_CNGen algorithm. 
 
  In Heuristic_CNGen algorithm, while-loop is performed at most |E| times for every tuple sets in 
queue E, where |E| is the size of queue. We check the network graph T that is more than maximun 
number of tuple sets when T is put from queue to calculate as first. If T is greater than maximun 
number of tuple sets, we can reduce its time in O(1). We add T into Hash table H with generated 
CN for each tuple set when T is not more than maximun number of tuple sets. This step is 
increasing the computation time in O(1). And the firstly for-loop is achieved at most |T| times for 
each tuple set in T, where |T| is the size of network graph that is less than or equal to maximun 
number of tuple sets. The next for-loop is fulfilled at most |T| times because each node in T 
traverses the adjacent node with it in schema graph. Generating all valid candiate networks in 
schema graph takes time |T|. In completeness, the CN generation time takes in O(|E|-|T|). Then, 
we filter out the duplicated CN with for-loop that takes at most time |T|. Hence the total execution 
time takes in the worst case time O((|E|-|T|)2). 
 
 In AT_CNGen algorithm, we suppose that the number of keyword is K and the size of tuple set 
is T and the maximal adjacent tuple in schema graph is M. The for-loop in algorithm 
getTupleSet(k) is executed at most |K| times for each keyword in keyword query, time complexity 
to construct the tuple set is O(|K|). After generating the tuple set, getAdjacentList(T,MAXN) 
algorithm is transvered at most |T| time for each tuple set that is adjacent tuple in the schema 
graph. The time complexity of transversing adjacent tuple is O(|T|). Then, we check the 
duplicated CN with for-loop that takes at most time |M|. As a consquence, the total time 
complexity is O(|K|.|TM|). 
 

Relation Schema #Tuples 
Person(Pid,Name) 
InProceeding(Iid,Title,Pages,Rid) 
Proceeding(Rid,Title,Uid,Sid,…) 
Publisher(Uid,Name) 
Series(Sid,Title) 
RelationPersonInProceeding(Pid,IPid) 

174,709 
212,273 

3,007 
86 
24 

 491,777 

Relation Schema #Tuples 

Actors(Aid,Name) 

Directors(Did,Name) 

Movies(Mid,Name,Year,Rank) 

Movies-Directors(Mid,Did) 

Movies-Genres(Mid,Genre) 

Roles(Aid,Mid,Role) 

817,718 

86,880 

388,269 

406,967 

417,784 

3,432,630 



International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012 

28 
 

In summary, AT_CNGen algorithm can be reduced the computation time and searching space, 
while Heuristic_CNGen algorithm expands the nodes in schema graph which have same heuristic 
values. Moreover, AT_CNGen algorithm generates the valid CNs due to completeness and 
duplication-free. Finally, we select AT_CNGen algorithm for the CN generation of relational 
keyword search system.  
 
7.3. Experimental Results of the Candidate Network Generation 

 
We compare the evaluation results of the proposed AT_CNGen algorithm and existing algorithms 
by using the same DBLP and IMDB datasets. We observe that proposed algorithm achieve better 
search performance over the two datasets than the existing algorithms, such as DISCOVER and 
SPARK, that is shown in Figure 16 and Figure 17.  
 
The proposed AT_CNGen algorithm can generate the valid CNs by the maximal CN size. The 
proposed algorithm can produce the number of CNs by duplication-free. Then, the new CN 
generation algorithm is compared with all existing CN generations to eliminate redundancies. The 
proposed method reduces the number of CNs grows very large even for small CN size. The 
elapsed time of SPARK is faster than DISCOVER, but SPARK cannot bounded to produce the 
number of CN for the small CN’s size. We can see that elapsed time of the proposed AT_CNGen 
algorithm is exponentially smaller than DISCOVER and SPARK.  
 
 

 
 
 

Figure 16. Comparison of AT_CNGen and Others previous algorithms on DBLP 
 
 
 
 
 
 
 
 
 
 
 
 

10

100

1000

10000

3 4 5 6

C
o
m

p
u

ta
ti

o
n

 T
im

e 
(m

s)

MAX CN Size DISCOVER
SPARK
AT_CNGen



International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012 

29 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
Figure 17. Comparison of AT_CNGen and Existing algorithms on IMDB 

 
7.4. Experimental Results of Query Execution 
 
In this section, we measure the computation time for sample queries of DBLP dataset in Figure 18 
by implementing the D_CNEval algorithm. Moreover, we also present sample queries of IMDB 
dataset in Figure 20 to evaluate the efficiency of D_CNEval algorithm. Given a keyword query, 
the proposed algorithm generates the valid CNs. The generated CNs is evaluated by reducing the 
size of intermediate results to get the final results.  
  

Query Keywords 

Q1 chen 

Q2 chen web content 

Q3 chen web springer 
Q4 web content 

Q5 content springer bychen 

Q6 chen web springer 2000 

Q7 david compiler generator 

Q8 compiler springer by david 

Q9 compiler generator 

Q10 david compiler generator springer 

 
Figure 18. Keywords Queries on DBLP 

 

10

100

1000

10000

3 4 5 6

C
o
m

p
u

ta
ti

o
n

 T
im

e 
(m

s)

MAX CN Size
DISCOVER
SPARK
AT_CNGen



International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012 

30 
 

 
 

Figure 19. Execution Times for Queries of DBLP 
 

Figure 19 shows the execution times by evaluating the number of queries. In this figure, Q1 can 
execute the result at minimum time because this query selects the executed query in a single 
relation. Also Q7, Q9 and Q10 can evaluate the result queries at minimum time although two or 
more relations joined due to the primary-foreign relationship.  
 
Then, we present the evaluation of execution times for the queries in IMDB that is shown in 
Figure 21. We can see that Q14 and Q19 can execute the result at minimum time because this 
query selects the executed query in a single relation. Also Q13, Q15 and Q18 can evaluate the 
result queries at minimum time although two or more relations joined due to the primary-foreign 
relationship. So, we observe that the D_CNEval algorithm execute the final result to speed up. 
 

Query Keywords 

Q11 alexander 
Q12 hollywood 

Q13 elley love story 
Q14 monkey island 
Q15 blake death 

Q16 mile allen 

Q17 godfather 

Q18 come away 2005 

Q19 2010:continues  

Q20 black jack david 

 
Figure 20. Keywords Queries on IMDB 

 

10

100

1000

10000

100000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

C
o

m
p

u
ta

ti
o

n
 T

im
e(

m
s)

Queries



International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012 

31 
 

 
 

Figure 21. Execution Times for Queries of IMDB 
 

8. CONCLUSIONS 

 
Efficient keyword search in relational databases allows ordinary users to find text information in 
relational databases with much higher flexibility. A keyword query in the system is a list of 
keywords and does not need to specify any relation or attributes names. The result to such a 
keyword query consists of the minimal connected tuple trees, which potentially include tuples 
from multiple relations in database. We first proposed a CN generation algorithm 
(Heuristic_CNGen) to produce all CNs. Although this algorithm produces the valid CNs, it 
reduced the system performance when traversing the same heuristic values nodes. In order to 
improve the performance, we also propose a new CN generation algorithm (AT_CNGen) to 
generate all CNs for relational keyword search system. The proposed candidate network 
algorithm can solve the growing number of CNs for small CN size by comparing with existing 
algorithms. Moreover, we observe that AT_CNGen algorithm achieved the system performance 
as high as Heuristic_CNGen algorithm. Then, we propose the dynamic CN evaluation algorithm 
(D_CNEval) to produce the connected tuple trees by reducing the joining intermediate results. 
The proposed CN evaluation algorithm can generate the minimal number of CTTs by doing 
minimal accesses to the database, and does not have data bound with the maximum number of 
tuple set.  We presented the experimental results on DBLP and IMDB show that the proposed 
algorithms generate the result approximately for the user desired query. And the experimental 
results are efficiently evaluated by using query execution strategy. 
 

REFERENCES 

 
[1] Agrawal,S., Chaudhuri,S., Das,G. (2002). DBXplorer: A System for Keyword-Based Search over 

Relational Database. Proc. 18th Int. Conf. on Data Engineering, pp. 5-16. 
[2] Baid,A., Rae,I., Li,J., Doan,A., Naughton,J. (2010). Toward Scalable Keyword Search over Relational 

Data. Proc. VLDB Endowment, Vol. 3. 
[3] Felner,A., Korf,R.E., Hanan,S. (2004). Additive Pattern Database Heuristics. Journal of Artificial 

Intelligence Research, (p.279-318). 
[4] Hristidis,V., Papakonstaninou,Y. (2002). DISCOVER: Keyword Search in Relational Databases. 

Proc. 28th Int. Conf. on Very Large Data Bases, pp. 670-681. 
[5] http://www.dblp.uni.trier.de. 
[6] Korf,R.E. Depth-Firth Iterative-Deepening: An Optimal Admissible Tree Search.  

10

100

1000

10000

100000

Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

C
o

m
p

u
ta

ti
o
n

 T
im

e 
(m

s)

Queries



International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.6, December 2012 

32 
 

[7] Liu,F., Yu,C., Meng,W. (2006). Effective Keyword Search in Relational Databases. Proc. 2006 ACM 
SIGMOD Int. Conf. on Management of data, pp. 563-574. 

[8] Li,P., Zhu,Q., Wang,S. (2008). The Research on the Algorithms of Keyword Search in Relational 
Database. Springer, pp. 134-143. 

[9] Luo,Y., Wang,W., Lin,X., Zhou,X. (2011). SPARK2: Top-k Keyword Query in Relational Databases. 
TKDE Special Issue: Keyword Search on Structured Data. 

[10] Markowetz,A., Yang,Y., Papadias,D. (2007). Keyword Search on Relational Data Streams. Proc. 
2007 ACM SIGMOD Int. Conf. on Management of data, pp. 605-616. 

[11] Qin,L., Yu,J.X., Chang,L. (2009). Keyword Search in Databases: The Power of RDBMs. Proc. 35th 
SIGMOD Int. Conf. on Management of data, pp. 681-694. 

[12] Stefanidis,K., Drosou,M., Pitoura,E. (2010). PerK: Personalized Keyword Search in Relational 
Databases through Preferences. Proc. 13th Int. Conf. on Extending Database Technology, EDBT, pp. 
585-596. 

[13] Thein,M.M. (2012). Querying Connected Tuple Trees for Relational Keyword Search. Proc. Int. 
Conference on Information Retrieval and Knowledge Management, pp. 285-289. 

[14] Tamer Özsu.M, Valduriez.P. (2011). Principles of Distributed Database Systems. Springer. 
[15] Wang,S., Zhang,J., Peng,Z., Zhan,J., Wang,Q. (2007). Study on Efficiency and Effectiveness of 

KSORD. APWeb/WAIM Int. Workshops, pp. 6-17. 
[16] Xu,Y., Ishikawa,Y., Guan,J. (2009). Effective Top-k Keyword Search in Relational Databases   Considering 

Query Semantics. APWeb/WAIM Int. Workshops, pp.  172–184. 
[17] http://www.imdb.com/interfaces. 
[18] YU,J.X., Qin,L., Chang,L. (2010). Keyword Search in Relational Databases: A Survey. IEEE Data Engineering 

Bulletin, Vol. 33, pp. 67-78. 
 


