
International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.1, Feb 2011 

DOI : 10.5121/ijcses.2011.2107                                                                                                                  88 

Fault TOLERANCE IN GRID COMPUTING: STATE 

OF THE ART AND OPEN ISSUES 

Ritu Garg and Awadhesh Kumar Singh
 

Department of Computer Engineering, National Institute of Technology, Kurukshetra, 

Haryana, India 
Ritu.59@gmail.com 

ABSTRACT 

Fault tolerance is an important property for large scale computational grid systems, where 

geographically distributed nodes co-operate to execute a task. In order to achieve high level of reliability 

and availability, the grid infrastructure should be a foolproof fault tolerant. Since the failure of resources 

affects job execution fatally, fault tolerance service is essential to satisfy QOS requirement in grid 

computing. Commonly utilized techniques for providing fault tolerance are job checkpointing and 

replication. Both techniques mitigate the amount of work lost due to changing system availability but can 

introduce significant runtime overhead. The latter largely depends on the length of checkpointing interval 

and the chosen number of replicas, respectively. In case of complex scientific workflows where tasks can 

execute in well defined order reliability is another biggest challenge because of the unreliable nature of 

the grid resources. 
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1. INTRODUCTION 

Computational grid [1] consists of large sets of diverse, geographically distributed resources 

that are grouped into virtual computers for executing specific applications. As the number of 

grid system components increases, the probability of failures in the grid computing environment 

becomes higher than that in a traditional parallel computing scenario [8, 9, 10] .Compute 

intensive grid applications often require much longer execution time in order to solve a single 

problem. Thus, the huge computing potential of grids, usually, remains unexploited due to their 

susceptibility to failures like, process failures, machine crashes, and network failures etc. This 

may lead to job failures, violating timing deadlines and service level agreements, denials of 

service, degraded user expected quality of service. Thus fault management is a very important 

and challenging for grid application developers. It has been observed that interaction, timing, 

and omission faults are more prevalent in grid.  

Fault tolerance is the ability of a system to perform its function correctly even in the presence of 

faults. The fault tolerance makes the system more dependable. A complementary but separate 

approach to increase dependability is fault prevention. This consists of techniques, such as 

inspection, whose intent is to eliminate the circumstances by which faults arise. A failure occurs 

when an actual running system deviates from this specified behavior. The cause of a failure is 

called an error. An error represents an invalid system state that does not comply the system 

specification. The error itself is the result of a defect in the system or fault. In other words, a 

fault is the root cause of a failure. However, a fault may not necessarily result in an error; 

nevertheless, the same fault may result in multiple errors. Similarly, a single error may lead to 

multiple failures. 



International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.1, Feb 2011 

89 

 

The level of fault tolerance is reflected by quantifying the system dependability. Dependability 

means that our system can be trusted to deliver the service(s) for which it has been designed. It 

can be measured by two of the metrics like reliability and availability. Reliability characterizes 

the ability of a system to perform, on demand, its service correctly. Availability means that the 

system is up to perform this service when it is asked to do so. Technically, reliability is defined 

as the probability that a system will perform correctly up to a given point in time. Closely 

related to reliability are the mean time to failure(MTTF) and mean time between failures 

(MTBF).The first is the average time the system operates until a failure occurs, whereas the 

second is the average time between two consecutive failures. 

 MTBF = MTTF + MTTR, where MTTR is the mean time to repair 

Availability is defined as the probability that a system is operational at desired time. For a given 

system, this characteristic is strongly dependent on the time it takes to restore it to service after 

some failure.  

Availability = (MTTF) / (MTTR + MTTF)  

The paper is organized as follows. Section II briefly describes the different approaches used for 

handling grid. Section III presents the fault tolerant techniques like replication and check 

pointing in detail. Section IV provides how fault management is done in dependency grid 

(workflow grid). Section V presents the conclusion and Section VI presents some of the open 

issues related to grid fault tolerance which can be explored further. 

2. GRID FAULT MANAGEMENT 

Various approaches are used for tolerating faults in grid, so grid fault management can be 

classified as 

2.1. Pro-active vs. Post-active management  

In literature, the work on grid fault tolerance can be divided into pro-active and post-active 

mechanisms. In pro-active mechanisms, the failure consideration for the grid is made before the 

scheduling of a job, and dispatched with hopes that the job does not fail. Whereas, post-active 

mechanisms handles the job failures after it has occurred. However, in the dynamic systems 

only post-active mechanism is relevant [13]. 

2.2. Push Model vs. Pull Model  

In order to detect occurrence of fault in any grid resource two approaches can be used: the push 

or the pull model. In the push model, grid components periodically send heartbeat messages to a 

failure detector, announcing that they are alive. In the absence of any such message from any 

grid component, the fault detector recognizes that failure has occurred at that grid component. It 

then implements appropriate measures dictated by the predefined fault tolerance mechanism. In 

contrast, in the pull model the failure detector sends live-ness requests (“Are you alive?” 

messages) periodically to grid components. [16]. 

2.3. Grid Middleware Based  

Like any middleware, a grid middleware is also responsible to hide, from the application 

developer, the technical details related to different syntax and access methods and to provide a 

consistent and homogeneous access to resources managed locally. Hwang et al. [18] presented a 

failure detection service (FDS) and a flexible failure handling framework (Grid-WFS) as a fault 

tolerance mechanism on the grid. The FDS enables the detection of both task crashes and user-

defined exceptions. 

 



International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.1, Feb 2011 

90 

 

2.4. Agent based  

Here autonomous, light-weight, intelligent agents monitor with individual faults. Agents 

maintain log of various informations related to hardware conditions, memory 

utilization, resource constraints, network status and component failure. Based on this 

information and critical states, agent can enhance the reliability and efficiency of grid 

services e.g., Mohamad et al. [19] use agents to inject proactive fault tolerance in grids. 

2.5. Application level 

 The performance of system level fault tolerance mechanisms is restricted due to the large 

process state, low I/O bandwidth, and the high frequency of failures. Either an application 

would spend more time in taking checkpoints or it does not get sufficient time to save its core to 

disk before the next failure occurs. Therefore, low overhead application level fault tolerance 

schemes are more suitable alternative in long-lived computational tasks. However, most 

application level fault tolerance schemes proposed in literature are non-adaptive due to fast 

changing computational scenario. However, in order to achieve high reliability and 

survivability, the fault tolerance schemes in such applications need to be adaptable to dynamic 

system environments. The CPPC (Controller/Precompiler for Portable Checkpointing) 

framework [20] implements checkpointing module into the application code. The CPPC-G 

service is responsible for (a) the submission and monitoring of the application execution (b) the 

management of checkpoint files generated by CPPC-enabled applications, and (c) the detection 

and automatic restart of failed executions. 

2.6 Fault tolerance at job site 

The failure at job site has cascading effect on the grid performance. They reduce the 

resource availability, which tend to make the clusters unusable that result in the loss of 

user submitted jobs. It eventually slows down the overall speed of computation. Hence, 

in order to ensure the high system availability, the job site failure handling is inevitable. 

A cluster head is responsible to coordinate the computation related activities and to 

provide other necessary services, such as job scheduling. If job sites are made up of 

clusters, then the failure of the cluster head causes the services to be unavailable till the 

cluster head recovers or replaced by some back up head. HA-OSCAR [21] uses 

redundancy and self healing techniques to address the problem of single point failure. 

The transition from failed head to back up head is uninterrupted. Hence, it provides an 

excellent solution for stateless services. While some approaches [23, 24, 25] are self 

healing, provides job level fault resilience in order to guarantee the high availability of 

the site. 

3. FAULT RESILIENCE 

Checkpoint-recovery and job replication are two primarily used fault tolerance techniques in 

cases of a system outage. The first approach depends on the system’s MTTR while the latter 

depends on the availability of alternative sites to run replicas.  

3.1 Checkpointing 

The checkpointing is one of the most popular technique to provide fault-tolerance on unreliable 

systems. It is a record of the snapshot of the entire system state in order to restart the application 

after the occurrence of some failure. The checkpoint can be stored on temporary as well as 

stable storage [26]. However, the efficiency of the mechanism is strongly dependent on the 

length of the checkpointing interval. Frequent checkpointing may enhance the overhead, while 

lazy checkpointing may lead to loss of significant computation. Hence, the decision about the 
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size of the checkpointing interval and the checkpointing technique is a complicated task and 

should be based upon the knowledge about the application as well as the system. Therefore, 

various types of checkpointing optimization have been considered by the researchers, e.g., (i) 

Full checkpointing or Incremental checkpointing (ii) Unconditional periodic checkpointing or 

Optimal (Dynamic) checkpointing (iii) Synchronous (Coordinated) or asysnchronous 

(Uncoordinated) checkpointing, and (iv) Kernel, Application or User level checkpointing. 

3.1.1 Full Checkpoint or Incremental checkpoint 

A full checkpoint is a traditional checkpoint mechanism which occasionally saves the total state 

of the application to a local storage. However, the time consumed in taking checkpoint and the 

storage required to save it is very large. 

Incremental checkpoint mechanism was introduced to reduce the checkpoint overhead by saving 

the pages that have been changed instead of saving the whole process state [27, 30, 31]. In the 

incremental checkpoint scheme, the first checkpoint is typically a full checkpoint. After that, 

only modified pages are checkpointed at some predefined interval. When large numbers of 

pages get modified another full checkpoint is taken. In order to recover the application, we will 

load a saved state from the last full checkpoint and load the changed pages from each 

incremental checkpoint following the last full checkpoint. This results in more expensive 

recovery cost than the recovery cost of the full checkpoint mechanism.  

3.1.2 Uncoordinated or Coordinated checkpointing 

In uncoordinated checkpointing each process takes its checkpoint independently of the other 

processes though it may lead to domino effect (processes may be forced to rollback up to the 

execution beginning). Since there is a chance for losing the whole computation, these protocols 

are not popular in practice. 

Coordinated checkpoint protocols produce consistent checkpoints; hence, the recovery process 

is simple to implement. Communication Induced Checkpointing (CIC) tries to take advantage of 

uncoordinated and coordinated checkpoint techniques. Based on the uncoordinated approach, it 

piggy backs causality dependencies in all messages and detects risk of inconsistent state. When 

such a risk is detected, some processes are forced to checkpoint. A detailed survey of 

checkpointing protocols may be found in [32]. 

3.1.3 Kernel or Low level checkpointing 

 Here checkpointing procedures are included in the kernel, checkpointing is transparent to the 

user and generally no changes are required to the programs to make them checkpointable. When 

the system restart after failure, the kernel is responsible for managing the recovery operation. To 

date, there have been a few low-level checkpointing packages [34]. Each checkpointing package 

offers a different functionality and interface. Because of technical issues the checkpointing 

packages impose some limitations on applications that are to be checkpointed. So the 

integration of low-level checkpointing packages with the Grids is a difficult task. AltixC/R [36] 

is kernel-level checkpointing package. The required kernel-level code is provided in a form of a 

dynamically loaded kernel module so it is easy to use and install. The package is able to 

checkpoint multi-process programs. 

3.1.4 User level Checkponting 

 In this approach, a user level library is provided to do the checkpointing. To checkpoint, 

application programs are linked to this library. This approach generally requires no changes in 

the application code; however explicit linking is required with user level library, which is also 

responsible for recovery from failure. 
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3.1.5 Application level checkpointing 

Here, the application is responsible for carrying out all the checkpointing functions. Code for 

checkpointing and recovery from failure is written into the application. It is expensive to 

implement but provide more control over the checkpointing process. 

3.2 Replication  

It is a technique based on an inherent assumption that any single resource is much susceptible to 

failure as compared to simultaneous failure of multiple resources. Unlike checkpointing, the 

replication avoids task re-computation by executing several copies of the same task on more 

than one compute stations. The job replication and determination of the optimal number of 

replicas involves many technical considerations. The task replication in grids has been studied 

in [38]. A number of approaches have been used to implement replication in grid computing 

environment. 

3.2.1 Static vs. Dynamic replication 

The static replication [39] means that, when some replica fails, it is not replaced by a new one. 

The number of replicas of the original task is decided before execution. While in case of 

dynamic replication, new replicas can be generated during run time. Gallop [40] used an initial 

set of replicas based on user preferences which we call static replicas (e.g. the user wants x 

replicas). The user may also indicate that they do not want the number of active replicas falling 

below y replicas. This may require that new replicas are started if enough sites fail and the 

number of active replicas falls below y. We call this capability dynamic replication. 

3.2.2 Active vs. passive replication 

In the former, the state of replicas is kept closely synchronized; replicas service the same 

requests in parallel and undergo the same state transitions. This algorithm is referred to as the 

active replication [41]. In the latter, a primary replica services requests on behalf of clients. 

Other replicas are kept as standby and can take over in the case of a primary failure [42]. This is 

sometimes referred to as passive replication. Further, two approaches of passive replication, 

using the concept of overloading, have been used in the literature; Primary Backup vs. Backup 

Backup overloading. 

3.2.3 Primary Backup vs. Backup Backup overloading Replication 

Overloading techniques are used to deal with timing faults and to improve the schedulability. In 

PB-overloading primary of a task is scheduled onto the same or overlapping time slot with the 

backup of another task on a processor. While in BB-overloading backups of multiple tasks are 

scheduled onto the same or overlapping time slot on a processor [43]. Since PB-overloading can 

assign an earlier start time than that of the BB-overloading, thus increasing the schedulability In 

[44], R. Al-Omari et al. concluded that the PB-overloading is able to achieve better performance 

than BB-overloading, and BB-overloading algorithm is better than no-overloading.[45]. In 

short, hybrid overloading is a new technique which combines the advantages of both PB and BB 

overloading. All three overloading strategies are compared through a stochastic analysis, as well 

as by simulating them under diverse system conditions. 

4. TASK DEPENDENCY OF AN APPLICATION 

When the relations among the tasks in the grid application are considered, a common dichotomy 

used is dependency vs. independency. All previously mentioned techniques have been used in 

the independent task scenario. Usually dependency means there are precedence orders existing 

in the tasks, that is, a task cannot start, or sometimes can’t progress, until its predecessors are 

done. Dependency has crucial impact on the fault tolerance. 
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4.1 Fault tolerance in dependent task Grid (or Workflow Grid)  

Grid workflow is defined as the orchestration of a set of atomic tasks processed at distributed 

resources in a well-defined order to accomplish a large and sophisticated goal. Currently, 

Directed Acyclic Graph (DAG) has been extensively used in scientific computational workflow 

modelling. In a Grid environment, workflow execution failure can occur for various reasons: the 

variation in the execution environment configuration, non-availability of required services or 

software components, overloaded resource conditions, system running out of memory, and 

faults in computational and network fabric components. Grid workflow management systems 

should be able to identify and handle failures and support reliable execution in the presence of 

concurrency and failures [47, 48]. Hwang et al. [51] divided workflow failure handling 

techniques into two different levels, namely task-level and workflow-level. Task-level 

techniques handle the execution failure of tasks like task independent scenario and the 

techniques used are also similar as discussed above, while workflow-level techniques may alter 

the sequence of execution in order to address the failures. Hwang and Kesselman proposed three 

different techniques on the basis of assumption that there is more than one implementation 

possible for a certain computation with different execution characteristics. 

(i) The alternate task technique executes another implementation of a certain task if the previous 

one failed. 

(ii) The redundancy technique executes multiple alternative tasks simultaneously. 

(iii) The user-defined exception handling allows the users to specify a special treatment for a 

certain failure of a task in workflow. 

(iv)The rescue workflow technique developed in Condor DAGMan system [52] ignores the 

failed tasks and continues to execute the remainder of the workflow until no more forward 

progress can be made. It uses a rescue workflow description called rescue DAG in order to 

indicate failed nodes with statistical information that can be used for further processing. 

5. CONCLUSION 

In the light of above survey, fault tolerance plays an important role in order to achieve 

availability and reliability of a grid system.  Replication, Check pointing and job migration are 

the major techniques used in any fault-tolerant grid management system. Replication provides 

better reliability and improved response time. The ability to checkpoint a running application 

and restart it later can provide many useful benefits like fault recovery, advanced resources 

sharing, dynamic load balancing and improved service availability. In case of dependent task 

grid (workflow grid) fault tolerance can be handled at two levels i.e. task level and workflow 

level. 

6. OPEN ISSUES 

• While using job migration approach for fault tolerance, the jobs are allowed to migrate 

within area of their designated cluster. Although, this approach restricts overheads, it leads 

to under utilization of the grid resources, which might be available in some other cluster. 

New job migration protocols are yet to come that allows intra-cluster migration, which may 

enhance the reliability by sharing of checkpoint images between distant clusters. 

• Many works on fault tolerance use adaptive as well as load balanced techniques. However, 

they try to plan the flow of execution before it starts. In real life environments, when there is 

sudden increase of load on the system, it tends to increase the number of failures, which 

eventually increases the system downtime. On demand fault tolerant techniques are required 

which can handle such burst in load and do not cause overhead in absence of burst. 
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• Since grids are highly dynamic in nature, so must handle failure in the resources and check 

how changes in the topology and computational capability of the grid resources affect the 

efficiency in terms of deadline of the tasks. 

• In case of fault treatment, using replication and other techniques, it is interesting to develop 

a viable economic model that could provide an execution environment, which guarantees 

certain minimum cost and time even in the presence of failures, unlike present fault tolerant 

approaches where, usually, cost increases exponentially. 

• A model could be designed and developed that would estimate the expected profit and 

decide which strategy would be ideal to follow in terms of performance and profit 

optimization. 

• Since grid is difficult, more complex to implement and manage, so there could be the 

differences in their performance under diverse experimental conditions. We should modify 

the algorithm so that such differences are not noticeable. 

• Most of the approaches of fault tolerance are based on the prediction of failure probability 

of the resources in certain time interval. It is hard to achieve the resource failure prediction 

even with years of historic trace data. Hence, efficient techniques are required which do not 

base their decisions on the specific failure model and do not rely on the failure prediction 

accuracy. 

• The existing reliability and fault tolerance model may be augmented by considering 

scalability and security into consideration. 

• We can go for development of workflow applications models that can balance properly 

between reliability performance and resource usage. We can extend workflow grid fault 

tolerance in more complex scenario such as those in which background load is present on 

the resources along with the multiple fault tolerant instances on the same grid. 
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