
International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.4, November 2011

DOI : 10.5121/ijcses.2011.2408 111

PrefixSpan: Mining Sequential Patterns by Prefix-

Projected Pattern

Poonam Sharma1 and Gudla.Balakrishna2

1Department of Computer Engineering, MLVTEC, Bhilwara, India
poonam_bhilwara@yahoo.co.in1

2Department of Computer Engineering Mewar University, Chittorgarh, India
balakrishnagudla@gmail.com

ABSTRACT

Sequential pattern mining discovers frequent subsequences as patterns in a sequence database. Most of

the previously developed sequential pattern mining methods, such as GSP, explore a candidate

generation-and-test approach [1] to reduce the number of candidates to be examined. However, this

approach may not be efficient in mining large sequence databases having numerous patterns and/or long

patterns. In this paper, we propose a projection-based, sequential pattern-growth approach for efficient

mining of sequential patterns. In this approach, a sequence database is recursively projected into a set of

smaller projected databases, and sequential patterns are grown in each projected database by exploring

only locally frequent fragments. Based on an initial study of the pattern growth-based sequential pattern

mining, FreeSpan, we propose a more efficient method, called PSP, which offers ordered growth and

reduced projected databases technique is developed in PrefixSpan.

KEYWORDS

Sequential pattern, frequent pattern, candidate sequences, sequence database.

1. Introduction

Sequential pattern mining, which discovers frequent subsequences as patterns in a sequence
database, is an important data mining problem with broad applications, including the analysis of
customer purchase patterns or Web access patterns, the analysis of sequencing or time related
processes such as scientific experiments, natural disasters, and disease treatments, the analysis
of DNA sequences etc.
The sequential pattern mining problem[2] was first introduced by Agrawal and Srikant Given a
set of sequences, where each sequence consists of a list of elements and each element consists
of a set of items, and given a user-specified min_support threshold, sequential pattern mining is
to find all frequent subsequences, i.e., the subsequence whose occurrence frequency in the set of
sequences is no less than min_support Srikant and Agrawal generalized[7] their definition of
sequential patterns in[2] to include time constraints, sliding time window, and user-defined
taxonomy, and presented an a priori-based, improved algorithm GSP (i.e., generalized
sequential patterns). Almost all of the proposed methods for mining sequential patterns and
other time-related frequent patterns are a priori-like, i.e., based on the a priori principle, which
states the fact that any super-pattern of an infrequent pattern cannot be frequent, and based on a

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.4, November 2011

112

candidate generation and test paradigm proposed in association mining[1]. A typical a priori-
like sequential pattern mining method, such as GSP[7], adopts a multiple-pass, candidate
generation-and-test approach outlined as follows: The first scan finds all of the frequent items
that form the set of single item frequent sequences. Each subsequent pass starts with a seed set
of sequential patterns, which is the set of sequential patterns found in the previous pass. This
seed set is used to generate new potential patterns, called candidate sequences, based on the a
priori principle. Each candidate sequence contains one more item than a seed sequential pattern,
where each element in the pattern may contain one item or multiple items. The number of items
in a sequence is called the length of the sequence. So, all the candidate sequences in a pass will
have the same length. The scan of the database in one pass finds the support for each candidate
sequence. All the candidates with support no less than min_support in the database form the set
of the newly found sequential patterns. This set is then used as the seed set for the next pass.
The algorithm terminates when no new sequential pattern is found in a pass, or when no
candidate sequence can be generated.
The a priori-like sequential pattern mining method, though reducing search space, bears three

nontrivial, inherent costs that are independent of detailed implementation techniques.

• A huge set of candidate sequences could be generated in a large sequence database.
Since the set of candidate sequences includes all the possible permutations of the elements and
repetition of items in a sequence, the priori-based method may generate a really large set of
candidate sequences even for a moderate seed set. For example, two frequent sequences of
length-1, (a) and (b), will generate five candidate sequences of length-2: (aa), (ab), (ba), (bb)
and ((ab)), where ((ab)) represents that two events, a and b, happen in the same time slot. If
there are 1,000 frequent sequences of length-1, such as (a1), (a2),…..(a1000), an priori like
algorithm will generate 1,000 * 1, 000 + 1000*999/2=1,499,500 candidate sequences. The cost
of candidate sequence generation, test, and support counting is inherent to the priori-based
method, no matter what technique is applied to optimize its detailed implementation.

• Multiple scans of databases in mining. The length of each candidate sequence grows by
one at each database scan. In general, to find a sequential pattern of length l, the priori-based
method must scan the database at least l times. This bears a nontrivial cost when long patterns
exist.

• The priori-based method generates a combinatorial explosive number of candidates
when mining long sequential patterns. A long sequential pattern contains a combinatorial
explosive number of subsequences, and such subsequences must be generated and tested in the
priori-based mining. Thus, the number of candidate sequences is exponential to the length of the
sequential patterns to be mined. For example, let the database contain only one single sequence
of length 100, (a1……a100), and the min_support threshold be 1 (i.e., every occurring pattern is
frequent). To (re)derive this length-100 sequential pattern, the a priori-based method has to
generate 100 length-1 candidate sequences (i.e., (a1,a2,….a100) , 100* 100 + 100*99/2=14,950
length-2 candidate sequences, and so on.
In case of DNA analysis or stock sequence analysis, the databases often contain a large number
of sequential patterns and many patterns are long. It is important to re-examine the sequential
pattern mining problem to explore more efficient and scalable methods. In this paper, we
explore a pattern-growth approach for efficient mining of sequential patterns in large sequence
database. The approach adopts a divide-and conquers pattern-growth principle as follows:
Sequence databases are recursively projected into a set of smaller projected databases based on
the current sequential pattern(s), and sequential patterns are grown in each projected databases
by exploring only locally frequent fragments.
Firstly we proposed a straightforward pattern growth method, FreeSpan (for Frequent pattern-
projected Sequential pattern mining) [8], which reduce the efforts of candidate subsequence
generation. In this paper, we introduce another and more efficient method, called PrefixSpan
(for Prefix-projected Sequential pattern mining), which offers ordered growth and reduced

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.4, November 2011

113

projected databases.

Table 1: A Sequence Database

2. Problem definition and the GSP algorithm

In this section, the problem of sequential pattern mining is defined, and the most representative
a priori-based sequential pattern mining method, GSP[7], is illustrated using an example.

Problem Definition

Let I= {i1,i2,……in} be a set of all items. An itemset is a subset of items. A sequence is an
ordered list of itemsets. A Sequence is denoted by (s1, s2……sj), where sj is an itemset.sj is also
called an element of the sequence, and denoted as (x1, x2…..xm), where xk is an item. For
brevity, the brackets are omitted if an element has only one item, i.e., element (x) is written as x.
An item can occur at most once in an element of a sequence, but can occur multiple times in
different elements of a sequence. The number of instances of items in a sequence is called the
length of the sequence. A sequence with length l is called an l-sequence. A sequence α= (a1,
a2......... an) is called a subsequence of another sequence β = (b1, b2….. bm) and β a super
sequence of α, denoted as α ⊆ β, if there exist integers 1 ≤ j1< j2 <………<jn ≤ m such that a1 ⊆
b1j, a2 ⊆ b2j, an ⊆ bjn. A sequence database S is a set of tuples (sid, s) , where sid is a sequence_id
and s a sequence. A tuple (sid, s) is said to contain a sequence α, if α is a subsequence of s. The
support of a sequence α in a sequence database S is the number of tuples in the database
containing α, i.e.
supportS(α) = | { ((sid, s) | (sid, s) € S) ∩ (α ⊆ s) } |

It can be denoted as support (α) if the sequence database is clear from the context. Given a
positive integer min_support as the support threshold, a sequence α is called a sequential pattern
in sequence database S if support (α) ≥ min_support. A sequential pattern with length l is called
an l-pattern.
Example 1: Let our running sequence database be S given in Figure 1 and min_support = 2.
The set of items in the database is {a, b, c, d, e, f, g}. A sequence (a(abc)(ac)d(cf)) has five
elements: (a), (abc), (ac), (d), and (cf), where items a and c appears more than once,
respectively, in different elements. It is a 9-sequence since there are nine instances appearing in
that sequence. Item a happens three times in this sequence, so it contributes 3 to the length of
the sequence. However the whole sequence (a(abc)(ac)d(cf)) contributes only 1 to the support of
(a). Also, sequence (a(bc)df) is a subsequence of (a(abc)(ac)d(cf)). Since both sequences 10 and
30 contain subsequence s = ((ab)c), s is a sequential pattern of length 3 (i.e., 3-pattern).
Problem Statement: Given a sequence database and the min_support threshold, sequential
pattern mining is to find the complete set of sequential patterns in the database.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.4, November 2011

114

Algorithm GSP

A typical sequential pattern mining method, GSP[7], mines sequential patterns by adopting a
candidate subsequence generation-and-test approach, based on the a priori principle. The
method is illustrated using the following example:
Example 2 (GSP): Given the database S and min_support in Example 1, GSP first scans S,
collects the support for each item, and finds the set of frequent items, i.e., frequent length-1
subsequences (in the form of “item: support”):
(a): 4; (b) : 4; (c) : 3; (d) : 3; (e) : 3; (f) : 3; (g) : 1
By filtering the infrequent item g, we obtain the first seed set L1 = { (a), (b), (c), (d), (e), (f)},
each member in the set representing a 1-element sequential pattern. Each subsequent pass starts
with the seed set found in the previous pass and uses it to generate new potential sequential
patterns, called candidate sequences. For L1, a set of 6 length-1 sequential patterns generates a
set of 6*6+6*5/2 = 51 candidate sequences,
C2 ={(aa),(ab),…..(af),(ba),(bb),…(ff), ((ab)), ((ac)),….((ef))}.
In the multiscan mining process the set of candidates is generated by a self-join of the sequential
patterns found in the previous pass. In the kth pass, a sequence is a candidate only if each of its
length (k-1) subsequences is a sequential pattern found at the (k-1)th pass. A new scan of the
database collects the support for each candidate sequence and

Figure 1: Candidates and sequential patterns in GSP

finds the new set of sequential patterns. This set becomes the seed for the next pass. The
algorithm terminates when no sequential pattern is found in a pass, or when there is no
candidate sequence generated. Clearly, the number of scans is at least the maximum length of
sequential patterns. It needs one more scan if the sequential patterns obtained in the last scan
still generate new candidates. GSP, though benefits from the a priori pruning, still generates a
large number of candidates. In this example, 6 length-1 sequential patterns generate 51 length-2
candidates, 22 length-2 sequential patterns generate 64 length-3 candidates, etc. Some
candidates generated by GSP may not appear in the database at all. For example, 13 out of 64
length-3 candidates do not appear in the database.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.4, November 2011

115

3. Mining sequential patterns by pattern Growth

As analyzed in Section 1 and Example 2, the GSP algorithm shares similar strengths and
weaknesses as the a priori method. For frequent pattern mining, a frequent pattern growth
method called FP-growth[9] has been developed for efficient mining of frequent patterns
without candidate generation. The method uses a data structure called FP-tree to store
compressed frequent patterns in transaction database and recursively mines the projected
conditional FP-trees to achieve high performance.
We can mine sequential patterns by extension of the FP-tree structure but it cannot be so
optimistic because it is easy to explore the sharing among a set of unordered items, but it is
difficult to explore the sharing of common data structures among a set of ordered items. For
example, a set of frequent itemsets {abc, cbad, ebadc, cadb} share the same tree branch {abcde}
in the FP-tree. However, if they were a set of sequences, there is no common prefix subtree
structure that can be shared among them because one cannot change the order of items to form
sharable prefix subsequences. We can explore the spirit of FP-growth: divide the sequential
patterns to be mined based on the subsequences obtained so far and project the sequence
database based on the partition of such patterns. Such a methodology is called sequential

pattern mining by pattern growth. The general idea is outlined as follows: Instead of repeatedly
scanning the entire database and generating and testing large sets of candidate sequences, one
can recursively project a sequence database into a set of smaller databases associated with the
set of patterns mined so far and, then, mine locally frequent patterns in each projected database.
We first outline a projection-based sequential pattern mining method, called FreeSpan[8] , and
then systematically introduce an improved method PrefixSpan[10]. Both methods generate
projected databases, but they differ at the criteria of database projection: FreeSpan creates
projected databases based on the current set of frequent patterns without a particular ordering
(i.e., growth direction), whereas PrefixSpan projects databases by growing frequent prefixes.
Our study shows that, although both FreeSpan and PrefixSpan are efficient and scalable,
PrefixSpan is substantially faster than FreeSpan in most sequence databases.

3.1. FreeSpan: Frequent Pattern-Projected Sequential Pattern Mining
For a sequence α = (s1……..sl), the itemset s1U…..Usl is called α’s projected itemset. FreeSpan
is based on the following property: If an itemset X is infrequent, any sequence whose projected
itemset is a superset of X cannot be a sequential pattern. FreeSpan mines sequential patterns by
partitioning the search space and projecting the sequence sub databases recursively based on the
projected itemsets.
Let list = (x1 ….xn) be a list of all frequent items in sequence database S. Then, the complete set
of sequential patterns in S can be divided into n disjoint subsets: 1) the set of sequential patterns
containing only item x1, 2) those containing item x2 but no item in (x3, . . . ; xn), and so on. In
general, the ith subset (1 ≤ i ≤ n) is the set of sequential patterns containing item xi but no item in
(xi+1; . . . xn). At the time of deriving p’s projected database from DB, the set of frequent items X
of DB is already known. Only those items in X will need to be projected into p’s projected
database. This effectively discards irrelevant information and keeps the size of the projected
database minimal. By recursively doing so, one can mine the projected databases and generate
the complete set of sequential patterns in the given partition without duplication. The details are
illustrated in the following example:
Example (FreeSpan): Given the database S and min_support in Example 1, FreeSpan first
scans S, collects the support for each item, and finds the set of frequent items. This step is
similar to GSP. Frequent items are listed in support descending order (in the form of “item:
support”), that is list = a : 4; b : 4; c : 4; d : 3; e : 3; f : 3. They form six length-one sequential
patterns:
(a) : 4; (b) : 4; (c) : 4; (d) : 3; (e) : 3; (f) : 3.
According to the list, the complete set of sequential patterns in S can be divided into six disjoint
subsets:

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.4, November 2011

116

1. the ones containing only item a,
2. the ones containing item b but no item after b in list,
3. the ones containing item c but no item after c in list, and so on, and, finally,
4. the ones containing item f.
The sequential patterns related to the six partitioned subsets can be mined by constructing six
projected databases (obtained by one additional scan of the original database). Infrequent items,
such as g in this example, are removed from the projected databases. The process for mining
each projected database is detailed as follows:

• Mining sequential patterns containing only item a. By mining the (a)-projected database: {(aaa),
(aa), (a), (a)}, only one additional sequential pattern containing only item a, i.e., (aa): 2, is
found.

• Mining sequential patterns containing item b but no item after b in the list. By mining the (b)-
projected database: {(a(ab)a), (aba),((ab)b),(ab)}, four additional sequential patterns containing
item b but no item after b in list are found. They are
{(ab) : 4, (ba) : 2, ((ab)) : 2, (aba) : 2}.

• Mining sequential patterns containing item c but no item after c in the list. Mining the (c)-
projected database: {(a(abc)(ac)c), (ac(bc)a), ((ab)cb), (acbc)}, proceeds as follows:
One scan of the projected database generates the set of length-2 frequent sequences, which are
{(ac) : 4, ((bc)) : 2, (bc) : 3, (cc) : 3, (ca) : 2, (cb) : 3}. One additional scan of the (c)-
projected database generates all of its projected databases. The mining of the (ac)-projected
database: {(a(abc)(ac)c), (ac(bc)a), ((ab)cb), (acbc)} generates the set of length-3 patterns as
follows:
{(acb) : 3, (acc) : 3, ((ab)c) : 2, (aca) : 2}.
Four projected database will be generated from them. The mining of the first one, the (acb)-
projected database: {(ac (bc) a), ((ab) cb), (acbc)} generates no length-4 pattern. The mining
along this line terminates. On the one hand, the strength of FreeSpan is that it searches a smaller
projected database than GSP in each subsequent database projection. This is because FreeSpan
projects a large sequence database recursively into a set of small projected sequence databases
based on the currently mined frequent item-patterns, and the subsequent mining is confined to
each projected database relevant to a smaller set of candidates. On the other hand, the major
overhead of FreeSpan is that it may have to generate many nontrivial projected databases. If a
pattern appears in each sequence of a database, its projected database does not shrink (except for
the removal of some infrequent items). For example, the {f}-projected database in this example
contains three of the same sequences as that in the original sequence database, except for the
removal of the infrequent item g in sequence 40. Moreover, since a length-k subsequence may
grow at any position, the search for length-(k + 1) candidate sequence will need to check every
possible combination, which is costly.

3.2 PrefixSpan: Prefix-Projected Sequential Patterns Mining
As we have seen, in FreeSpan algorithm, we have to pay high cost at handling projected
databases. So, the next to be done is reduce the size of projected database and the cost of
checking at every possible position of a potential candidate sequence. To avoid checking every
possible combination of a potential candidate sequence, one can first fix the order of items
within each element. Since items within an element of a sequence can be listed in any order,
without loss of generality, one can assume that they are always listed alphabetically. For
example, the sequence in S with Sequence_id 10 in our running example is listed as
h(a(abc)(ac)d(cf)) instead of (a(bac)(ca)d(f c)). With such a convention, the expression of a
sequence is unique. Then, we examine whether one can fix the order of item projection in the
generation of a projected database. Intuitively, if one follows the order of the prefix of a
sequence and projects only the suffix of a sequence, one can examine in an orderly manner all
the possible subsequence and their associated projected database.
Definition 1 (Prefix). Suppose all the items within an element are listed alphabetically. Given a

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.4, November 2011

117

sequence α = (e1,e2,….en) (where each ei corresponds to a frequent element in S), a sequence β
= (e`1, e`2,….e`m) (m≤ n) is called a Prefix of α if and only if : 1) e`i = ei for (i≤ m -1); 2) e`m ⊆
em and 3) all the frequent items in (em-e`m) are alphabetically after those in e`m. For example, (a),
(aa), (a(ab)), and (a(abc)) are prefixes of sequence s s = (a(abc)(ac)d(cf)).
Definition 2 (Suffix): Given a sequence α = (e1,e2,….en) (where each ei corresponds to a
frequent element in S). Let β = (e1,e2,….em-1e`m) (m≤n) be the prefix of α. Sequence γ =
(e``mem+1…en) is called the suffix of α with regards to prefix β, denoted as γ=α/β,where en

m = (em
– e`m). For example, for the sequence s =(a(abc)(ac)d(cf)), ((abc))(ac)d(cf)) is the suffix with
regards to the prefix (a), (_bc)(ac)d(cf)) is the suffix with regards to the prefix (aa), and
((_c)(ac)d(cf)) is the suffix with regards to the prefix (a(ab)).
Lemma 3.1 Problem partitioning

1. Let {(x1), (x2),,(xn)} be the complete set of length- 1 sequential patterns in a sequence
database S. The complete set of sequential patterns in S can be divided into n disjoint subsets.
The ith subset (1 ≤ i ≤n) is the set of sequential patterns with prefix (xi).
2. L e t α b e a l e n g t -l s e q u e n t i a l p a t t e r n a n d {β1,β2,βm} be the set of all
length-(l + 1) sequential patterns with prefix α. The complete set of sequential patterns with
prefix α, except for α itself, can be divided into m disjoint subsets. The jth subset (1 ≤ j ≤ m) is
the set of sequential patterns prefixed with βj.
Proof: The first half is a special case where α = (). For a sequential pattern γ with prefix α,
where α is of length l, the length-(l + 1) prefix of γ must be a sequential pattern, according to the
a priori heuristic. Furthermore, the length-(l+ 1) prefix of γ is also with prefix α, according to
the definition of prefix. Therefore, there exists some j (1 ≤ j ≤ m) such that βj is the length-(l +
1) prefix of γ. Thus, γ is in the jth subset. On the other hand, since the length-k prefix of a
sequence γ is unique, γ belongs to only one determined subset. That is, the subsets are disjoint.
So, we have the point that, the problem can be partitioned recursively. That is, each subset of
sequential patterns can be further divided when necessary. This forms a divide-and conquer
framework. To mine the subsets of sequential patterns, the corresponding projected databases
can be constructed.
Definition 3 (Projected database) Let α be a sequential pattern in a sequence database S. The
α-projected database, denoted as S|α , is the collection of suffixes of sequences in S with regards
to prefix α. To collect counts in projected databases, we have the following definition:
Definition 4 (Support count in projected database) Let α be a sequential pattern in sequence
database S, and β be a sequence with prefix α. The support count of β in α-projected database
S|α , denoted as support S|α(β), is the number of sequences γ in S|α such that β ⊆ α. γ.

TABLE 2: Projected Databases and Sequential Patterns

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.4, November 2011

118

Lemma 3.2 (Projected database) Let α and β be two sequential patterns in a sequence database
S such that α is a prefix of β.
1. S|α = (S|α)β,
2. for any sequence γ with prefix α, supportS(γ)= support S|α(γ), and
3. the size of α-projected database cannot exceed that of S.
Proof sketch: The first part of the lemma follows the fact that, for a sequence γ, the suffix of γ
with regards to β, γ/β, equals to the sequence resulted from first doing projection of γ with
regards to α, i.e., γ/α, and then doing projection γ/α with regards to β. That is γ/β = (γ/α)/β. The
second part of the states that to collect support count of a sequence γ, only the sequences in the
database sharing the same prefix should be considered. Furthermore, only those suffixes with
the prefix being a super-sequence of γ should be counted. The third part of the on the size of a
projected database. Obviously, the α-projected database can have the same number of sequences
as S only if α appears in every sequence in S. Otherwise, only those sequences in S which are
super-sequences of α appear in the α-projected database. So, the α-projected database cannot
contain more sequences than S. For every sequence γ in S such that γ is a super-sequence of α, γ
appears in the α-projected database in whole only if α is a prefix of γ. Otherwise, only a
subsequence of γ appears in the α-projected database. Therefore, the size of α-projected
database cannot exceed that of S.
Example 4 (PrefixSpan) for the same sequence database S in Figure 1 with min_support = 2,
sequential patterns in S can be mined by a prefix-projection method in the following steps:
1. Find length-1 sequential patterns. Scan S once to find all the frequent items in sequences.
Each of these frequent items is a length-1 sequential pattern. They are (a) : 4, (b) : 4, (c) : 4, (d)
: 3, (e) : 3, and (f) : 3, where the notation “(pattern) : count” represents the pattern and its
associated support count.
2. Divide search space. The complete set of sequential patterns can be partitioned into the
following six subsets according to the six prefixes: 1) the ones with prefix (a), 2) the ones with
prefix (b) . . . and 3) the ones with prefix (f).
3. Find subsets of sequential patterns. The subsets of sequential patterns can be mined by
constructing the corresponding set of projected databases and mining each recursively. The
projected databases as well as sequential patterns found in them are listed in Table 2, while the
mining process is explained as follows:
a. Find sequential patterns with prefix (a). Only the sequences containing (a) should be
collected. Moreover, in a sequence containing (a), only the subsequence prefixed with the first
occurrence of (a) should be considered. For example, in sequence ((ef)(ab)(df)cb), only the
subsequence ((_b)(df)cb) should be considered for mining sequential patterns prefixed with (a).
Notice that (_ b) means that the last element in the prefix, which is a, together with b, form one
element.
The sequences in S containing (a) are projected with regards to (a) to form the (a)-projected
database, which consists of four suffix sequences: ((abc)(ac)d(cf)), ((_d)c(bc)(ae)),
((_ b)(df)cb), and ((_f)cbc). By scanning the (a)-projected database once, its locally frequent
items are a : 2, b : 4, b : 2, c : 4, d : 2, and f : 2. Thus, all the length-2 sequential patterns
prefixed with (a) are found, and they are: (aa) : 2, (ab) : 4, ((ab)) : 2, (ac) : 4, (ad) : 2, and (af) :
2. Recursively, all sequential patterns with prefix (a) can be partitioned into six subsets:
1) Those prefixed with (aa), 2) those with (ab) . . . and, finally, 3) those with (af). These subsets
can be mined by constructing respective projected databases and mining each recursively as
follows:
i. The (aa)-projected database consists of two nonempty (suffix) sub sequences prefixed with
(aa) : f{((_bc)(ac)d(cf)), {((_e))}.Since there is no hope to generate any frequent subsequence
from this projected database, the processing of the (aa)-projected database terminates.

ii. The (ab)-projected database consists of three suffix sequences: ((_ c)(ac)d(cf)), ((_c)a), and
(c). Recursively mining the (ab)-projected database returns four sequential patterns: ((_c)),

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.4, November 2011

119

((_c)a), (a), and (c) (i.e., (a(bc)), (a(bc)a), (aba), and (abc).) They form the complete set of
sequential patterns prefixed with (ab).
.
iii. The ((ab))-projected database contains only two sequences: ((_c)(ac)d(cf)) and ((df)cb),
which leads to the finding of the following sequential patterns prefixed with ((ab)): (c), (d), (f),
and (dc).

iv. The (ac), (ad), and (af)-projected databases can be constructed and recursively mined
similarly. The sequential patterns found are shown in Table 2.

b. Find sequential patterns with prefix (b), (c), (d), (e), and (f), respectively. This can be done by
constructing the (b), (c), (d), (e), and (f)-projected databases and mining them, respectively. The
projected databases as well as the sequential patterns found are shown in Tables 2.

4. The set of sequential patterns is the collection of patterns found in the above recursive mining
process. One can verify that it returns exactly the same set of sequential patterns as what GSP
and FreeSpan do. Based on the above discussion, the algorithm of PrefixSpan is presented as
follows:

Algorithm 1 (PrefixSpan) Prefix-projected sequential pattern mining.
Input: A sequence database S, and the minimum support
Threshold min_support.
Output: The complete set of sequential patterns.
Method: Call PrefixSpan ((), 0, S).
Subroutine: PrefixSpan (α, l, S|α)
The parameters are 1) α is a sequential pattern; 2) l is the length of α; and 3) S|α is the α-
projected database if α≠ (), otherwise, it is the sequence database S.

Method:

1. Scan S|α once, find each frequent item, b, such that
(a) b can be assembled to the last element of α to form a sequential pattern; or
(b) (b) can be appended to α to form a sequential pattern.
2. For each frequent item b, append it to α to form a sequential pattern α` and output α`.
3. For each α`, construct α`- projected database S|α`, and call PrefixSpan (α`, l+1, S|α`).

Analysis: The correctness and completeness of the algorithm can be justified based on Lemma
3.1 and Lemma 3.2, as shown in Theorem 3.1, later. Here, we analyze the efficiency of the
algorithm as follows:

• No candidate sequence needs to be generated by PrefixSpan. Unlike a priori-like algorithms,
PrefixSpan only grows longer sequential patterns from the shorter frequent ones. It neither
generates nor tests any candidate sequence nonexistent in a projected database. Comparing with
GSP, which generates and tests a substantial number of candidate sequences, PrefixSpan
searches a much smaller space.

• Projected databases keep shrinking. As indicated in Lemma 3.2, a projected database is smaller
than the original one because only the suffix subsequences of a frequent prefix are projected
into a projected database. In practice, the shrinking factors can be significant because 1) usually,
only a small set of sequential patterns grow quite long in a sequence database and, thus, the
number of sequences in a projected database usually reduces substantially when prefix grows;
and 2) projection only takes the suffix portion with respect to a prefix. Notice that FreeSpan also
employs the idea of projected databases. However, the projection there often takes the whole
string (not just suffix) and, thus, the shrinking factor is less than that of PrefixSpan.

• The major cost of PrefixSpan is the construction of projected databases. In the worst case,

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.4, November 2011

120

PrefixSpan constructs a projected database for every sequential pattern. If there exist a good
number of sequential patterns, the cost is nontrivial.
Theorem 3.1 (PrefixSpan) A sequence α is a sequential pattern if and only if PrefixSpan says
so.
Proof sketch (Direction if). A length-l sequence α (l ≥ 1) is identified as a sequential pattern by
PrefixSpan if and only if α is a sequential pattern in the projected database of its length-(l - 1)
prefix α-. If l = 1, the length-0 prefix of α is α- = () and the projected database is S itself. So, α
is a sequential pattern in S. If l > 1, according to Lemma 3.2, S|α

- is exactly the α-- projected
database, and supports (α) = support S|α-(α). Therefore, if α is a sequential pattern in S|α

-, it is also
a sequential pattern in S. By this, we show that a sequence α is a sequential pattern if PrefixSpan
says so.

3.3 Pseudoprojection
The above analysis shows that the major cost of PrefixSpan is database projection, i.e., forming
projected databases recursively. Usually, a large number of projected databases will be
generated in sequential pattern mining. If the number and/or the size of projected databases can
be reduced, the performance of sequential pattern mining can be further improved. One
technique which may reduce the number and size of projected databases is Pseudoprojection.
The idea is outlined as follows: Instead of performing physical projection, one can register the
index (or identifier) of the corresponding sequence and the starting position of the projected
suffix in the sequence. Then, a physical projection of a sequence is replaced by registering a
sequence identifier and the projected position index point. Pseudoprojection reduces the cost of
projection substantially when the projected database can fit in main memory.
Example 5 (Pseudoprojection): For the same sequence database S in Table 1 with
min_support = 2, sequential patterns in S can be mined by Pseudoprojection method as follows:
Suppose the sequence database S in Table 1 can be held in main memory. Instead of
constructing the (a)-projected database, one can represent the projected suffix sequences using
pointer (sequence_id) and offset(s). For example, the projection of sequence s1 =
(a(abc)d(ae)(cf)) with regard to the (a)-projection s1 which could be the string_id s1 and 2) the
offset(s), which should be a single integer, such as 2, if there is a single projection point; and a
set of integers, such as {2,3, 6}, if there are multiple projection points. Each offset indicates at
which position the projection starts in the sequence. The projected databases for prefixes (a),
(b), (c), (d), (f), and (aa) are shown in Table 3, where $ indicates the prefix has an occurrence in
the current sequence but its projected suffix is empty, whereas ¢ indicates that there is no
occurrence of the prefix in the corresponding sequence. From Table 3, we can see that the
pseudo projected database usually takes much less space than its corresponding physically
projected one.
Pseudoprojection avoids physically copying suffixes. Thus, it is efficient in terms of both
running time and space. However, it may not be efficient if the Pseudoprojection is used for
disk-based accessing since random access disk space is costly. Based on this observation, the
suggested approach is that if the original sequence database or the projected databases is too big
to fit into main memory, the physical projection should be applied; however, the execution
should be swapped to Pseudoprojection once the projected databases can fit in main memory.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.4, November 2011

121

TABLE 3: A Sequence Database and Some of Its Pseudoprojected Databases

4. CONCLUSION

In this paper an efficient pattern-growth method, PrefixSpan, is proposed and studied.
PrefixSpan recursively projects a sequence database into a set of smaller projected sequence
databases and grows sequential patterns in each projected database by exploring only locally
frequent fragments. It mines the complete set of sequential patterns and substantially reduces the
efforts of candidate subsequence generation. Since PrefixSpan explores ordered growth by
prefix-ordered expansion, it results in less “growth points” and reduced projected databases in
comparison with our previously proposed pattern-growth algorithm, FreeSpan. Furthermore, a
Pseudoprojection technique is proposed for PrefixSpan to reduce the number of physical
projected databases to be generated. A comprehensive performance study shows that PrefixSpan
outperforms the priori-based GSP algorithm, FreeSpan, and SPADE in most cases, and
PrefixSpan integrated with Pseudoprojection is the fastest among all the tested algorithms.
This mining methodology can be extended to mining sequential patterns with user-specified
constraints. The high promise of the pattern-growth approach may lead to its further extension
toward efficient mining of other kinds of frequent patterns, such as frequent substructures.
Much work is needed to explore new applications of frequent pattern mining. For
example, bioinformatics has raised a lot of challenging problems, and we believe
frequent pattern mining may contribute a good deal to it with further research efforts.

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules,” Proc.

1994 Int’l Conf. Very Large Data Bases (VLDB ’94), pp. 487-499, Sept. 1994..

[2] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc. 1995 Int’l Conf. Data

Eng. (ICDE ’95), pp. 3-14, Mar. 1995.

[3] R.J. Bayardo, “Efficiently Mining Long Patterns from Databases,” Proc. 1998 ACM-

SIGMOD Int’l Conf. Management of Data (SIGMOD ’98), pp. 85-93, June 1998.

[4] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu, “FreeSpan:

Frequent Patterrn- Projected Sequential Pat t e r n Mining,” Proc. 2000 ACM SIGKDD

Int’l Conf. Knowledge Discovery in Databases (KDD ’00), pp. 355-359, Aug. 2000.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.4, November 2011

122

[5] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without Candidate Generation,”

Proc. 2000 ACM-SIGMOD Int’l Conf. Management of Data (SIGMOD ’00), pp. 1-12,

May 2000.

[6] R. Srikant and R. Agrawal, “Mining Sequential Patterns: Generalizations and

Performance Improvements,” Proc. Fifth Int’l Conf. Extending Database Technology

(EDBT ’96), pp. 3-17, Mar. 1996

[7] R. Srikant and R. Agrawal, “Mining Sequential Patterns: Generalizations and

Performance Improvements,” Proc. Fifth Int’l Conf. Extending Database Technology

(EDBT ’96), pp. 3-17, Mar. 1996.

[8] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu, “FreeSpan:

Frequent Pattern-Projected Sequential Pattern Mining,” Proc. 2000 ACM SIGKDD Int’l

Conf. Knowledge Discovery in Databases (KDD ’00), pp. 355-359, Aug. 2000.

[9] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without Candidate Generation,”

Proc. 2000 ACM-SIGMOD Int’l Conf. Management of Data (SIGMOD ’00), pp. 1-12,

May 2000.

[10] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu,
“PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern
Growth,” Proc. 2001 Int’l Conf. Data Eng. (ICDE ’01), pp. 215-224, Apr. 2001.

