
International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.5, October 2012

DOI : 10.5121/ijcses.2012.3503 43

SURVEY ON SCHEDULING AND ALLOCATION IN

HIGH LEVEL SYNTHESIS

M. Chinnadurai
1
 and M. Joseph

2

1
Department of CSE, EGS Pillay Engineering College, Nagapattinam, India

chinnaduraimurugan@yahoo.com
2
Mother Teresa College of Engineering & Technology, Pudukottai, India

mjoseph_mich@yahoo.com

ABSTRACT

This paper presents the detailed survey of scheduling and allocation techniques in the High Level

Synthesis (HLS) presented in the research literature. It also presents the methodologies and techniques to

improve the Speed, (silicon) Area and Power in High Level Synthesis, which are presented in the

research literature.

KEYWORDS

High Level Synthesis, Scheduling, Allocation, Optimization

1. INTRODUCTION

High Level Synthesis (HLS) performs Scheduling, Allocation and Binding proceeding from an

initial specification, usually given by a Data Flow Graph (DFG). Today's VLSI technology

allows companies to build large, complex systems containing millions of transistors on a single

chip. To exploit this technology, designers need sophisticated Computer Aided Design (CAD)

tools that enable them to manage millions of transistors efficiently. For High Level Synthesis to

move into mainstream design practice, its area efficiency and performance level must be

competitive with those of traditional approaches [5].

1.1. High Level Synthesis

High-level synthesis is a sequence of tasks that transforms a behavioral representation into an

Register Transfer Level (RTL) design [5]. The continued scaling of technology presents

challenges to fabricate transistors of smaller feature size, resulting in large variations in

transistor. In order to reduce cycle time while keeping a similar latency, the designs of some

Functional Units (FUs) have been optimized [6]. Integration of memories and logic onto the

same silicon substrate in CMOS technology is a challenging task. For a long time, memories

and logic chips have followed different evolutionary paths, and their fabrication technologies

have diverged. The design consists of functional units such as Arithmetic and Logic Unit

(ALUs) and multipliers, storage units such as memories and register files, and interconnection

units such as multiplexers and buses.

1.2. Scheduling and Allocation

Due to its complexity, high level synthesis is divided into a number of distinct yet

inter-dependent tasks:

• Selection: What kinds of resources are required?

• Allocation: How many resources are necessary?

• Binding: Which operations have to be performed by a specific resource?

• Scheduling: When should specific operations are to be activated?

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.5, October 2012

44

A lot of research is done in finding algorithms that solve these tasks satisfactory. The algorithms

used, and the order in which they solve the tasks depend on the constraints and objectives given.

Scheduling and allocation are the most important tasks in order to synthesize circuits that are

efficient in terms of area and performance. They are strongly related and inter-dependent. For

example, scheduling attempts to minimize the number of required control steps subject to the

amount of available hardware which depends on the results of allocation. Likewise, allocation

exploits concurrency among operations to allow sharing of hardware resources, where the

degree of concurrency is determined by scheduling. The essentiality of a Control and Data Flow

Graph in High Level Synthesis and Hardware/Software Cosynthesis has been highlighted in [7],

[8].When possible, controlling signals are scheduled first thus indicating which operations to

activate and which operations to shutdown. This more constrained scheduling process may lead

to a large number of execution units required. The algorithm obtains a solution that maximizes

the ability to do power management while still meeting user specified throughput and hardware

resource constraints [9].

2. RELATED SURVEYS

 There is no paper, which comprehensively survey the scheduling and algorithm

techniques in HLS. The scheduling problem will undoubtedly remain an area of research for

years to come, so this survey becomes an essential one.

3. SCHEDULING ALGORITHMS

Over the years researchers have tried to come up with various kinds of solutions [7, 8, and 9] to

the scheduling problem. Several algorithms have been put forth and each one has it own

advantages and disadvantages. Scheduling algorithms can be broadly classified into time

constrained and resource constrained scheduling, based on the goal of the scheduling problem.

In time constrained scheduling the numbers of FUs are minimized for a fixed number of control

steps. On the other hand, in resource constrained scheduling the number of control steps are

minimized for a given design cost (number of functional and storage units).

3.1. The Basic Scheduling Problem

One of the first step in a typical high level synthesis system is to convert the input behavioral

description of the desired digital system, written in a hardware description language such as

VHDL or Verilog, into a Control/Data Flow Graph (CDFG). Operations in the behavioral

description, such as additions and multiplications, are represented as nodes in the CDFG, and

the values (inputs to the expression, temporary results, and the output of the expression) are

represented as edges.

In more complex behaviors, the CDFG can also represent conditional branches, loops, etc.,

hence the name "Control/Data Flow Graph"[7]. We give different scheduling algorithms with

example.

1) Time and Resource Constrained Scheduling (TRCS): To find a feasible (or optimal)

schedule and also meets resource constraints.

2) Chaining and Multicycling: Each operation type requires the same amount of time to

execute, and that the control step length (i.e., the clock period) is equal to that execution

time.

The HCDG is a powerful internal design representation and can effectively accommodate

design descriptions with dataflow-intensive and/or control flow intensive behaviors. Existing

HLS heuristics successful for dataflow designs can be easily adapted to HCDG and novel

scheduling heuristics for conditional behaviors. The hierarchical control representation, mutual

exclusiveness identification capabilities, and formal graph transformations lead to HCDG-based

scheduling approach effectively exploiting all of the existing scheduling optimization

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.5, October 2012

45

techniques and enjoying their combined benefits. Both speculative execution and conditional

resource sharing are combined in a uniform and consistent framework. Recent work applying a

constraint logic programming algorithm on HCDGs [8] indicates that schedules provided by the

described heuristic are close to optimal.

3.2. Some Common Scheduling Algorithms

The following is the list of some commonly preferred scheduling algorithms.

� ASAP / ALAP Scheduling

� List Scheduling

� Force Directed Scheduling

� Integer Linear Programming formulation

3.3. Efficient Scheduling of Conditional Behaviours for HLS

As hardware designs get increasingly complex and time-to-market constraints get tighter there is

strong motivation for High-Level Synthesis (HLS) [16]. HLS must efficiently handle both data

flow dominated and control flow dominated designs as well as designs of a mixed nature. In the

past efficient tools for the former type have been developed but so far HLS of conditional

behaviors lags behind. To bridge this gap an efficient scheduling heuristic for conditional

behaviors is presented.

Heuristic and the techniques it utilizes are based on a unifying design representation appropriate

for both types of behavioral descriptions, enabling the proposed heuristic to exploit under the

same framework several well-established techniques (chaining, multicycling) as well as

conditional resource sharing and speculative execution which are essential in efficiently

scheduling conditional behaviors.

4. OPTIMIZATION ON HLS SCHEDULING FOR CONDITIONAL STATEMENTS

As-Fast-As-Possible (AFAP) is a path-based scheduling algorithm that ensures the minimum

number of control steps for all possible sequences of operations in the control flow graph, under

given resource constraints. This technique requires scheduling one operation into different states

depending on the path. Although the worst case computational complexity is non-polynomial,

there are no execution time problems in practice. The Condition Vector List Scheduling (CVLS)

algorithm exploits a more "global parallelism" [12].

That is, it can parallelize multiple nests of conditional branches and optimize across the

boundaries of basic blocks. Furthermore, it can optimize all possible execution paths. Also some

control sequence improvement techniques as operation node reassignment and operation node

dividing are introduced. Finally, the Hierarchical Reduction Approach algorithm transforms a

data flow graph with conditional branches into an "equivalent" one that has no conditional

branches. A schedule is then obtained for the latter, using a conventional scheduling algorithm,

from which a schedule for the former is derived. Time complexity of this algorithm is low in

comparison with the other algorithms, but it does not exploit potential parallelism to the fullest.

It is difficult to compare the different scheduling algorithms because the objectives of the

techniques used are different. The AFAP algorithm minimizes the number of cycle steps, but the

fundamental order of operations for a given path has to be chosen in advance and consequently

potential parallelism of operations can easily be overlooked. Although the complexity of the

Hierarchical Reduction Approach is low in comparison with the other algorithms the possibility

of global resource sharing depends on the order in which the transformations are performed.

The CVLS algorithm has the limitation that certain types of conditional branches cannot be

handled correctly.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.5, October 2012

46

4.1. Mutual exclusion testing

Many systems do not consider conditional resource sharing in their basic algorithms. Some

well-known algorithms for mutual exclusion testing are the node coloring algorithm by Park and

the condition vector technique by Wakabayashi. In the following sections several algorithms

will be described that deal with mutual exclusion testing.

4.2. Node coloring

The node coloring algorithm assigns a color code consisting of a sequence of one or more

integers to each node such that testing of mutual exclusion between and two nodes can be done

by simply comparing the color codes of the nodes in a constant number of steps. The length of

the color code of a node represents how many levels of branch-merge blocks the node is nested

in. A single digit color code represents that the node is not in any branch-merge block. The rules

for node coloring are:

• Every unconditional operation, including the outermost branch and merge nodes, has

a unique single element code sequence.

• In an outermost branch-merge block, the first elements in the code sequences of all the

nodes are the same.

• For any branch node with a color code of length n, every successor node except the

matching merge node has a color code of length n + 1 where the first n elements are the

same as the branch node and the n + 1 element is a unique integer among the

successors.

• A merge node has the same color as its matching branch node.

• Any two connected nodes have the same color code if neither of them is a branch or a

merge node.

4.3. Comparison of Scheduling Algorithms

The comparison of the different scheduling methods Table 1 is difficult because the objectives

of the techniques used are different. The algorithm of TASS performs a global optimization

using area costs of hardware resources and it optimizes conditional resource sharing using the

new mutual exclusion testing method. This scheduling method is not capable to schedule an

operation into different control steps for different execution instances.

The path-based As-Fast-As-Possible (AFAP) scheduling algorithm deals mainly with

applications with many conditional branches and loops that emphasize fast schedules. The

scheduling method based on condition vectors exploits a more "global parallelism". That is, it

parallelizes multiple nests of conditional branches and optimizes across the boundaries of basic

blocks. The hierarchical approach handles a dual problem : optimization of hardware cost under

a given execution time constraint.

5. POWER OPTIMIZATION

Table 2 gives the details of power consumption for the FPA implementation under these three

synthesis tools. We used the device XC4VLX15 in Virtex-IV for this experimentation. Total

power consumption is 161 mW for ISE tool and 160 mW for THLS tool. THLS is able to

reduce the dynamic power 1 mW and thus optimizes power. It has 0.6% reduction in power

consumption over ISE. (Note: Power consumption is significant for larger volume applications

only. On the other hand, power consumption is less and insignificant in low volume

applications.)

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.5, October 2012

47

Table 1. Scheduling Results for Different Scheduling Algorithms

Data Chain Method Adds Subs States Max.Cycles / Min. Cycles

ACM 1

TASS 1 1 8 8

CV 1 1 5 5/2

Hier 1 1 8 8/3

ACM 2

TASS 1 1 6 6

CV 2 1 4 4/1

Hier 1 1 6 5/2

Criti 1 1 8 8

AFAP 1 1 9 5/2

5.1. Power Aware High Level Synthesis

High-level synthesis determines which step the operations will be processed in, resources

number and the power of resources. The following table describes three points impact power

dissipation in both temporal and spatial aspect. The resources number is the crucial factor of

final area of the design [13]. Due to the interaction of two factors, it is essential to make a

tradeoff of two objects in the design process.

Table 2. Power Consumption for FPA

No. Metric THLS ISE

1 Quiescent Power 160 mW 160 mW

2 Dynamic Power 000 mW 001 mW

3 Total Power 160 mW 161 mW

5.2. Dynamic FU Allocation

As we all know, the behavioral synthesis process consists of three phases: allocation,

assignment and scheduling. These processes determine how many instances of each resource are

needed (allocation), on what resources a computational operation will be performed

(assignment) and when it will be executed (scheduling) [8]. The FU allocation is the vital step to

determine the final area and power dissipation. It is widely accepted that the total SW between

FUs minimal, the dynamic power dissipation will be lowest with the same other conditions. To

achieve dynamic power minimal, the total SW must be smaller.

All above we need to do is the proper FU allocation, if the FU allocation is optimal, after

applying better scheduling and binding algorithm ,the power value will be close to minimal.

Since the number of FU is integer, the extremely optimal allocation hardly achieves. The closest

integer solution is identified instead, and it is called the proper solution. In our FU library, there

are four types of FU, Adder, Minus, Multiplier, Pow. They execute addition, subtraction,

multiplication, power operation respectively. The delays of the four FUs are 1, 1, 2, 2

respectively. Before heuristic scheduling and binding, the total FU number and the FU number

of every operation is determined by the operation's number in the DFG.

5.3. New Scheduling method for Low Power Design [1]

Chi-Co Lin proposed a new scheduling method for low power design is the internal data

structure, CDFG, which represents both the control flow and data flow effectively, is

constructed. The CDFG represents the constraints which limit the hardware design such as

conditional branch, sequential operation and time constraints. In order to represent control flow,

data dependency and such constraints as resource constraints and timing constraints effectively,

the CDFG represents the constraints which limit the hardware design in such a way:

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.5, October 2012

48

• no variable is assigned more than once in each control step

• no I/O port is accessed more than once in each control step

• the total delay of operations in each control step is not greater than the given control

step-length

• all designer imposed constraints for scheduling particular operations in different control

steps are satisfied.

In order to satisfy any of the above conditions, the proposed scheduling algorithm generates

constraints between two nodes that must be scheduled into different control steps.

6. A NEW APPROACHES TO SCHEDULING AND ALLOCATION IN

TECHNOLOGY DRIVEN HIGH LEVEL SYNTHESIS

Emerging standards lead to an increasing demand for high performance, flexibility, and low-

power embedded systems. With the help of multimode architectures for digital signal and image

processing applications designed in [4]. To specify the dedicated design flow graph for time-

wise throughput constraints and architecture based optimized area is to be generated. The

following diagram shows the detailed proposed methodologies for scheduling and allocation of

DFG under fixed timing/resource constraints.

Figure 1. HLS Design Flow with Proposed architecture design

In the above mentioned new diagram shows the different approaches to apply the scheduling

and allocation techniques and produce the better results like reduce the size, cost and low power

component design. Heijligers experimented a different scheduling method is presented in [16]

based on genetic paradigms and the scheduler improves the results of list scheduling and

experimented result for all algorithms but the scheduling techniques does not guarantee

optimality.

Algorithmic

Specification

Compilation

DFG

Allocation

Scheduling

Binding

RTL VHDL Generation

DFG Merging Approach

Resource constrained &

Joint Scheduling Approach

Sharing approach during

Scheduling and Binding

Data Merging Approach

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.5, October 2012

49

Technology driven High Level Synthesis is the newly designed and experimented methodology

in [13], which makes the present High Level Synthesis knowledgeable of the target Field

Programmable Gate Array (FPGA). It is able to generate the optimal hardware and reduce the

power consumption and size of the usage of silicon. From this, we are going to apply a new

methodology to the silicon by the reducing the operation steps through scheduling and

allocation concept effectively. Because of the flexible nature of the genetic algorithms it can

be easily extended with all kind of design issues, like register costs, interconnect costs and

support for complex libraries in which a single operation type can get different values for its

delay.

In the proposed methodologies, the merging approach has to be applied for the repeated

operations into a single or optimized solution and optimize the operations during scheduling and

allocation is mainly concentrated on the design. There are different types of scheduling and

allocation based approaches commonly defined in the current researches. Some of the basic

optimized approaches are mentioned below.

• Integer Linear Programming approach and

• Heuristics approach

Scheduling and allocation can be formulated as an optimization problem [18]. A unique

approach to scheduling and allocation using the above mentioned approaches in the Technology

driven High Level Synthesis.

6.1. Hardware constraints for the new approaches

Constraints are restrictions imposed on the implementation stage which are used to guide the

scheduling. Constraints are the following:

• Variables can be assigned only once in one state.

• IO ports can be read or written only once in one control state.

• Functional units can be used only once in a control state.

• The maximal delay within one control state limits the number of operations that

can be chained.

Constraints are represented as intervals in the control flow graph. This type of representation

allows constraints to be applied on a path basis. A constraint interval involves a sequence of

operations and it implies that these operations cannot all be executed in the same cycle step. In

other words a new state must start at some point within the interval, for the constraint to be met.

7. SUMMARY

This paper presented the detailed survey of different scheduling and allocation techniques in

High Level Synthesis. It described the more common variations on the scheduling methods in

high level synthesis, and also several scheduling algorithms commonly used today in high level

synthesis.

REFERENCES

[1] Chi-Co Lin, Dal-Hwan Yoon (2009), “A New Efficient High Level Synthesis Methodology for

Low Power Design”, International Conference on New Trends in Information and Service

Science.

[2] M.Joseph, Narasimha B.Bhat and K.Chandra Sekaran (2007), "Right inference of Hardware in

High-Level Synthesis", International Conference on Information processing ICIP 2007,

Bangalore, India.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.5, October 2012

50

[3] Feng Wu, Ning Xu, Fei Zheng and Fubing Mao (2010), “Simultaneous Functional Units and

Register Allocation Based Power Management for High-level Synthesis of Data-intensive

Applications”.

[4] Caaliph Andriamisaina, Philippe Coussy, Emmanuel Casseau, Cyrille Chavet, (2010), High

Level Synthesis for Designing Multimode Architectures”, IEEE Transactions On Computer-

Aided Design Of Integrated Circuits And Systems, Vol. 29, No. 11.

[5] M.C.McFarland, A.C.Parker and R.Campasona, (1998) ``Tutorial on High-Level Synthesis",

25th ACM /IEEE Design Automation Conference.

[6] S.D.Brown, R.J.Francis, J.Rose and Z.G.Vranesic, (1992) ``Field Programmable Gate Arrays",

Kluwer Academic Publishers.

[7] D.D.Gajski, N.D.Dutt, A.Wu and S.Lin, (1992) ``High-Level Synthesis: Introduction to Chip

and System Design", Kluwer Academic Publishers.

[8] Y.L.Lin, (1997) ``Recent Developments in High-Level Synthesis", ACM Transactions on

Design Automation of Electronic Systems, Vol. 2, No.1, pp. 2-21.

[9] Malay Haldar, Anshuman Nayak Alok Choudhary and Prith Banerjee, (2001) "A system for

synthesizing optimized FPGA hardware from MATLAB", IEEE/ACM International Conference

on Computer-aided design - ICCAD 2001 - San Jose, California, pp 314 - 319.

[10] Sanghamitra Roy and Prith Banerjee, (2004) "An Algorithm for Converting Floating-Point

Computations to Fixed-Point in MATLAB based FPGA design", Design Automation Conference

- DAC'~04, San Diego, California, pp. 484-487.

[11] Justin L. Tripp, Kristopher D. Peterson, Christine Ahrens, Jeffrey D. Poznanovic, and Maya B.

Gokhale, (2005) TRIDENT: An FPGA Compiler Framework for Floating-Point Algorithms,

International Conference on Field Programmable Logic and Applications, IEEE, pp. 317 - 322.

[12] S.F. Neilsen, (2009), "Behavioral synthesis of asynchronous circuits" PhD. dissertation,

Technical University of Denmark, Dept.of Informatics and Mathematics modelling, iMM-PhD-

2005-144.

[13] M. Joseph, Narasimha B. Bhat and K. Chandra Sekaran, (2007), "Technology driven High-Level

Synthesis", International Conference on Advanced Computing and Communication – ADCOM,

IEEE, Indian Institute of Technology Guwahati, India.

[14] S. Taylor, D. Edwards and L. Plana (2008), "Automatic compilation of data driven circuits." in

14th IEEE International Symposium on Asynchronous circuits and Systems. IEEE, pp 3-14.

[15] A. Kountouris Mitsubishi Electric ITE-TCL and C.W. Irisa, (2002), "Efficient Scheduling of

Conditional behaviors for High Level Synthesis", ACM Transactions on Design Automation of

Electronic Systems,}, ACM, Vol. 7, No. 3, Pages 380-412.

[16] M.J.M.Heijligers, L.J.M.Clutmans and J.A.G.Jess, “High-Level Synthesis Scheduling and

Allocation using Genetic Algorithms”, Proceedings of Asia and Pacific Design Automation

Conference, Chiba, Japan, pp 61-66.

[17] Gianpiero Cabodi, Sergio Nocco, Mihai Lazarescu et al, (2002), “A Symbolic Approach for the

Combined Solution of Scheduling and Allocation”, Proceedings of ISSS’02, Kyoto, Japan,

pp 237-242.

[18] Sait Sadique M, Ali.S and Benten.M.S, (1991), “Scheduling and Allocation in High Level

Synthesis using Stochastic Techniques”, Microelectronics Journal, Vol 27(8), pp 693-712.

[19] Free Floating-Point Madness, http://www.hmc.edu/chips

[20] Electronic Design Interchange Format, http://www.edif.org

[21] FPGA, CPLD, and EPP Solutions, http://www.xilinx.com

[22] Icarus Verilog Simulation and Synthesis Tool, http://www.icraus.com

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.5, October 2012

51

ACKNOWLEDGEMENTS

We thank to the anonymous reviewers for their numerous insightful and constructive comments.

Authors

Dr.M.Joseph received his PhD degree in

Computer Engineering from National Institute

of Technology Karanataka -

Surathkal in 2008. His field

of research is High-Level

Synthesis in VLSI CAD.

He has developed

Technology driven High-

Level Synthesis strategy and

tool in C++, modifying Icarus Verilog

Compiler, an open source HLS tool for IEEE

standard 1364 HDL Verilog. His PhD thesis is

selected to be published as monograph by

Lambert Academic Publishers, Germany, 2010.

He has written a book called

“ELEMENTS OF COMPILER DESIGN",

which was published in the year 2001. He has

also written a book titled System software: A

Simplified Approach in 2006.

He has 20 publications presented in

National, International Conferences and

Journals. He was selected as reviewer for many

IEEE International conferences. He served in

various academic bodies like Board of Studies

and Academic Council in premier universities at

various capacities. Dr. Joseph was the recipient

of Institute fellowship from National Institute of

Technology Karanataka – Surathkal for doing

his PhD program.

M. Chinnadurai received Master Degree in

Computer Science and Engineering from

Jayaram College of Engineering and

Technology, Tiruchirappalli

under Anna University of

Technology, Tiruchirappalli in

2009 and he has done his under

graduation in Computer

Science & Engineering from E.G.S. Pillay

Engineering College, Nagapattinam under

Bharathidasan University, Tiruchirappalli in

2002.

He is currently an Assistant Professor,

Department of CSE, E.G.S. Pillay Engineering

College, Nagapattinam, Tamilnadu, India. His

current research interests includes CAD for

VLSI and New methodologies of Scheduling,

Allocation in Technology driven High Level

Synthesis and Low Power, Area minimized and

Speed optimization for the Field Programmable

Gate Arrays.

Currently doing PhD at Anna

University of Technology, Tiruchirappalli in the

area of CAD for VLSI.

