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ABSTRACT 

 
Formal verification of an operating system kernel manifests absence of errors in the kernel and establishes 

trust in it. This paper evaluates various projects on operating system kernel verification and presents in-

depth survey of them. The methodologies and contributions of operating system verification projects have 

been discussed in the present work. At the end, few unattended and interesting future challenges in 

operating system verification area have been discussed and possible directions towards the challenge 

solution have been described in brief. 
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1. INTRODUCTION 
 
The security and reliability of computer system is dependent on the underlying operating system 

kernel; kernel is the core of operating system. The kernel provide mechanism for user level 

applications to access hardware, scheduling and inter-process communication. Therefore, if 

anything goes wrong in the kernel while programming or implementation, it will affect the 

operation of entire system. To ensure the correct working of a kernel, testing and/or verification 

techniques have been used. Testing reduces frequency of failures, while verification detects errors 

and eliminates failures. Consider the fragment of C code shown in figure-1 

 

                  
 

Figure1. Fragment of C code 

 

Here r being an integer, if testing has been performed with p=8, q=4 and p=16, q=32, full 

coverage of code can be achieved. Full coverage implies each line of code is executed at least 

once and every condition has been tested once. But here still two divide by zero errors are 

remaining. To identify these errors, human tester will immediately suggest that p=0, q=-1 and p=-

1, q=0 should be tested. But for bigger and non-trivial program, it is difficult to find these cases 

and tester can never be sure that all such cases are covered.  

int div(int p, int q) 

{ 

int r; 

if (p<q) 

r=p/q; 

else 

r=q/p; 

return r; 

} 
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From the example similar to above, G. Klein[19]  has concluded that humans are good at 

creativity, they are not so good at r

system verification is complex and needs many repetitive tasks. That’s why formal verification of 

operating system is feasible compared to normal testing. Formal verification of an operating 

system kernel produces mathematical proofs of correctness of an operating system. Formal 

verification may differ from the user’s view of correctness, this difference is called semantic 

gap[51]. Bridging this semantic gap is called formalisation[52]. The figure

entire verification procedure of any system with formalisation. The specification block in the 

figure-2 describes the collection of mathematical entities; these entities will be in the form which 

can be analysed by mathematical methods later

representation of the system at some chosen level of abstraction. The verification tool will take 

mathematical model and mathematical entities as input and it will verify that the model is correct 

for all the entities or not. After that it will generate the verification result.

 

Figure 

After brief overview of the verification procedure, some of the formal verification projects of 

operating system have been surveyed. Before moving on to the operating system verification 

survey, some basic terminologies related to OS verification have been

 

a. Model checking: Model checking is formal verification method for finite state concurrent 

system. Large systems, like OS can reside in many states. That means they have large state space. 

Model checking can be applied to abstract model of r

the conclusion which can be drawn from model checking for operating system[27, 55, 56].  

b. Proof-carrying code: Proof carrying code is an approach in which the kernel accepts only 

those extensions which are accompanied with valid proof for particular security policy. It tackles 

the problem of untrusted code execution in kernel mode[27, 57, 58].

c. Static source-code checking:

source code. The static source-

about the absence of errors, while testing runs the system for code analysis. In this way it is 

different from testing[27, 59].   

d. Functional correctness: The functional correctness in O

implementation always strictly follows high

Functional correctness makes it feasible to prove security properties at the code level. It does not 

necessarily imply the security. Functional correctness provides reasons about an implementation 

and a specification. Functional correctness proof has been considered as the right first step and 

basis for proving high level properties[27, 60, 61] .
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operating system is feasible compared to normal testing. Formal verification of an operating 

ernel produces mathematical proofs of correctness of an operating system. Formal 

verification may differ from the user’s view of correctness, this difference is called semantic 

gap[51]. Bridging this semantic gap is called formalisation[52]. The figure-2 below shows the 

entire verification procedure of any system with formalisation. The specification block in the 
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can be analysed by mathematical methods later. The model block describes mathematical 

representation of the system at some chosen level of abstraction. The verification tool will take 

mathematical model and mathematical entities as input and it will verify that the model is correct 

es or not. After that it will generate the verification result. 

 

 

Figure 2. Verification procedure [52] 

 

After brief overview of the verification procedure, some of the formal verification projects of 

operating system have been surveyed. Before moving on to the operating system verification 

survey, some basic terminologies related to OS verification have been explained:  

Model checking is formal verification method for finite state concurrent 

system. Large systems, like OS can reside in many states. That means they have large state space. 

Model checking can be applied to abstract model of real systems only. This diminution restricts 

the conclusion which can be drawn from model checking for operating system[27, 55, 56].  

Proof carrying code is an approach in which the kernel accepts only 

ompanied with valid proof for particular security policy. It tackles 

the problem of untrusted code execution in kernel mode[27, 57, 58]. 

code checking: Static source-code checking statically performs the analysis of 

-code checking analyzes the source code and gives guarantees 

about the absence of errors, while testing runs the system for code analysis. In this way it is 

The functional correctness in OS kernel verification means that the 

implementation always strictly follows high-level abstract specification of kernel behaviour[43]. 

Functional correctness makes it feasible to prove security properties at the code level. It does not 

e security. Functional correctness provides reasons about an implementation 

and a specification. Functional correctness proof has been considered as the right first step and 

basis for proving high level properties[27, 60, 61] . 
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2. AN OVERVIEW OF OPERATING SYSTEM VERIFICATION PROJECTS 

 
To capture the wide domain of operating system verification, following projects have been 

surveyed. In the present survey UCLA, KIT, PSOS, VFiasco, EROS and seL4 projects have been 

discussed. These projects are among the prominent OS verification projects and it has been 

believed in the present work that survey of these projects is sufficient to find new challenges in 

OS verification field.  

 

2.1. UCLA Project 

 
The verification of UCLA system is based on data security model provided by G. Popek and D. 

Farber[1]. The data security model can be used to verify many of those properties in an operating 

system which are necessary to ensure reliable security enforcement. They haven’t tried to prove 

that an operating system is entirely correct; instead they centralized all the operations which 

affect the security into nucleus. This nucleus is called the security kernel. If the operations of this 

kernel are correct then this implies that entire system is secure. Besides UCLA, the application of 

this approach has been used in other areas also, e.g. to design security model for military message 

systems[2] and to decide dependability of trusted bases[3]. 

 

UCLA secure unix[4] and Provably secure operating system (PSOS)[15, 16] have been 

considered as first serious attempts to verify an OS kernel. These projects were attempted 35 

years ago. The UCLA secure unix had been developed as an operating system for the DEC PDP-

11/45 computer. The project tried formal modelling and verification of Unix kernel, which was 

written in simplified pascal. 

 

Project Implementation 

 
The project was divided into two parts: first, a four level specification, ranging from Pascal code 

at bottom to top level specification was developed. Then in verification, it needs to be proved that 

different levels of abstractions were consistent with each other. The UCLA project managed to 

finish 90% of their specification and 20% of their proofs in 5 person-year. 

 

Figure-3 shows the detail of implementation of UCLA secure unix project. Left hand side figure 

shows the specification layer, used in this project. All the specifications in the specification layers 

are called state machine. Here instead of one specification layer, multiple specification layers 

were designed because proof consistency can be handled easily with the multiple layers. The 

Pascal code block is actual Pascal code of kernel. The low level specification block in figure-3 

describes data structures of implementation, in which some of the details are omitted. The 

abstract level contains specific objects like process, pages and devices. The top level specification 

described in figure-3 actually contains data security notion. This data security notion has been 

discussed by G. Popek and D. Farber[1]. The figure in right shows the consistency proofs 

between the levels. These proofs show that the specifications are consistent with each other. The 

proofs define functions. The function maps program state of concrete level to the program state of 

abstract level. The figure in right describes that for each operation in concrete system, 

corresponding operation in abstract system transforms the mapped concrete state accordingly [8]. 

Now the points below show some important findings that can be derived from UCLA project, 

which will connect us with the current formal verification scenario: 
 

• Prior efforts to this project, to make operating system secure merely found the flaws in 

the system, so it became clear that piecemeal alterations were unlikely ever to succeed 

[6]. So, this UCLA project has been seen as a systematic formal approach that control 

OS’s design and implementation. 
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• In UCLA they first generate the nucleus using the approach described in [1]. This nucleus 

was very close to modern microkernels[27], although at that time microkernels hadn’t 

been invented[5]. 

 

Figure 3. UCLA specification layers and consistency proofs [8]

• It has been discussed by the authors that the error has been discovered which justifies the 

need of formal specification. The error was related to boundary condition of kernel ca

Generally boundary condition of kernel call maps a page into user

been properly handled. Mischievous process can read and read or modify the memory 

pages adjacent to its own.

• When the project took place, formal refinement hadn’t ca

technique used in this project is formal refinement, defined by Morgan[7]. In fact, it is 

data refinement technique[8].

• At the end of this project, it has been observed that performance of the system was poor, 

it was slower than the standard unix in some cases. This was because of the nature of the 

pascal compiler and high context switch cost. Modern microkernels have overcome this 

limitation. For example SeL4 kernel. The Sel4 project has been described later in this 

paper. 

• Authors have observed that the approach of program verification and proof development 

before or during the software development is not practical. They have also said that if 

system needs to be verified then it should be developed with verification in mind. 

similar conclusion has been drawn from other projects as well for example 

SeL4[43,44,45] project. 

 

2.2. KIT Project 

 
KIT(Kernel for Isolated Task)[9] was the first operating system which had been verified at the 

assembly level. Main target of multitasking operating system is to implement the processes. The 

purpose of KIT project was to verify whether all these processes 

stands for ‘Kernel for Isolated Task’, that means task can communicate only in specified way. 

KIT is written in the machine language of uniprocessor von

provides exception handling, access to async

passing. KIT kernel had been implemented in artificial, yet realistic assembly language. Its code 

size was 620 lines, which was very small. Out of these 620 lines only 300 lines were of actual 

instructions [5]. 

 

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.6, No.4, August 2015

 

In UCLA they first generate the nucleus using the approach described in [1]. This nucleus 

was very close to modern microkernels[27], although at that time microkernels hadn’t 

 
3. UCLA specification layers and consistency proofs [8] 
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Generally boundary condition of kernel call maps a page into user-address space hadn’t 

been properly handled. Mischievous process can read and read or modify the memory 

pages adjacent to its own. 

When the project took place, formal refinement hadn’t came into existence, though the 

technique used in this project is formal refinement, defined by Morgan[7]. In fact, it is 

data refinement technique[8]. 

At the end of this project, it has been observed that performance of the system was poor, 

than the standard unix in some cases. This was because of the nature of the 

pascal compiler and high context switch cost. Modern microkernels have overcome this 

limitation. For example SeL4 kernel. The Sel4 project has been described later in this 

uthors have observed that the approach of program verification and proof development 

before or during the software development is not practical. They have also said that if 

system needs to be verified then it should be developed with verification in mind. 

similar conclusion has been drawn from other projects as well for example 

SeL4[43,44,45] project.  

KIT(Kernel for Isolated Task)[9] was the first operating system which had been verified at the 

assembly level. Main target of multitasking operating system is to implement the processes. The 

purpose of KIT project was to verify whether all these processes are isolated or not. Name KIT 

stands for ‘Kernel for Isolated Task’, that means task can communicate only in specified way. 

KIT is written in the machine language of uniprocessor von-Neumann computer. KIT kernel 

provides exception handling, access to asynchronous I/O devices and a single word message 

passing. KIT kernel had been implemented in artificial, yet realistic assembly language. Its code 

size was 620 lines, which was very small. Out of these 620 lines only 300 lines were of actual 
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Project Implementation  

 
The KIT kernel has been formalized in Boyer

checked mechanically by Boyer

proving correspondence between the two finite stat

state machine and target machine finite state machine. To describe finite state machines, 

description of the set of machine states and a definition of each transition on a machine state are 

required. 
 

Now the points below show some important findings that can be derived from KIT project: 
  

• There is a fiction in KIT OS that each process owns the processor. The processor state 

maintains this fiction. The verification of KIT proves that the processor state has bee

saved correctly. 

• An interpreter equivalence theorem establishes implementation relation. This relation is 

similar to the Milner’s weak simulation 

• KIT described process isolation properties down to object code level, but it was simpler 

and had less general abstraction than modern 

verification, KIT had same order of complexity as modern 

• KIT was different from current microkernels because, it doesn’t provide dynamic process 

creation, virtual memory in modern sense and no support for shared 
 

2.3. PSOS 
 
PSOS (Provably Secure Operating System)[15,16] project was based on Robinson

paper[14], which had introduced the concept of formal mappings between different level of 

functional specifications that represented abstract  implementations of each layer as a function of 

the lower layers. This layered system architecture can be seen in figure

between each layer serves as a high level functional specification for lower layer and at the same 

time it serves as a machine model for the higher layer.
 

Figure 
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The KIT kernel has been formalized in Boyer-Moore logic[10] and all the proofs have been 

checked mechanically by Boyer-Moore theorem prover[10]. KIT verification has been done by 

proving correspondence between the two finite state machines’ behaviour: abstract kernel finite 

state machine and target machine finite state machine. To describe finite state machines, 

description of the set of machine states and a definition of each transition on a machine state are 

oints below show some important findings that can be derived from KIT project: 

There is a fiction in KIT OS that each process owns the processor. The processor state 

maintains this fiction. The verification of KIT proves that the processor state has bee

An interpreter equivalence theorem establishes implementation relation. This relation is 

similar to the Milner’s weak simulation relation [11]. 

KIT described process isolation properties down to object code level, but it was simpler 

and had less general abstraction than modern microkernel [12]. But in terms of 

verification, KIT had same order of complexity as modern microkernel [13].

rent from current microkernels because, it doesn’t provide dynamic process 

creation, virtual memory in modern sense and no support for shared memory [

PSOS (Provably Secure Operating System)[15,16] project was based on Robinson

14], which had introduced the concept of formal mappings between different level of 

functional specifications that represented abstract  implementations of each layer as a function of 

the lower layers. This layered system architecture can be seen in figure-4 below. The interface 

between each layer serves as a high level functional specification for lower layer and at the same 

time it serves as a machine model for the higher layer. 

 
 

Figure 4. PSOS layered system architecture [8] 
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between each layer serves as a high level functional specification for lower layer and at the same 
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Project implementation 
 

As shown in the figure-4, PSOS has 17 layers in its layered system architecture. Out of these 17 

layers, bottom six layers are implemented using hardware and layers seven to seventeen are 

implemented using software. As shown in the figure, layer 0 is tagged. Tagged means it has 

hardware enforced capabilities; hardware supports a bit that indicates whether a word in memory 

stores a capability or not. This layered architecture is similar to the TCP/IP network stack, that’s 

why in the figure it has been shown that the top layer contains application. Similar to the TCP/IP 

network stack, the top layer contains all the applications which have been needed by the layers 

below it.  

 

It had been believed in the project that layering would make the formal verification easier. PSOS 

was a capability based system in which incorporated hardware implemented capability. Now the 

points below show some important findings that can be derived from PSOS project:   

 

• Hardware implemented capability in PSOS had weakened the primitive similar in some 

respects to the diminish operator; existing access rights can be selectively retained. It is 

unclear from the literature whether the application of this operation was imposed by an 

access right or was discretionary [17]. 

• PSOS also implemented concept named “store permissions”. This mechanism could 

selectively control which capabilities can be stored to which capability segments. This 

feature can be used to enforce write down permissions [17]. 

• The properties of application specific object type could enforce with the hardware 

assistance provided with the capability based access control. The design allowed 

application layers to efficiently execute instructions, with object-oriented capability-

based addressing directly to the hardware, although it appeared at a much higher level of 

abstraction in design specification [18]. 

 

2.4. VFiasco project 

 
The main challenge in VFiasco project [27] is to entitle high level reasoning in terms of typed 

objects during verification, yet assume only low level hardware properties. The VFiasco project 

aims at mechanical verification of security relevant properties of Fiasco microkernel. Fiasco 

microkernel is L4-compatible Fiasco microkernel [28]. The aim of the project is an OS kernel 

which provides security guarantees which has been verified. 

 

Project implementation 

 

Fiasco kernel has been implemented in C++. The language C++ is not the language with precise 

semantics. For this purpose, M. Hohmuth et al.[27] developed a language which had precise 

semantics called ‘safe C++’.  After converting code to safe C++, the verification will be carried 

out in the theorem prover Isabelle/HOL [29]. In this project, conversion from safe C++ to HOL 

semantics has been done automatically by the logic compiler. For verification, authors have 

abstraction level of virtual machine that provides a type-safe object store which is a memory that 

supports reading and writing of typed values. 
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Figure 5. The VFiasco project verification overview [40]

In this project the existence of an object store layer with strong properties is a proof not an 

assumption. The approach used in this project to a semantics of C++ is 

in LOOP project[30] of Java. Figure

First semantic compiler will translate C++ code into semantics, formulated in higher order logic. 

Then hardware model and C++ semantic

After that theorem prover verifies the semantic specification against security properties. Finally 

verification results in proof. 

 

Now the points below show some important findings that can be derive

which will connect us with the current formal verification scenario:

 

• The VFiasco project uses coalgebraic[31] methods. It describes coalgebraic class 

specification language called CCSL. Coalgebraic proof methods are not only charac

capturing formalism for non

system[32].  

• In VFiasco project source code verification has been directly applied to the unmodified 

source of Fiasco microkernel operating system written in C+

jump across the function boundaries. So formal reconstruction of goto loop, which has 

been described in [33] needs to be applied. For complete C++ semantics one needs the 

semantics for data-types that can deal with the type 

verification, state transformation approach has been used to get relatively simple semantics 

to statements like break, continue and even goto[27]. The state transformation has been 

explained by M. Huisman and B. 

• The VFiasco project contains single layer, i.e. object store layer. This layer provides 

functions for typed objects, in such a way that typed objects can be safely manipulated. 

Because of this single layer, The VFiasco project re

category (ShengWen Gong [

categories. These four categories are: (i) the component 

approach[36], (iii) the single

• The VFiasco project stopped at the source

map results down to lower systems or language layers. This project doesn’t involve any 

compiler verification [38].
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jump across the function boundaries. So formal reconstruction of goto loop, which has 
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explained by M. Huisman and B. Jacob [30]. 
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The VFiasco project stopped at the source-code level. That means, there are no attempts to 

map results down to lower systems or language layers. This project doesn’t involve any 
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2.5. EROS project 
 

The EROS (Extremely Reliable Operating System)[47,48] is a capability based operating system. 

It is for commodity processors which uses a single level storage model. J. Shapiro et al. have 

formalized and analyzed the security model of EROS using the pen and paper approach. The 

security model was implemented based on take-grant model[42] of capability distribution. The 

security model of the EROS was not formally connected to the implementation. 

 

 Project implementation 

 
The EROS project actually started by verifying confinement mechanism. J. S. Shapiro and S. 

Weber [48] provided formal definition of confinement policy in their work. After that they have 

explained operations and security requirements of real operating system. In their work, 

methodology and proof structures have been developed for confinement policy in capability 

based structure. They have claimed that their methodology can be generalized to solve 

information flow problems in many capability based architecture.  

 
Now the points below show some important findings that can be derived from EROS project:  

 

• One thing about EROS is, when machine starts, it loads a fully pre-initialised state. This 

task makes it possible to inspect the initialised state offline[49]. 

• S. Maffeis et al.[50] provide the object capability based model that provides approach for 

isolating untrusted components in web applications. Their work is close to EROS 

confinement mechanism. While there are some other similarities between their framework 

and our general setup, one substantial difference is that instead of defining authority as an 

over-approximation of heap actions that can be performed by a single object; they define 

authority for the whole system[50]. 

• The Coyotos kernel[64, 65] was successor to the EROS kernel. From the security model of 

EROS kernel, Shapiro et al.[54] concluded that there should be a formal connection 

between security model of the kernel and the implementation. They have tried to establish 

this formal connection in Coyotos kernel[8].    

• The EROS system currently runs on Pentium hardware. Future details about the project can 

be obtained from its website[62].   

• The CapROS (Capability based Reliable Operating System)[63] project is the continuation 

project of EROS. It is using same EROS code base. The CapROS project is being led by 

Charles Landau. 

 

2.6. seL4 verification project 

 
The seL4 (Secure Embedded L4) kernel is an evolution of the L4 microkernel. It is third 

generation microkernel of L4 provenance. It targets embedded devices. The seL4 implements 

capability based protection system, capabilities in seL4 are immutable. Similar to seL4 micro 

kernel, seL4 provides address spaces, inter-process communication and threads. In seL4 all 

system calls are invocations of capabilities. The seL4 comprises of 8,700 lines of C code and 600 

lines of assembler.  

 

Project implementation 

 

The seL4 verification project[43,44,45] was the project which provided the proof of functional 

correctness of a complete general purpose operating system for the first time. In this project, 

formal machine-checked verification of seL4 microkernel has been performed from an abstract 

specification down to the C implementation. In this project, first the access control model has 
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been verified and then the actual functional verification of kernel had been started. Before the 

project, correctness of compiler, assembl

has been assumed.  

      

An access control model of seL4 has been verified by D. Elkaduwe et al.[41] in the theorem 

prover isabelle/HOL[29]. In their work the take

rule and with more realistic create rule that is explicitly authorized by capability. In their 

formalization, remove rule has also been modified. In seL4, remove

capability instead of removing few parts. D. Elkaduwe et al.[4

mechanisms are sufficient to enforce mandatory isolation between subsystems. They have shown 

that it is possible to build fully spatially separated system on top of seL4. So here spatial memory 

separation has been guaranteed but authors have said that with current stock hardware preventing 

all covert timing channels is not possible. 

 

The seL4 kernel design process has been shown in the figure

formal artefacts. These artefacts have direc

figure represent implementation effort; the single arrows represent design influence of artefacts 

on other artefacts. The central artefact is the actual Haskell prototype of the kernel. The prototype 

requires the design and implementation of algorithms that manage the low

The figure-6 shows that hardware and Haskell prototype has design influence on formal 

executable specification. 

 

After the design process, verification process too

interactive, machine assisted and machine checked proof. Figure

which were used in verification of seL4. Abstract specification layer shows the details to specify 

outer interface of the kernel. It doesn’t describe in detail how the effects or interfaces are 

implemented in kernel; in short it describes what the system does without saying how it is done. 

The executable specification layer has been generated from Haskell into the t

contains all data structure and implementation details which have been expected in the final C 

implementation. The high performance C implementation layer deals with the formally

semantics. 
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Figure 7. The refinement layers in the verification of seL4 [43]

Now the points below show some important findings that can be derived from seL4 project, 

which will connect us with the current formal verification scenario:

 

• There are many techniques for formal verification like model checking, static analysis or 

kernel implementations in type safe language. But in this project it has been believed that 

functional correctness is stronger and more precise technique compared to the techniques 

mentioned above[43].     

• In this project, fusion of traditional operating system and formal method technique had 

been used i.e. rapid kernel design and implementation had been used together. Because of 

this implementation, the verification focus was improved

with the better performance[43]. 

• In UCLA it had been observed that simplification of kernel to make verification feasible 

made the kernel little bit slower. But in this project it has been shown that with modern 

tools and technique, this is not the case these days. 

 
The summary of the aforementioned projects has been shown in the table

column, the question mark in parenthesis shows that the year is not known and year in parenthesis 

shows estimated completion date. Further, many verification projects like bias variance 

tradeoffs[66], the Xtratum[67], L4Android[68], ORIENTAIS[69], VTOS[70] and CHERI[71]  

have been studied. They are evolved from the aforementioned projects and follow same path as 

described in above projects for verification of OS.
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Pascal 

KIT Isolated 

task 

Assembly 

PSOS Applicatio
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Secure code

VFiasco Doesn’t 

crash 

C++ 

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.6, No.4, August 2015

 

 

 
 

7. The refinement layers in the verification of seL4 [43] 

 

Now the points below show some important findings that can be derived from seL4 project, 

which will connect us with the current formal verification scenario: 

chniques for formal verification like model checking, static analysis or 

kernel implementations in type safe language. But in this project it has been believed that 

functional correctness is stronger and more precise technique compared to the techniques 

 

In this project, fusion of traditional operating system and formal method technique had 

been used i.e. rapid kernel design and implementation had been used together. Because of 

this implementation, the verification focus was improved and design was not conflicting 

with the better performance[43].  

In UCLA it had been observed that simplification of kernel to make verification feasible 

made the kernel little bit slower. But in this project it has been shown that with modern 
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Table 1. OS verification projects [8] 

 

Lowest Specs  Proofs Prover Approach  

 90% 20% XIVUS Alphard 
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AL 
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BitC Security 
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?) 

Language 

based 

2004-(?) 

L4 

verified 

Security 

model 

C/assembly 100% 70% Isabell

e  

Performance 

production 

code 

2005-

(2008) 

 

3. FUTURE CHALLENGES  
 
Further, challenges out of the above projects and inherited projects have been discussed. In the 

present survey it has not been claimed that the challenges described in this section haven’t been 

implemented at all. But to the best of our knowledge, the areas described in this section haven’t 

been covered in detail in literatures. 

 
From all the above projects, especially from the SeL4 project it can be concluded that functional 

correctness is one of the strongest properties that can be proven about the system. The functional 

correctness can help to make precise formal prediction of how the kernel behaves in all possible 

situations for all possible inputs. G. Klein[19] has suggested that, if any specific property is 

needed to be checked then it can be expressed in Hoare’s logic, it is enough to work with this 

formal prediction, with the specification. But functional correctness property of any system can’t 

prove that the system is secure, it just says that system is functionally correct [19]. The word 

‘secure’ in secure system requires formal definition, but this depends on what you want to use the 

kernel for. So verification of all security properties or secure system which has been built on top 

of the OS kernel is one of the recent challenges in formal verification field.  

 
In SeL4 project specific security properties hadn’t been proven, but G. Klein[19] believed that if 

the functional correctness property of the operating system can be  proven, then below 

assumptions can be made easily about  that OS: (1) No code injection attacks (2) No buffer 

overflow attack (3) No NULL pointer access (4) No ill-typed pointer access (5) No memory leaks 

(6) No non-termination (7) No arithmetic or other exceptions (8) No unchecked user arguments. 

He has explained these assumptions with reasons. He has also explained that the functional 

correctness can tell following properties about the code: (1) Aligned object (2) Well formed data 

structures (3) Algorithmic invariants and (4) Correct book-keeping. So research challenges here 

are: can functional correctness property be used to verify other security properties or can 

framework be made that covers verification of most of the security properties.      

 
G. Heiser et al.[20] have provided some research challenges in different way, they have told that 

the users of the fully verified kernel have trustworthy foundation for the entire system. For 

example, the kernel seL4 is fully verified and it can be used as trustworthy foundation. Now the 

challenge is how the trustworthy foundation of the system can be used further. They have 

suggested three uses of the trustworthy foundation: (1) Secure web browsing (2) Increase the 

usefulness of TPM (3) Cost-reduced database. But still there are many challenges related to the 

kernel used as trustworthy foundation.  

 
Let’s start with the secure web browsing topic. One security policy of the browser is Same Origin 

Policy (SOP). SOP means web pages from different sources cannot observe or alter each other’s 

state and behaviour and script running inside the web page must denied unauthorized access to 

OS resources.  Recent browsers like Chrome[22] address this problem by encapsulating security 

policy in separate module, the browser kernel. So, this approach is based on the OS, specifically 

dependent on browser’s TCB. So one challenge here is can TCB of the browser be reduced using 

microkernel approach. IBOS[21] project has actually shown that TCB of browser can be reduced 

by using the microkernel approach. The authors have proposed architecture for secure browsing 
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which contains two trusted parts: microkernel and user level security process which are shown in 

figure-8.   

 

Figure  8. Secure web browser architecture. Components that belong to the TCB of the system are 

Figure-8 shows that monitor is the only part in the TCB that needs to be verified. The monitor 

instantiates browser process with permissions t

stack processes and the monitor itself[20].  Once this security monitor is verified one can have 

completely verified TCB for secure browsing. So, research challenge here is can the 

aforementioned architecture be extended to include complete OS stack and that too running inside 

a VM (Virtual Machine). 

 

Next challenge is to increase usefulness of TPM. Trusted Computing Group[23] has introduced 

the Trusted Platform Module (TPM). The TPM provides remote attestation facility which 

provides evidence that the trusted software stack has been loaded by the remot

booting time. Now let’s take classical example of bank transaction. The bank can reject the 

transaction request from the remote system if the trusted software stack hasn’t been loaded by the 

remote machine. Bank clients want to use the sm

smart phones and computers have many apps and software for the bank to manage. Many of these 

apps and software are not trusted. So, for successful remote attestation it has become necessary to 

kept these out of TCB and therefore the system. To solve this problem, the concept of Dynamic 

Root of Trust Measurement (DRTM)[24] has been introduced. DRTM allows user to switch 

between trusted and untrusted environment. But to achieve this trusted code should be small a

it can run only for a fraction of seconds. But bank transaction needs more time than few seconds. 

So above approach needs user to suspend OS while he is doing the bank transaction. But this is 

not a practical solution. So to solve this issue TCB is need

and change in controlled fashion. After concluding this G. Heiser et al. believed that formally 

verified kernel do not change or changes very rarely because it won’t require any bug fixes. They 

have given example of seL4 kernel also. The challenge here is to minimize TCB and isolate TCB 

from rest of the general purpose OS components using the trusted system which contains fully 

verified kernel. 

 

Final challenge that G. Heiser et al.[20] have mentioned is about the databa

databases can have disk failures, power failures and OS crash[20]. These days RAID protects 

database from disk failure and UPS protects from power failure. This leaves protection against 

OS crash as one of the open research problem. Here re

properties of kernel be verified in such a way that it can make kernel crash

be directly implemented on verified kernel and if it is possible then what kind of changes required 
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in the lower layers of DBMS. Can database be implemented on verified kernel in such a way that 

the changes required in the lower layer of database become minimal and practical to achieve.   

   

J. Andronick et al.[25] have tried to solve a research problem related to scalability of the formal 

verification. They have dealt with the large and complex system which uses seL4 for which 

security guarantees can be given. They have proposed a framework to build such large and 

complex systems. Authors’ vision here is that not all the software in a large system necessarily 

contributes to a security property of interest. From the vision, the methodology has been 

developed: (1) isolate the software parts which are not critical to a targeted property and prove 

that for specific property nothing more is needed to be proven about them (2) formally verify and 

prove that remaining part satisfy the targeted security property. In this paper the case study of 

Secure Access Controller (SAC) has been taken. Access control-based security policy has been 

taken as a property of interest here. Authors have explained that verifying such a property for 

large system is far beyond the abilities of current verification methods. To verify this property 

large code base has been divided into trusted code and untrusted code. The authors have used here 

seL4[26] kernel to get the code isolation in this system which is already verified. So question 

arises that if the kernel which hasn’t been verified is used for the large and complex system, can 

we get security for such system and get the code separation.   

 

In 2001, during VFiasco project[27] M. Hohmuth et al. Observed that huge bug affected 

monolithic kernels are outside the scope of verification technology which were available at that 

time. Although the microkernels are smart choice for constructing verified secure system, but is it 

possible to have verification technology now which can accommodate verification of monolithic 

kernel. Verification of monolithic kernel can be costly in terms of time and efforts, but it can be 

taken as a recent research challenge.  

 

The formal verification community has nice security properties, high level formal model and 

ways of architecting secure systems, but still no signs of implementation level proofs. Even 

recently implemented seL4 microkernel doesn’t have these implementation level proofs. G. Klein 

et al.[39] believes that this needs to be  changed. It is obvious that if the system is large then it can 

be secured by reducing the Trusted Computing Base (TCB). For large systems, microkernels 

provide good foundation, though with reduced TCB of large systems, nobody has proved security 

down to the implementation level. With type 1 hypervisors, it has been assumed that they will 

perform the role of separation kernel, but there are no implementation level proofs for these 

hypervisors either[39]. For a moment let’s assume that in next few years, kernels are available 

with fully formally verified functional correctness down to the implementation level. But then 

what next? Such kernels do not automatically imply security [19].  

 

After the completion of sel4 verification, G. Klein et al.[39] have mentioned in their work that the 

mandatory access control can be implemented on OSes for example in Linux, but it is not 

possible to get provable or assurable security for such OSes at least for next few years. Assume 

that all security properties of kernel have been proved in next few years (Sorry, this will never 

happen), still we as a formal verification community are not done yet. Our ultimate goal should 

be to achieve proof that whole systems enforce their security goals; we can get much stronger 

assurance for much larger systems than what is thought feasible today. It should be remembered 

that proofs say that the code will follow specification; it doesn’t say that specification enforces 

specific security property. 

 

From the projects like VFiasco and seL4, it can be observed that there is a gap between idealized 

security properties and properties that hold real kernels. G. Klein et al.[39] have mentioned in 

their work that there is no good formal handle available on timing and time based covert channels 

for practical implementations, so it is a research challenge. The authors are not expecting that the 

same level formal proofs will be obtained in near future as it is available for storage channel.  
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K Elphinstone[46] has described challenge that takes place while using verified microkernel like 

seL4  in Digital Rights Management (DRM), and based on this he has provided some new issues 

which can be addressed by research communities. One can think solutions of this problem

direction, not necessarily in formal verification point of view. The DRM is the concept of 

specifying, enforcing and limiting rights associated with digital content. Before identifying issues, 

the architecture of DRM has been explained. The DRM arc

9[46]. First user posses the device upon which he wishes to view content. Then the user must be 

authenticated by the content provider.

 

Figure 

The content must be securely transferred to user device, for this encryption has been used. The 

user player should be able to decrypt the content when user wishes to view it.

 

Here the content-use policy can be violated by end

engineering, modifying players or running the player on modified operating system. This is the 

research challenge. One solution is to provide assurance that a trusted player on a trusted 

operating system is the only software that has access to the content, other solutions 

of in the context of hardware or networking. 

 

Next, the challenge is about the gap between formal model of OS and hardware implementation. 

A. Cohn[51] has described that the physical hardware is a realisation of a model, and correct 

hardware operations are beyond the scope of the formal verification. One example of this is: 

manufacturers can’t prove absence of manufacturing defects. So, even if the verified processor or 

kernel is available, the gap between formal model of such kernel or proc

will always exist[51]. The research challenge is how to minimize this gap.

 

Tuch H. et al.[52] observed UCLA, KIT and VFiasco closely. They have described in their work 

that in kernel verification, challenges related to performance

still available. They have mentioned that features like direct hardware access, pointer arithmetic 

and embedded assembly code haven’t been the subjects of mainstream verification research, so 

research scope is available in these areas.  

 

The KIT was multitasking OS, which gave direction to the present survey to find verification 

challenges in concurrent OS. S. Rajamani et al.[53] have discussed challenges of an OS which 

support concurrent execution of the program. Sup

execution of program has normal page size. This OS supports third party plug

OS, there are many research challenges: (1) Is it possible to guarantee isolation in this OS where 

third party plug-ins can be ill-behaved[53]? (2) With the isolation guarantee in OS, is it possible 

to manage properties like safety and permissiveness? (3) Is it possible to achieve isolation without 

the problems like deadlocks, livelocks[53], memory fragmentation and conditio

handling? (4) Various operating systems provide various types of memory protections. How to 

handle these variations if memory protection is used for isolation?  
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operating system is the only software that has access to the content, other solutions can be thought 

of in the context of hardware or networking.  

Next, the challenge is about the gap between formal model of OS and hardware implementation. 

A. Cohn[51] has described that the physical hardware is a realisation of a model, and correct 

e operations are beyond the scope of the formal verification. One example of this is: 

manufacturers can’t prove absence of manufacturing defects. So, even if the verified processor or 

kernel is available, the gap between formal model of such kernel or processor and implementation 

will always exist[51]. The research challenge is how to minimize this gap. 

Tuch H. et al.[52] observed UCLA, KIT and VFiasco closely. They have described in their work 

that in kernel verification, challenges related to performance, size and the level of abstraction is 

still available. They have mentioned that features like direct hardware access, pointer arithmetic 

and embedded assembly code haven’t been the subjects of mainstream verification research, so 

le in these areas.   

The KIT was multitasking OS, which gave direction to the present survey to find verification 

challenges in concurrent OS. S. Rajamani et al.[53] have discussed challenges of an OS which 

support concurrent execution of the program. Suppose an OS which supports concurrent 

execution of program has normal page size. This OS supports third party plug-ins. In this type of 

OS, there are many research challenges: (1) Is it possible to guarantee isolation in this OS where 

behaved[53]? (2) With the isolation guarantee in OS, is it possible 

to manage properties like safety and permissiveness? (3) Is it possible to achieve isolation without 

the problems like deadlocks, livelocks[53], memory fragmentation and conditio

handling? (4) Various operating systems provide various types of memory protections. How to 

handle these variations if memory protection is used for isolation?   
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The challenges are summarized in a table below: 

 
Table 2. Challenges in formal verification 

 

Challenge Explanation Source Suggestion 

Functional 

correctness 

Although functional 

correctness is strong 

property, it can’t prove that 

system is secure. To verify 

more number of security 

properties together with or 

without the functional 

correctness is a challenge. 

seL4 project  R. Akella and Bruce M.[72] 

have verified security 

properties like information 

flow and non deducibility of 

cyber-physical system. They 

have described that 

information flow security 

can’t be checked using 

functional correctness. So, 

they have provided different 

framework for verification 

using process algebra. Same 

methodologies can be 

applied to OS verification 

also. 

Kernel as a 

trustworthy 

foundation 

Three uses of the 

trustworthy foundation:  (1) 

Secure web browsing (2) 

Increase the usefulness of 

TPM (3) Cost-reduced 

database. The challenge is 

how the usage of 

trustworthy foundation in 

different areas can be 

increased. 

seL4 project G. Heiser et al.[73] have 

provided prototype system 

RapiLog which is based on 

verified seL4 hypervisors. 

This system is used to 

reduce system complexity by 

leveraging verification 

instead of using special 

hardware. Similarly more 

ways can be found where 

kernel can be used as 

trustworthy foundation. 

Security in large 

system 

Not all software on the large 

system contributes to the 

security of system. So to 

verify the large system, 

system should be divided in 

trusted and untrusted code. 

The division of large system 

in trusted and untrusted 

code is a challenge. 

VFiasco, seL4 Stefan et al[79]. have 

verified cyber-physical 

system. Their work provides 

hint to verify larger and 

more complex systems. 

Implementation 

level proof 

No implementation level 

proofs so far for any kernel 

verification. This is a 

challenge.   

Recent 

projects like 

seL4, VFiasco 

Nana S. et al.[74] have 

provided framework to 

verify hardware and software 

co-verification. IEEE  

802.11ac WLAN system has 

been selected by them for 

case study. Their work might 

provide a hint to solve this 

research challenge. 
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Time-based 

covert channel 

To create formal handle for 

time-based covert channel is 

a challenge. 

Recent 

projects like 

seL4, VFiasco 

The problem with covert 

channel is it is difficult to 

verify it on case-by-case 

bases. So, first unique model 

to unified approach is 

needed and then verification 

can be done. So P. L. 

Shrestha et al[78] have 

provided this unique model 

which can be used to verify 

time-based covert channel. 

Monolithic 

kernel 

Huge, bug affected 

monolithic kernel 

verification is a challenge. 

VFiasco 

project 

M. Lange et al[77]. have 

provided hint to solve this 

research challenge. Their 

work focuses on L4Android 

which is monolithic 

architecture. Although the 

project is not entirely on the 

monolithic kernel 

verification, but it can 

provide help to solve this 

research problem. 

Challenges 

related to 

unexplored 

areas 

Pointer arithmetic and 

embedded assembly code 

haven’t been the subjects of 

mainstream verification 

research so far. These fields 

can be explored more. 

UCLA, 

PSOS, KIT, 

VFiasco, 

EROS 

The work of Thomas S. et 

al[75]. gives hint in the 

direction of pointer 

arithmetic. J Kobashi et 

al[76] have provided 

directions to verify 

embedded assembly code. 

Their work can be explored 

further to solve these 

challenges. 

Challenges 

related to 

Concurrency 

(1) To achieve and verify 

isolation when third party 

plug-ins are ill-behaved. (2) 

With isolation, manage the 

properties like safety and 

permissiveness (3) Avoid 

problems like deadlocks, 

livelocks, memory 

fragmentation and condition 

variable handling (4) 

Handle variations in 

memory protection if it has 

been used to achieve 

isolation.  

KIT is 

multitasking 

kernel. It has 

provided base 

to explore 

concurrency 

related areas. 

Solutions of some of the 

problem have been discussed 

by S. Rajamani et al[53]. 

They have tried to solve this 

challenge for concurrent 

programs. These solutions 

can be expanded for the 

large, concurrent operating 

system kernel and the 

isolation properties can be 

verified. 

 

4. CONCLUSIONS 
 

In the present paper, an overview of kernel verification projects has been provided, in specific 

UCLA, KIT, PSOS, VFiasco, EROS and seL4 projects have been surveyed. In the present survey, 
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highest level specification, lowest level of specification, model checker and approach of 

verification have been described for each project. During the survey it has been observed that 

proofs of automation, memory models, proof libraries, and program logics have been developed 

significantly, that’s why OS verification is not as hard as it was before 35 years.  

 

The present article also describes challenges in kernel verification area. They are related to 

monolithic kernel verification, functional correctness, implementation level proof, time-based 

covert channel, direct hardware access, pointer arithmetic, concurrency and use of kernel as 

trustworthy foundation areas. Future efforts in the direction of solving these challenges will make 

verification faster and precise. 
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