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ABSTRACT 
 
Regularized regression techniques for linear regression have been created the last few ten years to reduce 

the flaws of ordinary least squares regression with regard to prediction accuracy. In this paper, new 

methods for using regularized regression in model choice are introduced, and we distinguish the conditions 

in which regularized regression develops our ability to discriminate models. We applied all the five  

methods that use penalty-based (regularization) shrinkage to handle Oxazolines and Oxazoles derivatives 

descriptor dataset with far more predictors than observations. The lasso, ridge, elasticnet, lars and relaxed 

lasso  further possess the desirable property that they simultaneously select relevant predictive descriptors 

and optimally estimate their effects. Here, we comparatively evaluate the performance of five regularized 

linear regression methods The assessment of the performance of each model by means of benchmark 

experiments is an established exercise. Cross-validation and resampling methods are generally used to 

arrive point evaluates  the efficiencies which are compared to recognize methods with acceptable features. 

Predictive accuracy was evaluated using the root mean squared error (RMSE) and Square of usual 

correlation between predictors and observed mean inhibitory concentration of antitubercular activity (R 

square). We found that all five regularized regression models were able to produce feasible models and  

efficient  capturing the linearity in the data. The elastic net and lars had similar accuracies as well as lasso 

and relaxed lasso had similar accuracies but outperformed ridge regression in terms of the RMSE and R 

square metrics. 
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1. INTRODUCTION 

 
Multiple linear  regression is frequently employ to evaluate a model for predicting expected 

responses, or to investigate the relationship between the response (activity) and the 

predictors(molecular descriptors) . For the first aim the prediction accuracy of the model is 

important, for the second aim the complexity of the model is of more interest. Common linear 
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regression procedures are popular for often not carrying out well with respect to both prediction 

performance and model involvement. Regularization plays a key role in the analysis of modern 

data. Regularized regression methods for linear regression have been evolved to beat the defects 

of ordinary least squares regression with regard to prediction accuracy. Regularization [2] has 

been deeply studied on the interface between statistics and computer science. The research on 

regularized results has gained increasing interest during the last ten years [1]. This is in some 

ways due to advances in measurement technologies, e.g., in molecular pharmaceutics, where 

high-throughput technologies allow simultaneous measurement of tens of hundreds of predictor 

variables(molecular descriptors). However, the measurements are valuable, so typically the 

number of data points is small. In the field of drug development, the number of descriptors is not 

that large but yet enough to prevent the use of many standard data analysis methods. 

Conventional regression methods are unable to process data with more predictors than 

observations(so called  problem). Regularization methods [3] help in formalizing a unique 

solution in this well posed problem. These methods shrink some of the coefficients to zero. This 

not alone helps in descriptor selection but in addition reduces the difference at the cost of a small 

advance in bias. However, this has the outcome of improving the generalization of the estimate.  

 

The prediction of antituberculer activity  using Oxazolines and Oxazoles derivatives  is currently 

undertaken using various regularization methods with varying amount of complexity, 

computational power and predictive accuracy. Performance evaluation of existing methods are 

thus essential to identify those best suited to prediction and decide when their performance is 

optimal. Here, we evaluate the relative performance of five regularized linear regression models 

for prediction. The methods comprise the Least absolute shrinkage and selection operator 

(Lasso)[4-5], Ridge regression (RR) [5-7], Elastic net[5,8-10],Relaxed lasso[11-12],Least  Angle 

Regression(LARS)[13-14]. The claim and arrival of regularization models in various application 

fields, containing descriptor selection, associated to their use of penalties that eases fitting models 

with variables that run towards thousands, including many irrelevant to the response, far exceed 

the sample size, or are highly correlated, with high efficiency and prediction accuracy. 

 

2. MATERIALS AND METHODS 

 
2.1 The Molecular Descriptor Data Set 

 
The molecular descriptors of hundread   Oxazolines and Oxazoles derivatives [15-16] based 

H37Rv inhibitors analyzed. These molecular descriptors are produced using Padel-Descriptor tool 

[17]. The dataset includes a various set of molecular descriptors with a broad range of inhibitory 

activities versus H37Rv. This molecular descriptor  data set  covers  100 observations with 234 

descriptors. Before modelling, the dataset is centred. 

 

2.2 The regularization models 

 
The fundamental linear regression method used to predict antituberculer activity  using 

Oxazolines and Oxazoles derivatives  with all the five regularization methods is : 

                                                   

                                                                                                   (1) 

where   is the vector of observed antitubercular activity i.e mean inhibitory 

concentration (MIC),  is a column vector of  ones  and    is a common intercept,  is a  
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matrix of molecular descriptors ;  is the vector of the regression coefficients of the molecular 

descriptors and   is the vector of the residual errors with var   In what follows, we 

believe that the observed antitubercular activity have been mean-centred. 

 

 2.3 Lasso 

 
Lasso regression techniques are broadly used in fields with large datasets, such as drug discovery, 

where effective and speedy algorithms are required[5], the lasso is also known as basis 

pursuit[18]. The lasso is, still, not robust to steep correlations between descriptors and will 

immediately select one and reject the others and cut down when all descriptors are alike. The 

lasso  penalty look for m several coefficients to be near to zero, and only a modest subset to be 

best(and nonzero). The lasso estimator [4] uses the  penalized least squares basis to obtain a 

sparse solution to the following optimization problem.  

 

 
 

where   is  the -norm penalty on  , which activates sparsity in the solution, 

and  is a tuning parameter. 

 

The penalty allows the lasso to concurrently regularize the least squares fit and reduces few 

components of to zero for some well selected . The cyclical coordinate descent 

algorithm [5] smoothly computes the entire lasso solution paths for  the lasso technique and is 

faster than the popular LARS method[13-14]. These properties make the lasso an attractive and 

most popular predictor selection method. After all, the lasso has three important week points– it 

deficits the oracle property (see below), is weak with multi-dimensional data and can not choose 

large predictors than the sample size earlier it saturates when  An oracle method can 

measure the subset of valid parameters with zero coefficients as definitely zero with probability 

likely to 1; that is, as well as if the true subset model were known ahead[20]. An oracle estimator, 

furthermore, performs asymptotically consistent and efficient predictor selection and produces 

asymptotically fair and normally distributed estimates of the nonzero coefficients[19-20]. The 

oracle feature is nearly related to the super-performance event[20]. Optimal estimators must also 

meet valid additional and key regularity settings as well having the oracle feature, such as 

continuous shrinkage [19]. The lasso deficits the oracle feature as it evaluates the extensive 

nonzero coefficients with asymptotically non-recognizable bias [20] and can only usually carry 

out predictor selection when the predictor matrix(or the descriptor matrix) fulfils a moderately 

powerful condition [19]. 

 

2.4 Ridge regression 

 
Ridge regression [6] is perfect if there are various predictors, all with non-zero coefficients and 

collect from a normal distribution [5].  In specific, it carry out well with many predictors each 

having small outcome and prevents coefficients of linear regression models with many correlated 

predictors from being poorly determined and exhibiting high variance. Ridge regression shrinks 

the coefficients of correlated predictors equally towards zero. So, e.g, given  alike predictors, 

each would get alike coefficients according to th the extent that any one predictor would get 

if fit individually [5].  Ridge regression thus does not impose coefficients to disappear and 



 

 

 

International Journal of Computational Science and Information Technology (IJCSITY) Vol.1, No.4, November 2013 

                  

114 

therefore cannot choose a model with only the practically appropriate and predictive subset of 

variables. 

 

The ridge regression estimator deals the regression problem in Eqn. (1) using   penalized least 

squares: 

 

 
 

where   is the -norm (quadratic) loss function (i.e. residual sum 

of squares),  is the -th row of   ,   is the - norm penalty on  and  is 

the tuning parameter (penalty, regularization)  which regulates the power of the penalty (linear 

shrinkage) by deciding the relative importance of the data-dependent practical error and the 

penalty term. The bigger the value of , the larger is the amount of shrinkage. As the value of  is 

reliant on the data it can be found out using data-possessed methods, such  as cross-validation. 

The intercept is expected to be zero in Eqn. (2) due to mean centring of the molecular descriptor 

dataset. 

 

2.5 Elastic net 

 
The is an continuation of the lasso that is robust to highest correlations among the predictors [5]. 

To avoid the imbalance of the lasso solution paths when predictors are highly correlated , the 

elastic net was projected for evaluating high dimensional data [8]. The elastic net uses a mixture 

of the  and  penalties and can be defined as: 

 

 
 

On setting , the estimator Eqn. (5) is seen to be similar to the minimizer of: 

 
 

where   is the elastic net penalty Eqn.  (5). The elastic net clarifies to simple ridge 

regression when  and to the lasso when . The part of the elastic net does self-

regulating predictor selection, while the  part encourages grouped selection and balances the 

solution paths with respect to random sampling, thereby improving prediction. By activating a 

categrization effect during predictor selection, like that a bunch of extremely correlated variables 

likely to have coefficients of uniform magnitude, the elastic net can choose bunches of correlated 

predictors when the groups are not known in advance. Different from the lasso, when ,  the 

elastic net selects more than  predictors. However, the elastic net needs the oracle property. 

 

2.6 Relaxed Lasso 

 
Relaxed lasso (relaxo)  is a generalization of the lasso shrinkage technique for linear regression. 

One predictor selection and other parameter evaluation is attained by regular lasso, still both steps 

do not certainly employ  the identical penalty parameter. The results include all lasso solutions 

but allow for sparser models while accepting related predictive performance if many predictors 

http://thesaurus.com/browse/possessed
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are present. A two-phase methd for calculating the relaxed lasso estimator is then projected. The 

set of predictors selected by the lasso estimator   is represented by , 

 

 

For sufficiently large penalties  (e.g. for ), the selected model is the 

null set,   , as all components of the estimator in Eqn. (2) are identical to zero. In the non 

arrival of a - penalty and if the number of predictors  is smaller than the number of 

observations , all predictors are in general selected, so that  in this case. 

 

The – penalty for the ordinary lasso-estimator Eqn. (2) has two results , model selection and 

shrinkage estimation. On the one hand, a valid set of coefficients is set to zero and hence not 

included from the selected model. On the other hand, for all predictors in the selected model  

, coefficients are shrunken towards zero compared to the least-squares solution. These two results 

are clearly related and can be best understood in the framework of orthogonal design as soft-

thresholding of the coefficients. How ever, it is not at once understandable whether it is certainly 

optimal to control these two results, model selection on the one part and shrinkage evaluation on 

the other part, by a single parameter only. As an example, it might be adorable in some situations 

to estimate the coefficients of all selected predictors without shrinkage, according to a hard-

thresholding of the coefficients. 

 

As a standard of one soft- and the other hard-thresholding , we control model selection and 

shrinkage estimation by two discrete parameters  and  including the relaxed lasso estimator. 

The relaxed lasso estimator is expressed for  and  as 

 
where  is the indicator function on the set of predictors  so that for all 

,  

 

                                                  (8)  

 

Note that only predictors in the set  are count for the relaxed lasso estimator. The parameter  

controls thus the predictor selection part, as in ordinary lasso estimation. The relaxation 

parameter  controls on the other part the shrinkage of coefficients. If  the lasso and 

relaxed lasso estimators are alike. For ,  the shrinkage of coefficients in the selected model 

is downsized compared to ordinary lasso estimation. The case of  needs special concern, as 

the definition above would produce a degenerate solution. 

 

A method is developed to compute the exact solutions of the relaxed lasso estimator. The 

parameters  and  can then be selected e.g. by cross-validation. The method  is based on the 

lars-algorithm [13]. As the relaxed lasso estimator is parameterized by two parameters, a two-

dimensional manifold has to be covered to find all solutions.  
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2.7 Least Angle Regression(LARS) 

 
The evolution of least angle regression (lars) [13] , which can quickly be specialized to provide 

all lasso solutions in a highly efficient usage, denotes a major breakthrough. Lars is a smaller 

greedy variant of standard forward selection approach such as all subsets, Forward Selection and 

Backward Elimination. An interesting characteristic of lars is that it implements the lasso by a 

simple correction . The lars modification computes all possible lasso estimates for a given 

problem in an order of importance which requires a much smaller amount of computational time 

then previous methods. 

 

Least angle regression is a formalized version of the Stage wise procedure [13]. Lars  is closely 

related with lasso, and in fact provides an deeply efficient algorithm for computing the entire 

lasso path. Lars uses a similar scheme as forward stepwise regression, but only enters “as much” 

of the predictor as it deserves. At the first step, it identifies the predictor most correlated with the 

response; fits the predictor completely, lars  moves the coefficient of this predictor continuously 

toward its least square value, as soon as another predictor “catches up” in terms of correlation 

with the residual, the process is waited. The second predictor joins the active set, and their 

coefficients are moved together in a way that keeps their correlations bind and decreasing. This 

process is continued until all the predictors are in the model and ends at the full least-squares fit. 

The lars method can be recap as follows: 

 

1. Transformation of the predictors to have mean zero and unit norm. Start with residual 
 

 

2. Identify the predictor  too correlated with . 

 

        3. Advance  from 0 towards its least-squares coefficient  until some other competitor 

 has as  much correlation with the current residual as does  

 

       4.  Advance  and  in the direction expressed by their joint least squares coefficient of the 

current  residual on  just before few other competitor  has as sufficient correlation with 

the common  residual.  

lasso correction. If a non-zero coefficient hits zero, drop its predictor from the active set of   

predictor and recompute the current joint least squares direction. 

 

      5. Carry in this method just before all  predictors have been filed. After  

steps, we reach  at the full least-squares solution. 

 

If  the lars algorithm reaches a zero residual solution after  steps steps (the  is 

because we have centered the data).  

The lasso correction  in the fourth step is an effective method of calculating the result to any 

lasso problem, particularly when .   
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2.8 Fitting and analyzing models 

 
The whole path of results (in ) for the ridge regression, lasso and elastic net models were 

calculated using the path wise cyclical coordinate descent algorithms– computationally effective 

techniques for find out  these convex optimization examples– in glmnet in R [5]. We used ten-

fold cross valdation (CV) within glmnet to entirely search for the optimal .   The relaxed lasso 

was fitting using the relaxo package in R whereas the least angle regression  using an R package 

lars. Similarly lars models selects optimal parameter  using ten-fold Cross Validation. We used 

ten-fold cross validation within relaxo.to search for optimal  and . In order to support an 

overview to the models and the experimental data, visual descriptions were shown for the 

regularized regression model. A regularized profile plot of the coefficient paths for a five fitted  

models are shown. Predictive accuracy was also assessed as the root means squared error 

(RMSE) and coefficient of determination (R square). 

 

2.9 Benchmark Experiments 

 
Move in benchmark experiments for comparison of regularization shrunken regression models 

have been somewhat recent. The experimental performance distributions of a set of regularized 

linear regression algorithms are estimated, compared, and ordered. The resampling process used 

in these experiments must be investigate in further detail to determine which method produces the 

most accurate analysis of model influence. Resampling methods to be compared include cross-

validation [21-23]. We can use resampling results to make orderly and inorderly comparisons 

between models [21-22]   Each model  performs 25 independent runs on each sub sample and 

report minimum, median, maximum, mean  of each performance measure over the 25 runs. 

 

3. RESULTS AND DISCUSSION 

Up until this point, we have described several regularized linear regression methods. In this 

section, we conduct experiments  to investigate their individual   performances. Regularization 

techniques can make better the predictive error of the model by lowering the variability in the 

measures of regression coefficient by shrinking the estimates toward zero. These five methods 

will shrink some coefficient estimates to exactly 0, thus supplying a scheme of predictor 

selection. Regularization plots  are plots of the regression coefficients vs the regularization 

penalty . When searching a range of values for the suitable penalty coefficient, it provides a 

view of how the regression coefficients change over that range. So we can lay the regularization 

path which demonstrates how the coefficient of each input predictors changes when the  adjusts 

and choose the suitable  that filter out the number of input predictors for us. Here is the output 

of these plots.   
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Figure 1. Coefficient paths of Lasso, Ridge, Elasticnet, Lars and Relaxed lasso linear models for molecular 

descriptors of Oxazolines and Oxazoles derivatives dataset 

 

In Figure 1  these plots shows nonzero model coefficients as a function of the regularization 

parameter . Because there are 234 predictors and linear models, there are 234 curves. As  

increases, A Regularized models showing various coefficients to zero, removing them from the 

model. The paths for the linear regularized regression  models were obtained by finding the 

transition points. RMSE and R square values were used to compare model prediction accuracies 

for the lasso, ridge, elasticnet, lars and relaxed lasso regression models. Comparing the 

resampling performance the effect of prediction of antituberculer activity using Oxazolines and 

Oxazoles derivatives are demonstrated in Figure 2. 
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Figure 2. Box-whisker plot of the RMSE and R squared values for Regularized linear models. The 

elasticnet model, lars model and the ridge model give the smallest prediction errors; the lars yields the 

smallest RMSEP spread and ridge yields the smallest R Square spread.  
 

The RMSE and R Square values for the five models for prediction of antitubercular activity are 

comparable. as shown in Figure 2. Lars , lasso and elasticnet appear to have slightly smaller 

RMSE error spreads  than relaxed lasso and ridge. Ridge, elasticnet and relaxed lasso appear to 

have slightly smaller R square error spreads than lasso and lars. Pair-wise comparisons of model 

RMSE and R square values using Student’s -test reveal that there is statistical difference in the 

prediction accuracies of the five regularized models. These results are shown in Table 1, which 

gives both the -values and the absolute differences in RMSE and R square for the model 

comparisons. None of the -values are smaller than the specified significance level α = 0.05. The 

null hypothesis is not dropped; in the case of this data set, there is no statistically meaningful 

difference in performance among these five regression methods.  
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Table 1. Pair-wise comparisons of RMSE and R Square differences and -values 

 

   RMSE differences (upper diagonal) and -values (lower diagonal)  

 

 Lasso Elasticnet Lars Relaxo Ridge 

  Lasso  0.067958 0.074415 -0.395483  0.069507 

  Elasticnet 0.3885  0.006456 -0.463441  0.001549 

  Lars 0.3208 1.0000  -0.469898 -0.004908 

  Relaxo 6.873e-06 3.593e-05 1.829e-05   0.464990 

  Ridge 0.6333 1.0000 1.0000 6.733e-05  

  R Square differences (upper diagonal) and -values (lower diagonal) 

 Lasso Elasticnet Lars Relaxo Ridge 

    Lasso  -0.06290 -0.03779 -0.02468 -0.07643 

    Elasticnet 1.0000   0.02511  0.03822 -0.01352 

    Lars 1.0000 1.0000   0.01311 -0.03863 

    Relaxo 1.0000 1.0000 1.0000  -0.05175 

    Ridge 0.4211 1.0000 1.0000 1.0000  

 

It should be observed that the -value for this pair-wise comparison is 6.873e-06 (Table 1) for 

RMSE, which is not valid at α = 0.05, but it is still a much smaller -value than those obtained 

for the other four pair-wise comparisons. To test for pair-wise differences, we use Tukey 

differences.  

 

 
            Figure 3. Asymptotic simultaneous confidence sets for Tukey all-pair regularized linear regression 

models comparisons of the  RMSE errors after alignment. 

As a major advantage compared to the non-parametric methods, can calculate simultaneous 

confidence intervals. Figure 3 shows the corresponding 99% model wise confidence intervals 

where the bars of a given comparison are outside the 0 difference in RMSE line there is a 

statistically significant difference at the 99% level present. The blue dot indicates the estimated 
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magnitude of this difference. The differences between (lars, ridge), (elasticnet, ridge) and  

(elasticnet, lars) are not significant, the corresponding confidence intervals intersect zero and 

overlap each other.  

 
             Table 2. Accuracy of predictions of the five regularized linear models 

 

              RMSE        R square 

 Train Test Train Test 

Lasso 0.4627773 0.391653 0.8114705 0.9050635 

Ridge 0.1164121 0.2773841 0.9835022 0.8689849 

ElasticNet 0.1656584 0.306454 0.9577759 0.8477245 

Lars 0.1752777 0.2878424 0.952097 0.8703903 

Relaxo 0.8552319 0.882294 0.7891734 0.8987195 

 
In our study, regularized regression methods to predict antitubercular activity of Oxazolines and 

Oxazoles derivatives. Predictive accuracy of all five regularized model evaluated as the Square of 

usual correlation between predictor and response (mean inhibitory concentration) i.e R square and 

the root mean squared error (RMSE). RMSE provides baseline measure of predictive accuracy. In 

this case descriptor dataset is splits into training set and test set. Training set comprises seventy 

six observations  and test set comprises twenty four observations.  

 
              Figure 4. Comparison of prediction performance of trained and tested models obtained by five 

regularized linear methods for Oxazolines and Oxazoles derivatives descriptor dataset. 

All results reported are for the train set and test set. The predictive estimation results are 

summarized in Table 2. The obtained both RMSE and R square  values of trained ridge model are 

0.1164121 and 0.9835022  comparatively better than  elasticnet and lars models.   Rest of the 

trained lasso and relaxed lasso models shows low performance than elasticnet and lars models. 

The obtained  RMSE value for tested ridge model is  0.2773841 comparatively better than  lars 

and elasticnet models as well as obtained R square value for tested lasso model is 0.9050635 

comparatively better than  relaxed lasso and lars. Overall ridge model exhibits good predictive 

accuracy. Figure 4 shows the performance comparison of the five methods for antitubercular 

activity prediction.    
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4. CONCLUSIONS 

 
In this paper, we studied and examined the performance of the five regularized linear regression 

models. We presented characteristics of regularized methods through regularized profile  plots as 

well as we presented exploratory and inferential analyses of benchmark experiments. Benchmark 

experiments show that this method is the primary choice to evaluate learning algorithms. It 

should be observed that the scheme can be used to compare a set of algorithms but does not 

propose a model selection. The results for the regularized regression suggest that we may observe 

performance differences with barely high power. We have compared the predictive accuracies 

with all five models among ridge model exhibits better overall predictive performance.  
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