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ABSTRACT 
Cancer is one of the deadliest diseases in the world and is responsible for around 13% of all deaths world-
wide. Cancer incidence rate is growing at an alarming rate in the world. Despite the fact that cancer is 
preventable and curable in early stages, the vast majority of patients are diagnosed with cancer very late. 
Furthermore, cancer commonly comes back after years of treatment. Therefore, it is of paramount 
importance to predict cancer recurrence so that specific treatments can be sought. Nonetheless, 
conventional methods of predicting cancer recurrence rely solely on histopathology and the results are not 
very reliable. The microarray gene expression technology is a promising technology that could predict 
cancer recurrence by analyzing the gene expression of sample cells. The microarray technology allows 
researchers to examine the expression of thousands of genes simultaneously. This paper describes a state-
of-the-art machine learning based approach called averaged one-dependence estimators with subsumption 
resolution to tackle the problem of predicting, from DNA microarray gene expression data, whether a 
particular cancer will recur within a specific timeframe, which is usually 5 years.  To lower the 
computational complexity, we employ an entropy-based gene selection approach to select relevant 
prognostic genes that are directly responsible for recurrence prediction. This proposed system has achieved 
an average accuracy of 98.9% in predicting cancer recurrence over 3 datasets.  The experimental results 
demonstrate the efficacy of our framework. 
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1. INTRODUCTION 
Today cancer kills more people than AIDS, tuberculosis, and malaria combined [1]. According 
to the World Health Organization (WHO), cancer is a leading cause of death and responsible for 
around 13% of all deaths world-wide [2]. Cancer incidence rate is growing at an alarming rate. 
Despite the fact that cancer is preventable and curable in early stages, the vast majority of patients 
are diagnosed with cancer very late. Furthermore, it is not uncommon for cancer to come back 
after years of treatment. Cancer recurs because a tiny portions of cancer cells may remain 
undetected in the body after treatment. Over time, these cells may proliferate and grow large 
enough to be identified by conventional tests. Depending on the type of cancer, recurrence can 
occur weeks, months, or even many years after the primary cancer was treated. It is extremely 
difficult for physicians to know which cancer patients will experience recurrence. The likelihood 
that a cancer will recur and the likely timing and location of a recurrence depend on the type of 
the primary cancer. Some cancers have a predictable and distinguishable pattern of recurrence 
which can be picked up by pattern recognition and machine learning techniques. Therefore, a 
computerized cancer recurrence prediction system is required to prevent people from dying as a 
consequence of this unfortunate disease. Technically, cancer is a family of diseases that involve 
uncontrolled cell growth wherein cells divide and grow exponentially, generating malignant 
tumors and spreading to other parts of the body. The destructive power of the cancer is that it may 
not only spread to the neighboring tissues, but also to the whole body through the lymphatic 
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system or bloodstream.  There are a few hundreds of known cancers found in humans [3]. Because 
there are an astronomical number of causes of cancer, researchers are still trying to understand 
the basis of cancer which still remain only partially understood. However, one thing that is 
apparent is that in order for a healthy cell to transmute into a cancer cell, the genes which regulate 
cell growth and differentiation must be modified [4]. It is known that cancers are caused by a 
chain of mutations in the genetic sequence. The development of a cancer cell is caused by a series 
of mutations which makes the cell proliferate more than its immediate neighbors by a process 
which transforms a normal healthy cell into a micro-invasive cell at the genetic level.  
 
The nucleus of a human cell contains 46 chromosomes, each of which comprises a single linear 
molecule of deoxyribonucleic acid (DNA), which is intimately complexed with proteins in the 
form of chromatin [5]. DNA is the building block of life, which contains encoded genetic 
instructions for living organisms. A DNA is transcribed to become a precursor mRNA, which is 
then spliced to become an mRNA, which is in turn translated to become a protein. Because all the 
cells (except some) in a human body contain an identical set of genes, the expression level of each 
gene must differ from cell to cell. If we can somehow measure the expression levels of individual 
genes in a cell, we can use machine learning techniques to predict whether a cell is cancerous and 
what type of cancer it is. Fortunately, the DNA microarray technology allows researchers to 
measure expression levels of genes in a cell. A DNA microarray, also known as DNA chip, gene 
chip, gene array or biochip, is a densely packed array of identified DNA sequences attached to a 
solid surface, such as glass, plastic or silicon chip [6]. On a microarray chip, DNA fragments are 
attached to a substrate and then probed with a known gene or fragment. DNA sequences 
representing tens of thousands of genes are spotted or in situ synthesized on a very small slide. 
Microarray chips are scanned using an microarray scanner [7] and digitized on a computer. The 
scanner generates a 2D heat map, also known as, microarray image or microarray data. Therefore, 
DNA microarrays can be used to determine which genes are “turned on” (expressed) and which 
genes and “turn off” in a particular cell. They determine not only whether individual genes are 
expressed, but also the level at which these individual genes are expressed. 
 
In this paper, we tackle the problem of recognizing cancer from DNA microarray gene expression 
data. During the past few decades, applications of pattern recognition and machine learning 
techniques have emerged in many domains [8-17]. Pattern recognition and machine learning 
techniques have also recently become popular in the arena of microarray gene expression analysis. 
There have been some attempts to predict cancer recurrence using machine learning techniques. 
Peterson et al. [18] applied old-fashioned artificial neural networks (ANNs) with back 
propagation to predict prostate cancer recurrence of patients after undergoing radical 
prostatectomy. After gene screening and optimization, they claimed to have achieved 0.99 to 1.0 
diagnostic sensitivity and specificity. Ensemble techniques have recently become popular in 
cancer recurrence prediction. Ford et al. [19] proposed a General Regression Neural Network 
(GRNN) Oracle ensemble by combing several Partial least squares (PLS) models that were 
individually trained to predict lung cancer recurrence from 12 different gene networks. They 
concluded that it was possible to correctly classify recurrence by combining the results based on 
their proposed gene network models.  Similarly, Norris et al.[20] applied the very same GRNN 
oracle to predict cancer recurrence. They confirmed that GRNN led to high prediction accuracy. 
Campbell et al. [21] applied the same GRNN oracle model to predict colon cancer recurrence. 
Lizuka et al. [22] applied Fisher linear classifier to predict recurrence of hepatocellular carcinoma 
after curative resection. Their system obtained an accuracy of 93% in predicting early intrahepatic 
recurrence. This paper describes an approach based on a state-of-the-art machine learning 
technique called averaged one-dependence estimators with subsumption resolution to tackle the 
problem of recognizing cancer recurrence. 
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2. CANCER RECURRENCE PREDICTION  

 
The aim of cancer recurrence prediction is to predict, given a set of gene expression data, whether 
or not a particular cancer will recur within a particular time frame. We proposed a three-layered 
framework that consists of entropy-based gene selection, entropy minimization discretization and 
prediction as shown in Figure 1. The complexity of any machine learning classifier depends upon 
the dimensionality of the input data [23]. There is also a phenomenon known as the ‘curse of 
dimensionality’ that arises with high dimensional input data [24]. In the case of genetic data 
classification, not all the genes in a genetic sequence might be responsible for predicting cancer 
recurrence. Therefore, we propose to employ a gene selection process to select relevant prognostic 
genes in an unsupervised manner and an entropy-based discretization process to discretize the 
gene expression levels. Section 2.1 describes the process of gene selection and Section 2.2 
describes the process of discretization. After dimensionality reduction, we propose to perform 
cancer recurrence prediction using the averaged one-dependence estimators with subsumption 
resolution (AODEsr).  Section 2.3 describes the process of prediction. 
 

Figure 1. High-level flow diagram of cancer recurrence prediction framework. 
 
 

2.1. Entropy-based gene selection 

The complexity of any machine learning classifier depends upon the dimensionality of the input 
data [23]. Generally, the lower the complexity of a classifier, the more robust it is. Moreover, 
classifiers with low complexity have less variance, which means that they vary less depending on 
the particulars of a sample, including noise, outliers, etc [23]. In the case of cancer recurrence 
prediction, not all the genes in a genetic sequence might be responsible for predicting cancer 
recurrence. Therefore, we need to have a gene selection method that chooses a subset of relevant 
prognostic genes, while pruning the rest of the genes in the microarray gene expression data [25, 
26]. In essence, we are interested in finding the best subset of the set of genes that can sufficiently 

Entropy-based gene selection

Entropy minimization discretization 

Output: [‘Will recur’, ‘Will not recur’] 
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predict cancer recurrence. Ideally, we have to choose the best subset that contains the least number 
of genes that most contribute to the prediction accuracy, while discarding the rest of the genes. 
There are 2n possible subsets that can arise from an n-gene long genetic sequence. In essence, we 
have to choose the best subset out of 2n possible subsets. Because performing an exhaustive 
sequential search over all possible subsets is computationally expensive, we need to employ 
heuristics to find a reasonably good subset that can sufficiently predict cancer recurrence. There 
are generally two common techniques: forward selection and backward selection [23]. In forward 
selection, we start with an empty subset and add a gene (that increases the prediction accuracy 
the most) in each iteration until any further addition of a gene does not increase the prediction 
accuracy. In backward selection, we start with the full set of genes and remove a gene (that 
increases the prediction accuracy the most) in each iteration until any further removal of a gene 
does not increase the prediction accuracy. There are also other types of heuristics such as scatter 
search [27] and variable neighborhood search [28].  However, search-based gene selection 
techniques do not necessarily produce the best subset of the genes. 
 
We employ a gene selection process based on an information-theoretic concept of entropy. Given 
a set of genes X and ሺݔሻ which represents the probability of the ith gene, then the entropy of 
genes, which measures the amount of ‘uncertainty’, is defined by: 

 
 

ሺܺሻܪ ൌ െ ሺݔሻ


ୀଵ

݈݃ ሻ (1)ݔሺ

 
Entropy is a non-negative number. ܪሺܺሻ is 0 when X is absolutely certain to be predicted. The 
conditional entropy of class label Y given the genes is defined by: 
 
 
 

ܺሻ	|	ሺܻܪ ൌ ൫ݔ, ൯ݕ ݈݊



ୀଵ



ୀଵ

൯ݕ൫

,ݔ൫ ൯ݕ
 (2)

 
The information gain (IG) of the genes from the class label Y is defined to be: 
 

 
ሺܻܩܫ  | ܺሻ ൌ ሺܻሻܪ െ ሺܻܪ | ܺሻ (3)

 
 
The gain ratio (GR) between the genes and the class label Y is defined to be: 
 

 
 

ሺܻܴܩ | ܺሻ ൌ
ሺܻܩܫ | ܺሻ
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 (4)

 
The GR of a gene is a number between 0 and 1 which approximately represents the ‘prognostic 
capacity’ of the gene. A GR of 0 roughly indicates that the corresponding individual gene has no 
significance in cancer survivability prediction while a GR of 1 roughly indicates that the gene is 
significant in cancer survivability prediction. During the training phase, the GR for each gene is 
calculated according to (4). All the genes are then sorted by their GRs. Genes whose GRs are 
higher than a certain threshold value are selected as discriminating genes while the rest are 
discarded. Training needs to be carried out only once.  
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2.2. Entropy minimization discretization 

Microarray gene expression heat map is essentially a matrix of gene expression levels. Each gene 
expression level is a continuous number. It has been demonstrated in a number of studies that 
many classification algorithms seem to work more effectively on discrete data or even more 
strictly, on binary data [29]. Therefore, discretization is a desired step. Discretization is a process 
in which continuous gene expression levels are transformed into discrete representation which is 
comparable to linguistic expressions such as ‘very low’, low’, ‘high’, and ‘very high’. There are 
numerous discretization techniques in the literature [30]. However, we have adopted EMD 
(Entropy Minimization Discretization) [31] because of its reputation in discretization of high-
dimensional data. The training instances are first sorted in an ascending order. The EMD 
algorithm then evaluates the midpoint between each successive pair of the sorted values of an 
attribute as a potential cut point [32]. While evaluating each candidate cut point, the data are 
discretized into two intervals and the resulting class information entropy is calculated. A binary 
discretization is determined by selecting the cut point for which the entropy is minimal amongst 
all candidates [29]. The binary discretization is applied recursively, always selecting the best cut 
point. A minimum description length criterion (MDL) is applied to decide when to stop 
discretization [31]. The results of the discretization process are carried forward to the prediction 
stage. 
 
 
2.3. Classification 

Naive Bayes (NB), which is fundamentally built on the strong independence assumption, is a very 
popular classifier in machine learning due to its simplicity, efficiency and efficacy [33-36].  There 
have been numerous applications of NB and variants thereof. The conventional NB algorithm 
uses the following formula for classification [37]: 
                                                    
ݐݑݐݑܱ  ൌ argmax

௬
൫ܲሺݕ | ⋯,ଵݔ , ሻ൯ (5)ݔ

 
NB performs fairly accurate classification. The only limitation to its classification accuracy is the 
accuracy of the process of estimation of the base conditional probabilities. One clear drawback is 
its strong independence assumption which assumes that attributes are independent of each other 
in a dataset. In the field of genetic sequence classification, NB assumes that genes are independent 
of each other in a genetic sequence despite the fact that there are apparent dependencies among 
individual genes. Because of this fundamental limitation of NB, researchers have proposed 
various techniques such as one-dependence estimators (ODEs) [38] and super parent one-
dependence estimators (SPODEs) [39] to ease the attribute independence assumption. In fact, 
these approaches alleviate the independence assumption at the expense of computational 
complexity and a new set of assumptions. Webb [33] proposed a semi-naive approach called 
averaged one-dependence estimators (AODEs) in order to weaken the attribute independence 
assumption by averaging all of a constrained class of classifiers without introduction of new 
assumptions. The AODE has been shown to outperform other Bayesian classifiers with 
substantially improved computational efficiency [33]. The AODE essentially achieves very high 
classification accuracy by averaging several semi-naive Bayes models that have slightly weaker 
independence assumptions than a pure NB. The AODE algorithm is effective, efficient and offers 
highly accurate classification. The AODE algorithm uses the following formula for classification 
[37]: 
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Semi-naive Bayesian classifiers attempt to preserve the numerous strengths of NB while reducing 
error by relaxing the attribute independence assumption [37]. Backwards sequential elimination 
(BSE) is a wrapper technique for attribute elimination that has proved to be effective at this task. 
Zheng et al. [37] proposed a new approach called lazy estimation (LE), which eliminated highly 
related attribute values at classification time without the computational overheads that are 
intrinsic in classic wrapper techniques. Their experimental results show that LE significantly 
reduces bias and error without excessive computational overheads. In the context of the AODE 
algorithm, LE has a significant advantage over BSE in both computational efficiency and error. 
This novel derivative of the AODE is called the averaged one-dependence estimators with 
subsumption resolution (AODEsr). In essence, the AODEsr enhances the AODE with a 
subsumption resolution by detecting specializations among attribute values at classification time 
and by eliminating the generalization attribute value [37]. Because the AODEsr has a very weak 
independence assumption, it performs well in classification. Therefore, we employ an AODEsr 
classifier to predict cancer recurrence. 

 
 

3. EXPERIMENTS 
The proposed framework was implement in C# 5.0 programming language using IKVM. Figure 
2 illustrates a screenshot of the implemented cancer recurrence prediction system. 

 

Figure 2. Screenshot of implemented cancer recurrence prediction system. 
 
We tested our proposed system using 3 cancer recurrence datasets as listed in Table 1. Each 
dataset contains samples with more than 7000 genes. We carried out leave-one-out cross-
validations (LOOCV) where an N-sized dataset was partitioned into N equal-sized sub-datasets. 
Out of the N sub-datasets, a single sub-dataset was retained as the validation data for testing the 
model, and the remaining N - 1 sub-datasets were used as training data. The whole cross-
validation process was then repeated N - 1 more times such that each of the N sub-datasets got 
used exactly once as the validation data. The results were then averaged over all the N trials. We 
used a critical value of 1, frequency limit of 250, an M-estimate weight value of 0.03 for the 
AODEsr model for all the trails.  
 

Table 1. Three cancer recurrence datasets used in our experiments. 

Dataset #Genes #Samples 

Breast cancer recurrence [40] 24481 78+19 
Prostate cancer recurrence [41] 12600 21 

CNS cancer recurrence [42] 7129 60 
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For each dataset, we performed one LOOCV experiment for varying number of selected genes 
ranging from 1 to 150. The genes for each trail were selected using the entropy-based technique 
outlined in Section 2.2. Figure 3 illustrates the results of our LOOCV experiments for each of the 
11 datasets. The vertical axis represents the accuracy of the cancer recurrence predictor in 
percentage while the horizontal axis represents the number of selected genes. Table 2 lists the 
same set of results in a tabular format for a certain number of selected genes. The most surprising 
finding was that the system achieved a 100% accuracy in predicting prostate cancer recurrence 
for any number of selected genes. This implies that there is only one gene which acts as a 
prognostic biomarker for prostate cancer. In other words, using one gene is enough to predict 
whether prostate cancer will recur. The system achieved a 100% accuracy in predicting breast 
cancer with the number of genes higher than 88. This implies that the number of prognostic 
biomarkers are higher for breast cancer than for prostate cancer. The system obtained the lowest 
accuracy in predicting CNS cancer recurrence.  
 
The results show that prediction accuracy does increase with the number of selected genes, albeit 
without perfect monotonicity. Results also show that at certain instances accuracy decreases with 
an increase in the number of genes. This may not be because of the classifier because AODEsr, 
like any other Bayesian classifiers, is not sensitive to irrelevant features. Therefore, adding an 
extra gene should not theoretically downgrade accuracy. The disruptions in monotonicity might 
be because of the intrinsic imperfection in the gene selection procedure.  
 
Because our proposed system is able to predict cancer recurrence accurately even with a very few 
genes, the results reinforce the clinical belief that there are only a few prognostic biomarkers for 
cancer recurrence. The maximum LOOCV accuracy of our cancer classifier is 100% for two out 
of three datasets. The average maximum LOOCV accuracy of our cancer classifier across all the 
three datasets is 98.9%. It is worth iterating the fact that we used the AODEsr classifier with 
exactly the same set of parameters (critical value of 1, frequency limit of 250, an M-estimate 
weight value of 0.03) throughout all the experiments in order to prevent bias. To the best of your 
knowledge, the accuracy of the proposed cancer recurrence prediction system using the AODEsr 
classifier with the entropy-based selection process seems to be significantly higher than those of 
other cancer recurrence systems reported in the literature.  
 

 
 

Figure 3. LOOCV accuracy (Y-axis) vs. number of genes (X-axis) [note: the plot maybe hard to read in 
monochrome print]. 
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Table 2. LOOCV accuracy of the system on 3 datasets with varying number of selected genes. 

# of genes Breast Prostate CNS

5 86.6 100 93.3
10 92.8 100 96.7
25 99.0 100 96.7
50 99.0 100 96.7
75 99.0 100 96.7
110 100 100 96.7

 
  
 

3. CONCLUSION 
Many people succumb to cancer every day. Although cancer can be treated if detected early, 
cancer can recur after years of treatment. An automatic cancer recurrence prediction system is 
highly essential. We have presented a machine learning based approach to predict cancer 
recurrence from microarray gene expression data. Conventional naïve Bayes classifiers cannot 
accurately classify gene expression because of their unrealistic assumption that forbids 
dependencies among individual genes. We employ a state-of-the-art machine learning approach 
called the averaged-on dependence estimator with subsumption resolution (AODEsr) to tackle 
the problem of predicting cancer recurrence. Given a set of gene expression data, the system 
predicts whether a particular cancer will recur within a particular timeframe. We have carried out 
experiments on three cancer datasets. This proposed system has achieved an accuracy of 98.9% 
in predicting cancer recurrence.  The accuracy rate of the proposed system was found to be higher 
than those of other techniques. The experimental results demonstrate the efficacy of our 
framework.  
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