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ABSTRACT 

 
The classical single period problem (SPP) has wide use especially in service industries which constitute a 

great part of the economy. In this paper, a single period production problem is considered as a specific 

type of SPP. This SPP model is developed by considering the probability of scrap and rework in production 

at the beginning and during the period. Then, optimal solution is obtained in order to maximize the 

expected value of total profit. In case of producing the scrap items and defective items, which need rework, 

the optimal profit of system in comparison to ideal production system reduces. In addition, reduction of 

profit is more sensitive by increasing the probability of producing scrap items in comparison to the 

probability of producing defective items. These results would help managers in order to make appropriate 

decisions on changing or revising machines or technologies. 
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1. INTRODUCTION 

 
The classical single period problem (SPP) is to find a product's order quantity that maximizes the 
average profit under probabilistic demand. The SPP model assumes that if any inventory remains 
at the end of the period, a discount is applied to sell it or dispose it off. If the quantity of order is 
smaller than the realized demand, the news-vendor loses some profit [1]. 
 
The SPP illustrates some real-life situations and is often used to assist decision making in the 
fashion and sporting industries, both at manufacturing and retail levels. The SPP can also be used 
in managing capacity and booking of orders in service industries such as airlines and hotels [2]. 
Researchers have followed two approaches for solving the SPP. In the first approach, the 
expected costs of overestimating and underestimating demand are minimized. In the second 
approach, the average profit is maximized. Both approaches yield the same results. 
 
Publication of more than 40 papers since 1988 shows an increasing interest on SPP and has 
provided a wide literature on this subject matter. A partial review of this literature has been 
recently conducted in a textbook by Silver et al [3]. 
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The SPP has a wide use especially in service industries which forms a great part of the US 
economy. As product life cycles continue with their downward trend, the importance of the SPP 
grows. Perhaps, this is the main reason that many SPP extensions have been suggested in the 
recent years. In an overall view, extensions to the SPP can be classified into 11 categories [4]: 
 

(1) Extensions to different objectives and utility functions; 
(2) Extensions to different supplier pricing policies; 
(3) Extensions to different news-vendor pricing policies and discounting structures; 
(4) Extensions to random yields; 
(5) Extensions to different states of information about demand; 
(6) Extensions to constrained multi-product; 
(7) Extensions to multi-product with substitution; 
(8) Extensions to multi-echelon systems; 
(9) Extensions to multi-location models; 
(10) Extensions to models with more than one period to prepare for the selling season; and 
(11) Other extensions. 

 
There are a number of multi-echelon extensions to SPP and some of these extensions will be 
reviewed in this research project. Extensions presented in this article can also be classified in the 
category of multi-echelon systems. 

 
Gerchak and Henig formulated a single period model for selecting optimal component stock 
levels in an assemble-to-order system. For a given component stock level, Gerchak and Henig 
determined the revenue maximization allocation of common components between products. This 
information is in turn used to select the optimal stock levels [5]. 
 
Jonsson and Silver also worked on assemble-to-order environment where some of the 
components are unique to specific end items, while others are common to two or more end items. 
Jonsson and Silver assumed that components must be ordered before demands for end items 
become known. At this time, demands for end items are normally distributed and their values are 
known before final assembly operations are begun. Jonsson and Silver addressed the problem of 
deciding on component quantities under a budget constraint so as to maximize the expected 
number of units of sold end items [6]. 
 
Jonsson & Silver developed their earlier model to deal with many components and end items. 
They formulated the problem as a two-stage stochastic programming problem with a recourse 
which turns out to be extremely difficult to find an optimal solution. Jonsson and Silver 
developed  three  heuristics  for  solving the  problem  under  some  simplifying  assumptions  [7]. 
Jonsson, Jornsten, and Silver used scenario aggregation technique for solving the two-stage 
stochastic programming problem formulated by Jonsson and Silver. The basic idea behind this 
scenario aggregation technique is to consider only a relatively small subset of the typically large 
number of stochastic demand outcomes. For each subset, the optimal values of the decision 
variables can be easily found. Scenario aggregation ensures that an implementable solution is 
then obtained using an iterative scheme. Jonsson found that in 50% of the problems studied, 
scenario aggregation identified the optimal solution [8]. 
 
Gerchak and Zhang developed a two-echelon SPP in which decisions have to be made on whether 
to hold inventories in the form of raw material or finished products. Holding raw material is less 
costly but if demand turns out to be high then a fraction of demand is lost since some customers 
might not be willing to wait for the conversion of raw materials into finished goods. Gerchak and 
Zhang assumed that there is an initial inventory at both stages and derived the average profit as a 
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function of the inventory levels and proved its concavity. Gerchak and Zhang then obtained the 
optimal inventory policy [9]. 
 
Eynan and Rosenblatt also generalized Gerchak and Zhang's model. Eynan and Rosenblatt used 
the SPP to evaluate an assembly in advance (AIA) versus assemble to order (ATO) strategies in a 
two-echelon production system [10]. 
 
Moon and Choi developed Eynan and Rosenblatt's model to the distribution free case where only 
the mean and standard deviation of the demands are known. Moon and Choi assumed that there 
are no initial inventories and all customers will wait for the conversion process. Moon and Choi 
also treated the problem under a budget constraint using the Lagrange method [11]. 

 
In the previous single period models with two different material inventory levels, there are no 
scraps or defective parts in production process at the beginning or during of the period. This paper 
presents a novel single period model with two different inventory levels which investigates the 
problem of scraps or defective products. In proposed model, defective products result in either 
perfect or scrap products. 
 

2. MODEL ANALYSIS 

 
Classica multi-stage model was studied by Johnson and Montgomery [1]. Here, we consider a 
single period production model with the possibility of having scraps and rework. In this model, 
we assume that demand will take place in a short period, and demand is a random variable with 
density function f(D). Because of the short length of the selling period, there is no opportunity for 
the manufacturer to reorder raw material from his supplier. 
 
At the start of the period, he has an amount, say X1, in his material inventory and an amount, X2 
in his finished product inventory, ready for sale. If he runs out of finished stock during the period, 
a part of subsequent customers, α, will have to wait for production of finished items from stock of 
raw material. Obviously, the remainder will cancel their orders. After the completion of 
production process -either at the start or during of period –all finished products are investigated 
and there is a probability that a finished product is defective or scrap. The defective items are sent 
to rework process as shown in Figure 1. In the rework process, the defective products may turn 
into perfect products or scrap.  
 
In the rework process, there is a probability that some products are recognized as defective. These 
defective products are assumed to be incorrigible and they will be cast away as scrap. Products or 
raw material remaining at the end of the period must be disposed of. The problem is to determine 
values for X1 and X2, in the situation that the average profit in each period is maximized. 
 

2.1. Assumptions 

 
The assumptions of proposed model are described as follows: 
 

• Demand is a random variable with the density function f(D); 

• Demand will take place only in a short period of time; 

• Material and finished products have disposal values at the end of the period; 

• All parts are investigated for the possible defects after the production and rework; 

• Those defective products recognized as curable undergo a rework process; 

• Investigation costs are assumed to be a part of production or rework process costs; 
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• Defective products will go through the rework process only once. There is a probability of 
defectiveness after the rework process; 

• Rework process will start just at the end of the production stage; 

• Following parameters are supposed to be known and fixed: 
- The probability of one product unit produced at the start of the period being scrap  )ω (  
- The probability of one product unit produced during the period being scrap )γ(  
- The probability of one product unit produced at the start of the period  being curable )η(   
- The probability of one product unit produced during the period being curable )β(  
- The probability of one product unit turning into scrap after rework at the beginning of the 

period )ν(  
- The probability of one product unit turning into scrap after the rework during the period 

)λ( ; 

• Cost of one unit of finished product equals the sum of cost of buying one unit of raw material 
and cost of producing one unit of finished product; and 

• Unit selling price of finished product is fixed. 
There is no difference between the unit selling prices of reworked and non-reworked products. 
 

2.2. Notation 

 
We define the following notations for the mathematical model: 
 
X1 : Material inventory at the start of the period, a decision variable; 
X2 : Finished product inventory at the start of the period, a decision variable; 
C1 : Cost per unit of material inventory at the start of the period; 
C2 : Cost of processing a unit of material into a unit of finished product; 
C3 : Cost of rework for each unit of defective finished product during the period; 
C4 : Cost of rework for each unit of defective finished product at the start of the period; 
L1 : Disposal value per unit of material inventory at the end of the period; 
L2 : Disposal value per unit of finished product inventory at the end of the period; 
D : Quantity of demand, a random variable; 
f(D) : The probability density functions of demand; 
α  : Part of customers who wait for manufacturer to produce their demand from his available 

inventory of material; 
r : Unit selling price of finished product; 
η : The probability of one product unit produced at the start of the period being curable, 

10 <<η ;  

ω : The probability of one product unit produced at the start of the period being scrap, 10 << ω ; 

ν : The probability of one product unit turning into scrap after the rework at the beginning of 
the period,  10 <<ν

 and 110 <−−< ηνω ; 

β : The probability of one product unit produced during the period being curable, 10 << β ; 

γ : The probability of one product unit produced during the period being scrap, 10 << γ ; 

λ : The probability of one product unit turning into scrap after the rework during the period, 
10 << λ  and 110 <−−< βλγ ; 

 
( )21 ,, XXDV : profit function in each period; 

( )21 ,, XXDV : average profit function in each period; 

 
We assume that for this model 112 CLL <<  and also )1(3212 βλγβ −−<++< rCCCL . These last 

assumptions are quiet reasonable considering the environment of the problem. 
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Figure 1. Schematic diagram of single period production problem with scrap and rework at the 
beginning and during of period 

 
2.2.1. First situation 

 
In the first situation, the value of the demand variable is less than the units of procured finished 
product at the start of the period (Figure 2). Obviously, in this case, manufacturer does not need 
to produce more items using the raw material and the inventory of finished products can satisfy 
the whole demand. Therefore, at the end of period all unsold units and raw material will be sold 

for the determined disposal value. This means that 20 XD ≤≤ . 

 

 
 

Figure 2. Inventory level during the period in the first situation 
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2.2.1. Second situation 

 
In the second situation, the amount of demand is more than the amount of finished products at the 
start of period (Figure 3). Consequently, shortage will occur and a number of customers will wait 
for the manufacturer to produce finished products while the remainder will cancel their orders. In 
addition, the demand is not as high as it requires all the raw material to change into finished 
products. Hence, the remaining raw material will be sold for the determined disposal value. This 

means that 212
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Figure 3. Inventory level during the period in the second situation 

 
Therefore the profit function would be: 
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2.2.1. Third situation 

 
Lastly, in the third situation, the value of the demand variable is more than the sum of amounts of 
in-stock material and finished product procured at the beginning of period. Therefore, the 
manufacturer needs to send all available in-stock raw materials to the production stage (Figure 4). 
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Figure 4. Inventory level during the period in the third state 
 

Profit function in this case is: 
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According to the equations (1), (2), and (3), the average profit function would be:  

dDDfDXXV

dDDfDXXVdDDfDXXVXXDV

XX

XX

X

X

)(),,(

)(),,()(),,(),,(

21

21

2

2

)1( 213

)1(

212
0

21121

∫

∫∫
∞

+
−−

+
−−

+

+=

α

βλγ

α

βλγ

 (4) 

3. OPTIMAL SOLUTION 

 
The following problem is a non-linear unconstrained problem with the general form of: 
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We need to check sufficient conditions to find the optimal solution [12]. The Gradient matrix of 
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Using Leibniz Integral Theorem, partial derivatives are [13]: 
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Finally, we have the following statement: 
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In accordance with Leibniz theorem, the other partial derivative of the average profit function can 
be calculated as: 
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Then, according to the equation (8), the value of the cumulative distribution function at the 
extremum point could be written as follows and can be calculated based on the demand’s 
distribution function. 
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Based on the above calculations, the point ),( 21 XXX =  is a local extremum. We need to check 

the sufficient condition for X as well as proving the concavity of the objective function in order to 
show that X is also a global extremum. To prove the concavity, we calculate the Hessien matrix 
by defining M and N as follows: 
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To check the concavity of the average profit function, one should multiply its entries by (-1). 
Since the Hessien matrix is 2×2, we must check the positivity of the determinant for upper left 
corner of 1×1 matrix as well as the determinant of the whole matrix. By proving the positivity of 
the mentioned determinants, the concavity of the function follows and the local extremum will 
prove to be global extremum [14]. 
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The determinant of the whole matrix can be written as: 
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After some simplifications, we can write the determinant of the whole matrix as follows. By 
assumptions of the problem, we know that the below inequality always holds: 
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Hence, we can conclude that the determinant of the whole matrix is always positive. This 
sequence results in concavity of average profit function. Therefore, one can find the optimal 
solution using equations (8) and (10). Also, if the value of β, γ, λ, η, ω, ν equal to zero, the 
optimal solution of classic model can be obtained [1]. 
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4. NUMERICAL EXAMPLES 

 
In order to check the validity of the proved results in the proposed model, some numerical 
examples are brought and then, results are compared.  

 
Here, there are a number of assumptions: first, selling price of each unit of the finished product at 
the end of the period is $100. Second, purchase of raw material costs $30 for each unit and 
purchase price of each unit of finished product at the start of the period is $40. Third, disposal 
prices at the end of the period are $20 for each unit of the raw material and $10 for each unit of 
finished product. Now, assume that the fraction of the costumers who wait for the manufacturer to 
provide them with their orders in case of shortage is 0.4. Demand is a Normal random variable 
which takes place during one period [1]. 
 
r = 100$, C1 = 30$, C2 = 40$, L1 = 20$, L2 = 10$, α = 0.4 
 
For the proposed model, with the probability of 0.1, assume that the production stage will result 
in production of a unit of product which is curable by rework. Similarly, with the probability of 
0.05, assume that it will result in production of an incurable product. Furthermore, the probability 
of having scrap at the end of rework stage is 0.1 and rework costs $45 for each unit of curable 
finished product. All these assumptions are both at the start and during the period. 
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In the first example, if we assume that demand is a Normal random variable with the mean of 
1000 and standard deviation of 200, based on the equations (8) and (10) we have: 
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Simply, by using Normal distribution table, we have following results: 
 

69.801*
2 =X  

72.119*
1 =X  

 
*
2

*
1 , XX  represent the optimum amounts for procurement of raw material and production of 

finished products at the start of the period. 
 
According to the equation (4), and considering standard Normal distribution table, optimum 

average profit function, denoted by ( )*
2

*
1

*
Pr ,, XXDV oposed , ( )69.801,72.119X  is calculated 

below: 
 

( )

1.16046)]04.1083(1[5.18965)]69.801()04.1083([83.5369)(55.12

)]0()69.801([9.56718)(9069.801,72.119,

04.1083

69.801

69.801

0

*
Pr

=−+−++

−−=

∫

∫
FFFdDDfD

FFdDDfDDV oposed

 

 
If we overlook the possibility of scrap and rework both at the beginning and during the period, by 

using the classical newsvendor model, we will have 862,109
21

== XX . This solution results in the 
equation (4) as follows: 
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( )

56.15843)]15.1118(1[04.20007)]15.1118()862([06.5971)(55.12

)]0()862([1.60788)(90862,109,

15.1118

862

862

0
Pr

=−+−++

−−=

∫

∫
FFFdDDfD

FFdDDfDDV oposed

 

 
If we use classical model solution, we would have a reduction of 202.53 units in profit. 
 
For this solution, optimum profit using the classic model’s objective function, denoted 

by ( )21

*
,, XXDV Classic , ( )862,109X  will be: 

 

( )

47.24348)]5.1134(1[29130)]862()5.1134([10978)(16

)]0()862([52810)(90862,109,

5.1134

862

862

0

*

=−+−++

−−=

∫

∫
FFFdDDfD

FFdDDfDDV Classic

 

 
In case that there is a rework stage and scraps, profit would reduce if we neglect them and use the 
solution obtained by the classic model. The lost profit would be: 
 

( ) ( ) 91.850456.1584347.24348862,109,862,109, Pr
*

=−=−=∆ DVDVV oposedClassic  

 
Difference between optimum profits is shown below: 
 

( ) ( ) 37.83021.1604647.2434869.801,72.119,862,109,
*
Pr

*
=−=−=∆ DVDVV oposedClassic  

 
Even in optimum situations, having scraps and rework may cause a reduction of about 8302.37 in 
profit, compared to the ideal production system. These results would help managers to make 
appropriate decisions on replacing or correcting the machines or technologies. Disregarding 
hidden costs like those of rework and scrap reduces the profit and results in increased costs. 
Above results are obtained from some other numerical examples with the outcomes summarized 
in table 1. In these examples, the parameters of Normal random variable (µ,σ) are changed and 
other parameters are same as first example.  
 

Table 1. Numerical results 
 

 Classic Model 
Proposed Model 

Using Classic Model X Using Proposed Model X 

(µ,σ) X1 X2 Profit X1 X2 Profit X
*

1 X
*

2 Profit 

(1000,150) 82.22 895.61 25761.4 82.22 895.61 17074.41 89.79 851.27 17220.73 

(1000,200) 109 862 24348.47 109 862 15843.56 119.72 801.69 16046.1 

(1000,250) 137.03 826.02 22937.44 137.03 826.02 14629.56 149.65 752.11 14873.29 

(1500,200) 109.63 1360.81 39348.53 109.63 1360.81 26223.34 119.72 1301.69 26418.42 

(2000,200) 109.63 1860.81 54348.53 109.63 1860.81 36595.68 119.72 1801.69 36790.76 

(3000,200) 109.63 2860.81 84348.53 109.63 2860.81 57340.37 119.72 2801.69 57535.44 

 

Indeed, the proposed model is able to present real situations more accurately in comparison to the 
classic model. This is mainly because it includes rework and scrap costs both at the beginning and 
during the period. 
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5. SENSITIVITY ANALYSIS 

 
In order to analyze the sensitivity of proposed model, some parameters are changed and then, 
effects of this change on the obtained solution (X1, X2) and expected profit are studied. These 
parameters are β, γ, λ, η, ω, ν and others are same as first numerical example parameters. In 
addition, in every analysis, there are two parameters increasing together from 0 to 1 with 0.01 
change in each step. Meanwhile, the results, shown in the graph below, are feasible solution of 
proposed model according to its assumptions. 
 
According to these results, when variant parameters increase from 0 to 1, the raw material 
inventory (X1) remains approximately constant. However, finished product inventory (X2) 
gradually reduces. These results show X2 is more sensitive than X1 by changing variant 
parameters. 
 
So, the graph below shows the trend of expected profit by changing (β, η), (γ, ω), and (λ, ν). This 
graph shows that the expected profit is so sensitive and dramatically falls by increasing these 
parameters. 
 

 

Figure 5. Analysis of expected profit 
 

Also, the reduction of profit is more sensitive by increasing the probability of producing scrap 
items in comparison to the probability of producing defective items. 
 

6. CONCLUSION 

 
In this paper, a specific case of the single period model is studied and single period production 
models are developed by considering the probability of producing defective products and scraps 
at the start and during of period. Then, optimum solution is calculated and shown. 
 
According to the numerical results and by considering the probability of producing defective 
products and scraps, it is shown that using the proposed model increases the average profit in 
comparison to that of the classic model. On the other hand, this model shows that the by 
increasing the probability of producing defective products or scraps, the amount of average profit 
decreases. 
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Rsults of comparison between the quantities of optimum profit in classical model and proposed 
model would help managers to make appropriate decisions on replacing or revising machines or 
technologies. 
 
After all, the results of sensitive analysis show the raw material inventory is less sensitive than the 
finished product inventory by changing β, γ, λ, η, ω, ν. Meanwhile, the expected profit is more 
sensitive by increasing the probability of producing scrap items in comparison to the probability 
of producing defective items. 
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