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ABSTRACT 

 
In this paper we present a Takagi-Sugeno (T-S) model for Quadrotor modelling. This model is developed 

using multiple model approach, composed of three locally accurate models valid in different region of the 

operating space. It enables us to model the global nonlinear system with some degree of accuracy. Once 

the T-S model has been defined it is claimed to be relatively straightforward to design a controller with the 

same strategy of T-S model. A nonlinear state feedback controller based on Linear Matrix Inequality (LMI), 

and PDC technique with pole placement constraint is synthesized. The requirements of stability and pole-

placement in LMI region are formulated based on the Lyapunov direct method. By recasting these 

constraints into LMIs, we formulate an LMI feasibility problem for the design of the nonlinear state 

feedback controller. This controller is applied to a nonlinear Quadrotor system, which is one of the most 

complex flying systems that exist. A comparative study between controller with stability constraints and 

controller with pole placement constrains is made. Simulation results show that the controller with pole 

placement constrains yields good tracking performance. The designed T-S model is validated using Matlab 

Simulink. 

 

KEYWORDS 

 
Linear Matrix Inequality (LMI), Multiple Model Approach (MMA), Parallel Disturbance Compensation 

(PDC), Pole Placement, Quadrotor, Takagi-Sugeno model.  

 

 

1. INTRODUCTION 

 
In everyday life, the strategy how to solve a complex problem is called divide & conquer. The 

problem is divided into simpler parts, which are solved independently and together yields the 

solution to the whole problem. The same strategy can be used for modelling and control of non-

linear systems, where the non-linear plant is substituted by locally valid set of linear sub models 

[1]. The model should be simple enough so that it can be easy understood. The accurate model 

that characterizes important aspects of the system being controlled is a necessary prerequisite for 

design of a controller. 
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The idea of approximation based on Multiple Model Approach (MMA) is not new. Since the 

publication of Johansen and Foss, the multiple-models approach knew an unquestionable interest. 
The Multiple Model approach appears in the literature under many different names, including 

Takagi-Sugeno (T-S) model [2], local model networks or operating regime decomposition.  

 

During the last years, many works have been carried out to investigate the stability analysis and 

the design of state feedback controller of T-S systems. Using a quadratic Lyapunov function and 

PDC (Parallel Disturbance Compensation) technique, sufficient conditions for the stability and 

stabilisability have been established [3] [4]. The stability depends on the existence of a common 

positive definite matrix guarantying the stability of all local subsystems. The PDC control is a 

nonlinear state feedback controller. The gain of this controller can be expressed as the solution of 

a linear matrix inequality (LMIs) set [5]. 

 

Quadrotor Helicopter is considered as one of the most popular UAV platform. This kind of 

helicopters are dynamically unstable, and therefore suitable control methods was used to make 

them stable, as back-stepping and sliding-mode techniques [6] [7].  

 

The main contribution of this paper is the proposition of a T-S model for modelling and control of 

Quadrotor, using multiple model approach with state feedback controller. This approach, in spite 

of its oldness it’s never applied to Quadrotor, except two works, the first one by Bouabdallah [8], 

which used a single linear model and applied LQ controller, and the second work by Kostas [9], 

which used the multiple-model concept for only the control of Quadrotor attitude, moreover he 

was not validate the model.      

 

2. QUADROTOR DYNAMICAL MODEL 

 
The Quadrotor is a four rotor helicopter (Figure 1); each rotor consists of an electrical motor, a 

drive gear and propeller. The two pairs of propellers (1, 3) and (2, 4) turn in opposite directions. 

Forward motion is accomplished by increasing the speed of the rear rotor while simultaneously 

and right motion work in the same way. Yaw command is accomplished by accelerating the two 

clockwise turning rotors while decelerating the counter-clockwise turning rotors. This helicopter 

is one of the most complex flying systems that exist. This is due partly to the number of physical 

effects (Aerodynamic effects, gravity, gyroscopic, friction and inertial counter torques) acting on 

the system.   

 
 

Figure 1.  Quadrotor Architecture 
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The first step before the control development is an adequate dynamic system modelling, 

especially for lightweight flying systems. Let us consider earth fixed frame �� and body fixed 

frame ��, as seen in Figure 1. Using Euler angles parameterization, the airframe orientation in 

space is given by a rotation matrix � from �� to ��. 
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With  ��. � and  	�. � represent  sin�. � and  cos�. �  respectively. 

 

The Quadrotor dynamic model describing the roll, pitch and yaw rotations, and (x, y, z) 

translation; contains then four terms which are the gyroscopic effect resulting from the 

rigid body rotation, the gyroscopic effect resulting from the propeller rotation coupled 

with the body rotation, aerodynamics frictions and finally the actuators action [10]: 
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The inputs of the system are ��, ��, ��, ��, and Ω� as a disturbance, obtaining: 
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3. QUADROTOR TAKAGI-SUGENO MODEL DESIGN 

 
3.1. Multiple model approach 

 
The multiple model approach is one promising class of modelling approaches with interpolation, 

wherein a small number of relatively simple dynamic systems are, in some sense, blended 

together. It employs the divide-and-conquer strategy of dividing a complex system into several 

simpler sub-problems, whose individual solution combine to give the solution to the original 

problem by interpolation, associated with a corresponding set of weighting functions that defines 

the validity of the local models. Typically, each simple system is a local linear model or affine 

model, which describes the dynamics of the non-linear system in some small region of the 

operating space. The role of blending is to provide smooth interpolation, in some sense, between 

the local models, with the aim of achieving an accurate representation with only a small number 

of local models [11]. 

 

 
 

Figure 2.  Multiple model approach 

 

3.2. Takagi-Sugeno model 

 
A T-S model is based on the interpolation between several LTI (linear time invariant) local 

models as follow: 
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Where r is the number of sub-models, ����� ∈ ℝ� is the state vector, ���� ∈ ℝ� is the input 

vector, �� ∈ ℝ�×�,  � ∈ ℝ�×� and !��� ∈ ℝ"   is the decision variable vector. 

 

The variable !���  may represent measurable states and/or inputs and the form of this variable 

may leads to different class of systems: if  !��� is known functions than the model (4) represents a 

nonlinear system and if there are unknown we consider that this leads to linear differential 

inclusion (LDI). This variable can also be a function of the measurable outputs of the system.  

The normalized activation function #�$!���% in relation with the ith sub-model is such that: 
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According to the zone where evolves the system, this function indicates the more or less 

important contribution of the local model corresponding in the global model (T-S model). The 

global output of T-S model is interpolated as follows: 

 

( ) ( )( ) ( ) ( )( )
1

r
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i
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=

= +∑  (6) 

 

Where &���� ∈ ℝ'  is the output vector and (� ∈ ℝ'×�, )� ∈ ℝ'×�. More detail about this type of 

representation can be found in [2]. 

 

3.3. Quadrotor Takagi-Sugeno model 

 
The behaviour of a nonlinear system near an operating point ( �� , ��), can be described by a linear 

time-invariant system (LTI). Using Taylor series about ( �� , ��) and keeping only the linear terms 

yields: 
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*�  : Normalization constant. 

 
After calculation we obtained: 
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By blended local linear models with coupled structure and Gaussian activation function we 

describe the dynamic model of the Quadrotor by the form: 
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With: #�$!���%, + = 1, … , /  (/ = 3) are the normalized activation function, and 
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- The vector of decision variables ( )
T

tξ φ θ ψ=   
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- The parameters of activations functions (	�,1, 2�,1) are given as: 

 

• The centres 
,i jc are defined according to the operation point. 

• The Dispersions ,i j
σ are defined by optimization of a criterion, which represent the 

quadratic error between Takagi-Sugeno model outputs and nonlinear system outputs, using 

Particle Swarm Optimisation algorithm (PSO) [12]. 

 

-The operating points are chosen to cover maximum space of the operating space, with small 

number of local models. The attitude of Quadrotor (roll, pitch, and yaw) has a limited bound        

(−4 2 ≤ 7 ≤ 4 2⁄⁄ , −4 2 ≤ 9 ≤ 4 2⁄⁄ , −4 ≤ : ≤ 4), for this reason we use three local models 

to cover this space. Linear local model are defined in this table as follow: 

 
Table 1.  Operation Points Parameters. 

 

N° O.P Parameters id  

1 0.523 rad sφ θ ψ= = = −& & &  [ ]0 0.1964 0 0.1964 0 0
T

−  

2 0 rad sφ θ ψ= = =& & &  [ ]0 0 0 0 0 0
T

 

3 0.523 rad sφ θ ψ= = =& & &  [ ]0 0.2771 0 0.2771 0 0
T

−  
 

 3.4. Quadrotor Takagi-Sugeno model validation 

 
The input signals (rotors velocities) most appropriated for the local models network validation, 

and exit all dynamic of the system in this case is the Pseudo-Random Binary Signal (SBPA) due 

to different causes: 

 

• SBPA has a null mean and a variance that close to one, which allows the excitation of very 

good frequency range (dynamics system) without moving away too much the system from 

the operating point. 

• The SBPA is periodic deterministic signal white-noise-like properties very adapted for 

identification and validation tasks. 



International Journal of Control Theory and Computer Modelling (IJCTCM) Vol.2, No.3, May 2012 

15 
 

The amplitude of the SBPA can be very low, but it must be higher than the level of the residual 

noise. A typical value of the amplitude is from 0.5% to 5% from the value of the operating point 

to which the SBPA is applied, in this case the amplitude of the SBPA is given by: 

0.005SBPA eq eqA ω ω= ± ∗ ,  
4

eq

mg

b
ω = . 

 

To validate the synthesized Takagi-Sugeno model a SBPA (input signal) is used, for Quadrotor 

nonlinear system and the T-S model. We simulate the two systems in parallel and we compare the 

resulting curves. 

 

  

  

Figure 3.  Validation input signals 

Figure 3 present the input signals of Quadrotor, which are SBPA signals with variable amplitude. 

This SBPA excite all dynamic of the system.  

 

Figure 4 present the attitude of Quadrotor and corresponding output of T-S model. We show the 

resemblance between the output of T-S model and Quadrotor nonlinear system. These results 

prove the quality of the approximation of a nonlinear system by a T-S model.  

 

Figure 5 present attitude acceleration errors, which are close to a white-noise with null mean and 

a variance that close to one. Saw the designing T-S model give good approximation of the 

Quadrotor nonlinear system for a specific region of the operating space. 

   

Figure 4.  Takagi-Sugeno model and Quadrotor’s outputs 
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Figure 5.  Attitude acceleration errors 

 

4. CONTROLLER DESIGN 

 
The concept of PDC, following the terminology [3], is utilized to design state-feedback controller 

on the basis of the T-S model (10). Linear control theory can be used to design the control law, 

because T-S model is described by linear state equations. If we compute the local control input to 

be 

 

The controller law is a convex linear combination of the local controller associated with the 

corresponding local sub-model. It can present as: 
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Where ;�  is r vector of feedback gains. 

It should be noted that the designed controller shares the same models sets with T-S models, and 

resulting controller (11) is nonlinear in general since the coefficient of the controller depends 

nonlinearly on the system input and output via the weighting functions. Substituting (11) into 

(10), the closed-loop T-S model can be represented by: 
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The constant *� was neglected in this formulate, because the control law can compensate the 

effect of this bias term. To determine state feedback controller described by (12) the following 

design requirements are considered in this study. 

 

• Stabilisation: Design a controller such that the closed-loop T-S model is asymptotically 

stable: 
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• Pole placement: Design a controller such that the closed-loop Eigen values of T-S model 

are located in a prescribed sub-region (D) in the left half plane to prevent too fast controller 

dynamics and achieve desired transient behaviour: 
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4.1. Stabilisation 
 

A sufficient quadratic stability condition derived by Tanaka and Sugeno [13] for ensuring 

stability of (12) is given as follows: 

 

Theorem 1: The closed-loop T-S model (12) is quadratic-ally stable for some stable feedback ;� 
(via PDC scheme) if there exists a common positive definite matrix < such that: 
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With: =�� = �� −  �;1, #�$!���%#1$!���% ≠ 0.  

 

Which is an LMI in < when ;� are predetermined. However, our objective is to design the gain 

matrix ;� such that conditions (15) are satisfied. That is, ;� are not pre-determined matrices any 

longer, but matrix variables. This is the quadratic stability problem and can be recast as an LMI 

feasibility problem. With linear fractional transformation @ = <A� and  B� = ;�@, we may 

rewrite (15) as an LMI problem in B�, @ and C�1 [14]: 
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(16) 

 

With: C�1 = @D�1@, ∀+ ∈ F1, … , /G, D�1  are symmetric matrix. 

 

4.2. Pole placement  

 
In the synthesis of control system, meeting some desired performances should be considered in 

addition to stability. Generally, stability conditions (Theorem 1) does not directly deal with the 

transient responses of the closed-loop system. In contrast, a satisfactory transient response of a 

system can be guaranteed by confining its poles in a prescribed region. This section discusses a 

Lyapunov characterization of pole clustering regions in terms of LMIs. For this purpose, we 

introduce the following LMI-based representation of stability regions [15]. 

 

Motivated by Chilali [16] and Gutman’s theorem for LMI region [17], we consider circle LMI 

region D 

 

 

( ){ }2 2
:,D x jy x q yq ρρ = + ∈ + + <�  (17) 
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Centred at $– I, 0% and with radius J > 0, where the characteristic function is given by: 
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As shown in Figure 6, if L = MNO ∓ QNR is a complex pole lying in )",S with damping ratio M, 

undamped natural frequency NO, damped natural frequency  NR, then  M = T1 − �J� I�⁄ �, 

NO < I + J and  NR < J. Therefore, this circle region puts a lower bound on both exponential 

decay rate and the damping ratio of the closed-loop response, and thus is very common in 

practical control design. 

 

 

 

Figure 6.  Circular region (D) for pole location 

 

An extended Lyapunov Theorem for the closed loop T-S model (12) is developed with above 

definition of an LMI-based circular pole region as below [16]. 

 

Theorem 2: The closed loop T-S model (12) is D-stable (all the complex poles lying in LMI 

region D) for some state feedback ;� if and only if there exists a positive symmetric matrix @   

such that 

 

( )
( )

T

i i j

i i j

X qX X A B K

qX A B K X X

ρ

ρ

− + +

+ + −

 
 
 
 

 (19) 

 

These inequalities are not convex; a simple change of variables B� = ;�@  yields a convex LMI in 

B�  and @. This pole placement design problem can be recast as an LMI feasibility problem. 

 

0
T T T

i i i

i i i

X qX XA N B
,   i j

qX A X B N X

ρ

ρ

 − + +
< = 

+ + − 
 (20) 
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By combining Theorems 1 and 2 leads to the following LMI formulation of two objectives state-

feedback synthesis problem [15]. 

 

Theorem 3: The closed loop T-S model (12) is stabilizable in the specified region D if and only 

if there exists a common positive symmetric matrix @ and B�  such that the following LMI 

condition holds 

 

( ) 2
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                             0
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n nn
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M O M

L

 
(21) 

 

With:  C�1 = @D�1@, ;� = B�@, ∀+ ∈ F1, … , /G 

 

By solving these two kinds of LMI constraints directly leads to a state feedback controller, such 

that the resulting controller meets both the global stability and the desired transient performance 

simultaneously. 

 

4.3. Quadrotor controller design  

 
Quadrotor is an under-actuated system (2) (3), it has six outputs and four inputs, for this reason 

we use tow virtual control inputs ( ,
x y

u u ) addition to four control inputs of the Quadrotor            

( 1 2 3 4, , ,u u u u ) for the control of this system. 

 

 

 

Figure 7.  Control schema 

 

The control scheme advocated for the overall system is then logically divided in an attitude 

controller, an altitude controller and position controller as schematized in Figure 7. Correction 

blocs give the relation between virtual control inputs ( ,
x y

u u ) and desired angles ( ,d dφ θ ) as 

below: 
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(22) 

 

Using Theorem 3, we can design a nonlinear state feedback controller that guarantees global 

stability while provides desired transient behaviour by constraint the closed-loop poles in D. The 

stability region D is a circle of centre �I, 0� and radius J and the LMI synthesis is performed for a 

set of values �I, J� = �2,0.5�. 

 

Then the LMI region has the following characteristic function:  
    

( )
*

0.5 2

2 0.5
D

z
f z

z

− +
=

+ −

 
 
 

 (23) 

 

This circle region puts a lower bound on both exponential decay rate I − J = 1.5 /\* �⁄  and 

damping ratio M = T1 − �J� I�⁄ � = 0.97 of the closed-loop response. By solving LMI feasibility 

problem of Theorem 3, we can obtain a positive symmetric matrix @ (by interior-point method in 

Matlab LMI-toolbox), and stat feedback Matrix ;� as: 

 

1

2.75 0 2.75 0 0 0 7.12 3.72 4.54 0 0 0

0.04 0.021 0 0.001 0.011 0.004 0 0 0 0.026 0 0.007

0 0.001 0.04 0.021 0.01 0.004 0 0 0 0 0.026 0.007

0 0 0 0 0.084 0.04 0 0 0 0 0 0.053

K

−

− − −
=

− − −

−

 
 
 
 
    

2

2.75 0 2.75 0 0 0 7.12 3.72 4.54 0 0 0

0.04 0.021 0 0.001 0.012 0.004 0 0 0 0.027 0 0.008

0 0.001 0.042 0.021 0.012 0.004 0 0 0 0 0.026 0.008

0 0 0 0 0.084 0.043 0 0 0 0 0 0.054

K

− − −

− − −
=

− − −

−

 
 
 
 
  

3

0 0 0 0 0 0 5.34 2.79 3.41 0 0 0

0.042 0.021 0 0 0 0 0 0 0 0 0 0

0 0 0.042 0.021 0 0 0 0 0 0 0.026 0

0 0 0 0 0.084 0.043 0 0 0 0 0 0.053

K

−

=
−

−

 
 
 
 
    

 

4.4. Simulation results  

 
The controller described above was simulated for the nonlinear Quadrotor system. Simulations 

are made for initial values equal to zero. The values of the model parameters used for 

simulations are the following: 2 70.486 , 0.225, 0.9.81 , 3.23 10m g l g m s d
−= = = = × ,

( )5 3 2 3 42.98 10 . , 3.82 10 . , 7.65 10 , 5,5670 10 ,
x y z fax fay

b N rad s I I Kg m I K K− − −= × = = × = × = = ×  

46,3540 10 , 0.032, 0.048
faz ftx fay ftz

K K K K−= × = = = . The applied control law can be 

summarized as follows: 

 

• StabilisationK  Considers only stability conditions (25); 
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• PlacementK  Considers both stability and pole placement conditions (30). 

 

Simulation results for Quadrotor positions and rotations control are given in figures (8, 9, 10 and 

11). 

 

 

 

Figure 8.  Quadrotor Attitude ( , ,φ θ ψ ) 

 

 

 

Figure 9.  Quadrotor Positions ( , ,x y z ) 

 

Figure 8, 9 represents Quadrotor outputs (position and rotation) with sinusoidal trajectory for 

PlacementK  Controller, we show that this controller give good trajectory tracking performances. In 

Figure 8 we show that the roll and pitch angle does not follow its reference trajectory and that 

because our controller is linear, applied to a nonlinear system (Quadrotor). But it was a small 

error; more of these two angles are used for the control of x ad y position. This is our goal, Of 

course, in addition to z position and Yaw angle. Figure 10 represent Quadrotor controls inputs; 

we show that control inputs are smoother and realizable. 
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Figure 10.  Quadrotor control inputs ( 1 2 3 4, , ,u u u u ) 

For the comparison purpose, we present in figure 11, 3D position for StabilisationK  controller, 

when constraint for the pole placement is neglected (considering only stability condition, 

Theorem 1) and for PlacementK controller (Theorem 3) in figure 12. It can be also noticed that 

PlacementK provides better tracking performance than those of StabilisationK . 

 

 
 

Figure 11. 3D position for StabilisationK    

 

Figure 12. 3D position for PlacementK    

5. CONCLUSIONS 

 
In this paper, we propose a Takagi-Sugeno model of Quadrotor, which is developed using 

multiple model approach, and successfully validated using SBPA input signals, simulation results 

confirmed effectiveness its similarity with the nonlinear model. A systematic design methodology 

for the control of Quadrotor system with guaranteed stability and pre-specified transient 

performance is presented. The framework is based on T-S model and parallel distributed 

compensation (PDC) technique. Simulation results showed that the multi-objective nonlinear 

controller (calculated from pole placement conditions) yields not only maximized stability 

boundary but also better tracking performance than single objective controller (calculated from 

only stabilizations conditions), and theses controllers are applied with successful to one of the 

most complex flying, and under-actuator systems. 

 

APPENDIX 
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