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ABSTRACT 

 
We are proposing a new analytical model, in three dimensions, to calculate intrinsic stress that builds 

during deposition of  Silicon Germanium pockets in source and drain of   strained nano PMOSFETs. This 

model has the advantage of accurately incorporating the effects of the Germanium mole fraction and the 

crystal orientation. This intrinsic stress is used to calculate the extrinsic stress distribution  in the channel 

after deposition. Simulation results of channel stress based on this model will be presented and discussed 

for  Intel technology based nano PMOS transistors. 
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1. INTRODUCTION 

 
The originality of this paper is the development of new analytical model, in three dimensions 

(3D),  to calculate accurately  the intrinsic stress  in Silicon Germanium (Si(1-x)Ge(x)) due to 

lattice mismatch between   Si(1-x)Ge(x) and Silicon where  x  represents the Germanium mole 

fraction. This intrinsic stress is generated during deposition of  Si(1-x)Ge(x)  pockets in source 

and drain of  Intel nano PMOSFETs (Ghani 2003). In the literature, there are only few  papers 

and only in two dimensions (2D) about the modelling of intrinsic stress in SiGe  [1]; [2]; [3]; [4]. 

These papers were developed in the context of device simulations for mobility modelling under 

the effects of stress. On the other hand, in most advanced commercial or non commercial process 

simulators as FLOOPS, Sentaurus, or Athena, the intrinsic stress is a user defined input. And, it is 

not calculated internally by the simulator. 

 

In this paper, we are attempting to extend the  2D models found in the literature to 3D in the 

context of process simulation.  

 

We are following the 2D model of Van de Walle [2]. Most of nano semiconductor device 

manufacturers  as Intel, IBM and TSMC are intentionally using this intrinsic stress to produce 

uniaxial extrinsic stress in the Silicon channel. 

 

And, it is now admitted that the  channel stress enhances carrier mobilities for both nano PMOS 

and NMOS transistors by up to  30% [5]. 

 

Channel stress helped  reduce power consumption, and increase speed of the new generation of 

Silicon Integrated Circuit (IC)  Technology [6];[7];[8]. The electrical measurement reported for 

typical NMOS and PMOS nano devices show that channel stress enhanced performance of both 

NMOS and PMOS by up to 30% [5]. 
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The need of the hour is the development of accurate physics based models and the use of TCAD 

simulation tools  to understand the physics of intrinsic and extrinsic stress and how to attain the 

desired stress in the channel. Modelling and simulation  can also explain complex stress 

phenomena. 

 

This paper is organized as follows. Section 2 outlines the different sources of intrinsic stress in 

Si(1-x)Ge(x) pockets generated during deposition. 

 

Section 3 describes  the proposed 3D model to calculate accurately the intrinsic stress due to 

lattice mismatch between  Si(1-x)Ge(x) and Silicon at horizontal interface in x  and z  directions 

and at vertical interface in  y  direction 

. 

Different extrapolation methods to calculate strained lattice constants of Silicon and  Si(1-x)Ge(x) 

will be presented. 

 

 After deposition process, intrinsic stress produces an extrinsic stress distribution in the whole 

device. This section, also outlines the 3D elastic model for the extrinsic stress and how it is 

related to the intrinsic stress. 

 

Section 4 presents 3D simulation results and analysis of extrinsic stress distribution in 45 nm Intel 

strained PMOSFETs [6] using the proposed intrinsic model. This section will also present 3D 

numerical results showing the effects of Germanium (Ge) mole fractions and crystal orientations 

on the intrinsic stress. 

 

 For qualitative and quantitative validations, the channel extrinsic stress profiles will be calculated 

using  the proposed 3D intrinsic stress model and  will be compared  with channel stress profiles 

found in the literature. 

 

At this point, we could not find any experimental values of intrinsic stress in 3D. Therefore, we 

could not provide any comparisons with experiments. 

Section 5 presents the concluding thoughts and future work. 

 

2. SOURCES OF INTRINSIC STRESS IN SIGE 
 

The deposition process plays a key role in determining the intrinsic stress in  Si(1-x)Ge(x) films. 

At first, we should note that the deposition takes place at elevated temperatures. When the 

temperature is decreased, the volumes of the grains of  Si(1-x)Ge(x)  film shrink and the stresses 

in the material increase. The stress gradient and the average stress in the Si(1-x)Ge(x) film 

depend mainly on the Silicon-Germanium ratio, the substrate temperature and orientation, and the 

deposition technique which is usually LPCVD (low pressure chemical vapour deposition) or 

PECVD (plasma enhanced chemical vapour deposition).  

 

It was observed that the average stress becomes more compressive, if the Ge concentration 

decreases [9]. Thus, it is expected that a film with higher Ge concentration has a higher degree of 

crystallinity and larger grains, which leads to higher film density and to higher intrinsic stress. 

The intrinsic stress observed in thin films has generally the following main sources. 

 

2.1. Intrinsic Stress Due to Lattice Mismatch 

 
Standard During deposition, thin films are either stretched or compressed to fit the substrate on 

which they are deposited. After deposition, the film wants to be smaller if it was stretched earlier, 
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thus creating tensile intrinsic stress.  And similarly, it creates a compressive intrinsic stress if it 

was compressed during deposition. In this paper, we are focusing on developing an analytical 

model in 3D for this type of intrinsic stress. 
The intrinsic stress generated due to this phenomenon can be quantified by Shoney’s equation by 

relating the stress to the substrate curvature. 

 

2.2. Intrinsic Stress Due to Thermal Mismatch 
 

Thermal mismatch stress occurs when two materials with different coefficients of thermal 

expansion are heated and expand or contract at different rates. During thermal processing, thin 

film materials like  Si(1-x)Ge(x), Poly-silicon, Silicon Dioxide, or Silicon Nitride expand and 

contract at different rates compared to the Silicon substrate according to their thermal expansion 

coefficients. This creates an intrinsic strain and stress in the film and also in the substrate. The 

thermal expansion coefficient is defined as the rate of change of strain with temperature. 

 

2.3. Intrinsic Stress Due to Doping 
 

Author Boron doping in p-channel source/drain regions introduces a local tensile strain in the 

substrate due to its size mismatch with Silicon. Boron (B) atom is smaller in size than Silicon 

atom  and when it occupies a substitutional lattice site, a local lattice contraction occurs because 

the bond length for Si-B is shorter than for Si-Si [10];[11].  

 

It was reported in [11] that a single boron atom exerts   0.0141 Angstrom  lattice contraction per 

atomic percentage of boron in Silicon at room temperature. The stress induced in the channel due 

to boron doping was insignificant for long-channel devices. But, for nanoscale CMOS transistors 

where the channel lengths are in the nanometre realm, this stress plays a significant role in 

determining the carrier mobility enhancement.  

 

This tensile stress can be deleterious to the compressive stress intentionally induced by embedded 

Si(1-x)Ge(x)  in source and drain and can result in carrier mobility much lower than expected. 

Also, the boron solubility in Silicon Germanium increases much beyond its limit in Silicon. So 

the doping stress generation problem proves to be even more  significant in advanced CMOS 

devices where Germanium concentration is expected to be close to 30%.. 

 

 Methods to counter and suppress the doping induced stress are very  important issues and are still  

under ongoing research.  

 

3. PROPOSED 3D ANALYTICAL MODEL 
 
In this section, we are going to describe the proposed analytical model in 3D to calculate the three 

normal components  
0

xx
σ ,  

0

y y
σ ,

0

z z
σ    of the intrinsic stress in Si(1-x)Ge(x) due to lattice 

mismatch at the interfaces between Silicon and Silicon Germanium. The other three  shear  

components  
0

xy
σ ,  

0

y z
σ ,

0

x z
σ are taken to  be zero. 

 

 We did follow a strategy similar to one used in the 2D model of Van de Walle [2].  We first 

calculate the strained lattice constants parallel and perpendicular to the interfaces in x, y and z 

directions. Then, from these lattice constants, we calculate the strain parallel and perpendicular to 

the interfaces in x, y and z directions. And, finally, we get the 3 normal stress components in 3D 

from the calculated strain using a modified Hookes's law.  The restriction of the proposed 3D 
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model to 2D gives exactly the 2D model of Van de Walle. And, this is a great advantage for 

validations of our 3D model in 2D and its comparison to the 2D model of Van de Walle. 

   

In 3D PMOSFET with SiGe source and drain as shown in the Figure 2, there are two interfaces 

between Si and SiGe: a vertical interface and a horizontal interface. In the Figure 2, the vertical 

interface is defined in the yz-plane and the horizontal interface is defined in the xz-plane. Let's 

assume that Si(1-x)Ge(x)   pocket grown in source or drain area has thickness  D(SiGe,h)  and 

D(SiGe,v) at horizontal and vertical interface respectively. Let D(Si,h) and D(Si,v) be the  

thickness of the Silicon substrate at horizontal and vertical interface respectively. Strains will be 

generated due to lattice mismatch of the lattice constants. Let A(Si) and A(SiGe) be the lattice 

constants of unstrained Silicon and Si(1-x)Ge(x). Let A(par,h,x,i), A(par,h,z,i) and  A(par,v,y,i)  

be the strained lattice constants parallel to the horizontal interface in x  and  z directions and 

parallel to vertical interface in y direction. The index i represents the Silicon or Silicon 

Germanium materials. 

 

 Let A(perp,h,x,i), A(perp,h,z,i), and  A(perp,v,y,i)  be the strained lattice constants perpendicular 

to the horizontal interfaces in x and  z directions and perpendicular to the vertical interface in y  

direction. 

 

We assume that there is a perfect match of the atoms of the same material at the interfaces z=0 

and z=z_max where z_max  is the maximum length of the device.  

Then, A(perp,h,x,i)= A(perp,h,z,i). You should  see Figure 1 to have an idea about the lattice 

constants parallel and perpendicular to a given interface between Silicon and Silicon Germanium.  

 

In 2D, Van de Walle assumed that A(par,h,x,Si) = A(par,h,x,SiGe) and  A(par,v,y,Si) = 

A(par,v,y,SiGe).  

 

In 3D, we are   assuming that A(par,h,z,Si) = A(par,h,z,SiGe).  For simplicity, let's assume that 

A(par,x)= A(par,h,x,i), A(par,z)= A(par,h,z,i), and  A(par,y)= A(par,v,y,i). Here i represents the 

materials Silicon or Silicon Germanium.  

 

The 2D model of Van de Walle  gave expressions to calculate the strained lattice constants 

parallel and perpendicular to the interfaces in x, y directions. 

 

  For the interface in z direction, we propose  the following expressions given by: 

A(par,z)= [A(Si)G(Si,z)D(Si,h)+A(SiGe)G(SiGe,z)D(SiGe,h)] / [G(Si,z)D(Si,h) + 

G(SiGe,z)D(SiGe,h)]. 

 

A(perp,h,z,i) = A(i) [1 – D(z,i)( (A(par,z) / A(i) ) – 1 ) ]. 

The shear modulus G(i,z)  where i represents    Silicon or  SiGe materials depend on the elastic  

constants of the materials   Si and SiGe and also depend on the  orientation of interface in z 

direction. It is  given by: 

 

G(i, z) =  2(C(11,i) + 2 C(12,i) ) ( 1 - D(i, z)/ 2 ) . 

 

In this paper, the constant  D(i, z) depend on the elastic constants  C(11,i), C(12,i), C(44,i) 

of each material i. And, they also depend  on the interfaces’s  orientations that 

are  (001), (110), or (111). In this work, the elastic constants C(11), C(12), C(44) 

for Si(1-x)Ge(x) depend on the Germanium mole fraction x and on the elastic constants C(11), 

C(12), and C(44) of Silicon and Germanium that we get from Table I of Van De Walle [2]. 
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We are going to use a nonlinear extrapolation method of Rieger and Vogl [9] to calculate C(11), 

C(12), and C(44) for Si(1-x)Ge(x).  We calculate  the constant  D(i,z)  that depends on the 

orientation of the interface in z direction by following the 2D model of  Fischetti and Laux [3], 

and Van De Walle and Martin [2]: 

 

D(i,z,001) = 2C(12,i) / C_(11,i)   

D(i,z,110) =  [C_(11,i) + 3 C_(12,i) - 2 C(44,i)] / [C(11,i) + C_(12,i) + 2 C(44,i) ]   

D(i,z,111) = [C(11,i) + 3 C(12,i) - 2 C(44,i) ] / [C(11,i) + C(12,i) +  C(44,i)]. 

 

The ratio of strained lattice constants A(par,x), A(par,y), A(par,z)  and A(perp,h,x,i), 

 

 A(perp,v,y,i), and A(perp,h,z,i)  to unstrained lattice constants A(i) determines the intrinsic strain  

parallel and perpendicular to the interfaces in x, y, and z directions: 

 

, , , , , , , , , , , ,( , , , , , )par h x perp h x par v y perp v y par h z perp h zε ε ε ε ε ε . The index i represents the 

material Si or SiGe.  At horizontal interfaces in x and z directions, and at vertical interface in y 

direction, we have: 

 

, ,

( , )

( ) 1
p a r h x

A p a r x

A S iG e
ε =

−

 

, ,

( , , , )

( ) 1
p erp h x

A p erp h x S iG e

A S iG e
ε =

−

 

, ,

( , )

( ) 1
p a r h z

A p a r z

A S i G e
ε =

−

 

, ,

( , , , )

( ) 1
p e r p h z

A p e r p h z S iG e

A S iG e
ε =

−

 

, ,

( , )

( ) 1
p a r v y

A p a r y

A S i G e
ε =

−

 

, ,

( , , , )

( ) 1
p e r p v y

A p e r p v y S iG e

A S iG e
ε =

−

 

 

Let  
, ,

0

x x h x
σ ,  

, ,

0

zz h z
σ , 

, ,

0

x x v y
σ ,  and 

, ,

0

y y v y
σ  be the intrinsic stress  at the horizontal 

interface in x and z directions and at the vertical interface in y direction respectively. 

 We use a modified Hooke’s  law  and similar ideas of those used in 2D model of  Van de Walle 

to get these intrinsic stress components  from the intrinsic strains as follows:  

 

 
, ,

0 , , , , , ,( (11) (12)) (12)( )xx h x

par h x perp h x par h z
C C Cσ ε ε ε= + + +  

, ,

0 , , , , , ,( (11) (12)) (12)( )zz h z

par h z perp h z par h x
C C Cσ ε ε ε= + + +  

, ,

0 , , , , , ,( (11) (12)) (12)( )yy v y

par v y perp v y par h z
C C Cσ ε ε ε= + + +  

, ,

0 , ,

x x v y

p e r p v y
Eσ ε=  

 

The elastic constants C(11), C(12) and the Young's modulus E are those of  Si(1-x)Ge(x). 
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Finally, the normal intrinsic stress components  
0 0,xx yy

σ σ   and 
0

z z
σ   in Si(1-x)Ge(x) in the 

proposed 3D model are calculated as follows:  

 
, , , ,

0 0 0

xx xx h x xx v y
σ σ σ= −  , 

, ,

0 0

y y y y v y
σ σ= , 

, ,

0 0

z z z z h z
σ σ= . 

 

We should note that the proposed 3D model given by the equations above reduces to 2D model of 

Van de Walle if we take     
, ,

0 0z z h z
σ = and  

, , 0
p a r h z

ε = . 

 

The 3  shear intrinsic stress  components  
0

x y
σ , 

0

y z
σ , and  

0

z x
σ  are taken to be zero. 

Then, the 6 components of the intrinsic stress tensor  0σ  in Si(1-x)Ge(x) are given by:  

0 0 0 0( , , , 0, 0, 0)
xx yy zz

σ σ σ σ= . 

 

In our simulation program, the intrinsic stress tensor     0σ   is used as a source term to calculate, 

in the whole 3D nano MOSFET structure, the extrinsic stress tensor       

( , , , , , )
xx yy zz xy yz zx

σ σ σ σ σ σ σ= .  We note that     
xx

σ , 
y y

σ , and 
z z

σ  represent the 

extrinsic stress along the channel, vertical to the channel, and across the channel. This channel 

stress is used to enhance the mobility of holes in 3D nano PMOSFETs based on Intel technology 

[6]. We assume that Silicon and Silicon Germanium are elastic materials. And, to calculate the 

stress tensor    σ , we use the elastic stress model based on Newton's  second law of motion, and 

the following Hooke’s  law relating stress to strain: 0 0
( )Dσ ε ε σ= − + . Here D is the 

tensor of elastic constants C(11), C(12),C(44),    0
0ε =   is the intrinsic strain and  0σ  is the 

intrinsic stress given by the proposed 3D model.   A detailed description of this elastic model is 

given in [12]. 

 

4. 3D NUMERICAL RESULTS AND ANALYSIS  
 

The proposed 3D analytical model for intrinsic stress  is used to simulate numerically the 3D 

extrinsic stress in the channel of an Intel 45 nm gate length PMOSFET shown in Figure 2. For 

the following numerical results we used (001) for the substrate orientation and 17% as the 

Germanium mole fraction. In the future, we will do more investigations using different gate 

lengths (32nm, 22nm and below), different substrate orientations and Germanium mole fractions. 

The Table 1 shows the effects of Germanium mole fraction on the intrinsic stress in  Si(1-

x)Ge(x). 

 

From Table 1, we observe that the intrinsic stress along channel in x direction becomes more 

compressive, if the Ge concentration increases. This is in great agreement with what was reported 

in [5]. Table 2 shows  the effects of substrate orientations on the intrinsic stress. 

 

The results in Figures 3 and 4 show that the stress components 
xx

σ  and 
z z

σ    along the 

channel, and across the channel respectively are all significant. This is an important finding of 
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this paper.  A similar stress distribution has been reported  in [13].  The  values of the calculated 

3D extrinsic stress are also qualitatively and quantitatively in good agreement with those 

calculated in [13].  Figure 5  shows that the distribution of x stress component is compressive 

along channel as expected. Figure 6 shows that the distribution of the z stress component is really 

non-uniform in the channel. A similar result was reported  in [13]. These numerical results 

confirm that our implementation of intrinsic and extrinsic stress models in 3D  provide valid and 

correct results. We also believe that these results are of great interest to the semiconductor 

community including industrials and academia. 

 

Ge % 
0

x x
σ  

0

y y
σ  

0

z z
σ  

17 -1.432e+10 3.269e+9 1.752e+9 

20 -1.674e+10 3.821e+9 2.047e+9 

30 -2.454e+10 5.607e+9 3.914e+9 

40 -3.197e+10 7.312e+9 3.914e+9 

50 -3.900e+10 9.321e+9 4.780e+9 

 
Table 1: Effects of Germanium mole fraction on intrinsic stress 

 

Orientation 
0

x x
σ  

0

yy
σ  

0

z z
σ  

(100) -8.859e+9 1.186e+10 6.361e+9 

(110) -1.432e+10 3.269e+9 1.752e+9 

(111) -1.556e+10 1.327e+9 7.116e+8 

 
Table 2,  Effects of substrate orientation  on intrinsic stress 

 

 
Figure 1, Lattice constants parallel and perpendicular to the interfaces 
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Figure 2, Materials and mesh of the simulated structure 

 

 

 

Figure 3, 3D distribution of x stress component along channel 
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Figure 4, 3D distribution of z stress component across channel 

 

 

Figure 5, Cut along channel in x direction of x stress component 
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Figure 6, Cut across channel in z direction of z stress component 

 

5. CONCLUSIONS 

 
In this paper, we have developed a new analytical model in 3D to calculate the intrinsic stress that 

builds during deposition of  Silicon Germanium pockets in source and drain of   a strained 

nanometre  PMOSFETs. This model has been implemented and used successfully to simulate the 

extrinsic stress in the channel of an Intel 45 nm gate length PMOSFET shown in Figure 1. The 

important finding of this paper is that all the stress components 
xx

σ  and 
z z

σ   along the 

channel, and across the channel respectively are significant. On the other hand,  this paper did 

show that the distribution of the z stress component is really non-uniform in the channel. The 

quantitative and qualitative  behavior of the numerical results is in good agreement with those 

found  in literature [13] for similar 3D structure.   
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