
International Journal of Database Management Systems (IJDMS) , Vol.2, No.2, May 2010

A DBMS FOR MOBILE TRANSACTIONS USING
BI-STATE-TERMINATION

Sebastian Obermeier1 and Stefan Böttcher2

1 ABB Corporate Research, Industrial Software Systems, Segelhofstr. 1K, Baden, Switzerland
sebastian.obermeier@ch.abb.com

2 University of Paderborn, Fürstenallee 11, 33102 Paderborn, Germany
stb@uni-paderborn.de

ABSTRACT
Whenever distributed transaction processing in MANETs or other unreliable networks has to guarantee
atomicity and isolation, a major challenge is how long-term blocking of resources can be avoided in case
the mobile device looses connection to other participants of the transaction. We present a new technique
for treating blocked data of transaction participants that wait for a coordinator’s commit decision. Our
technique, Bi-State-Termination (BST), gives participants that have moved during transaction execution the
possibility to continue transaction processing before they know the coordinator’s decision on transaction
commit. The key idea of our technique is to consider both possible outcomes (commit and abort) of unknown
transaction decisions. Within this paper, we describe a fast implementation of the fundamental relational
database operations for a DBMS supporting the BST transaction synchronization protocol that avoids long-
term transaction blocking.

KEYWORDS
Mobile Database Transaction Processing, Transaction Blocking, Bi-State-Termination

1. INTRODUCTION
With growing interest in mobile ad-hoc networks and increasing capabilities regarding processing power
and connectivity, an interesting and important challenge is to combine database technology with mobile
devices. However, a transfer of traditional research results to mobile devices is hindered by problems like
message loss, unpredictable disconnections of mobile devices, and network partitioning. When applying
database technology that was designed for traditional fixed-wired networks in such mobile environments,
the problem of long or even infinitely long blocking times for commonly accessed resources arises. For
instance, a message that releases blocked resources may never reach its destination and leads to blocking of
resources longer than intended.
Traditional transaction processing is unsuitable for such a scenario for the following reason. It would
prevent participants that have moved during the atomic commit protocol execution and therefore have not
received the transaction’s commit decision from using parts of their own data in concurrent transactions.
In mobile networks, there is no guarantee that these moved participants will ever receive the transaction’s
decision. Therefore, traditional transaction processing would cause resources to be unusable for an infinitely
long period of time.

1.1. Problem Description
Atomic commit protocols (ACPs) like 2-Phase-Commit (2PC, [9]), 3-Phase-Commit (3PC, [22]), and con-
sensus based protocols (Paxos Consensus, [10]) are used to guarantee an atomic execution of distributed

10.5121/ijdms.2010.2209 141

International Journal of Database Management Systems (IJDMS) , Vol.2, No.2, May 2010

transactions in fixed wired networks. However, when transaction support is required for mobile ad-hoc
environments, problems like network partitioning, node disconnection, and node movement may lead to the
case where databases do not receive the atomic commit protocol decision and block. According to [18], we
can distinguish two kinds of blocking:

Definition 1 Atomic commit protocol blocking occurs, if during an execution of an atomic commit protocol
for a transaction T , an arbitrary sequence of failures leads to a situation where the atomic commit protocol
instance cannot terminate with a unique commit or abort decision d.

Several proposals, e.g. [10, 20], tackle the problem of atomic commit protocol blocking by using multiple
coordinators. Therefore, we do not focus on the problem of protocol blocking.

Definition 2 Transaction Blocking: A transaction T is blocked, after a database proposed to execute T (e.g.
by sending a voteCommit message) and waits for the final commit decision, but is not allowed to abort or
to commit T unilaterally on its own.

Transaction blocking summarizes the unilateral impossibility to abort or commit a transaction, but does
not mean that a transaction U waits to obtain locks from a concurrent transaction, since in this case U can
be aborted by the database itself. Even time-out based approaches (e.g. “my commit vote is valid until
3:23:34”) cannot solve the problem of transaction blocking, since this would fulfill the requirements of the
coordinated attack scenario [9], in which a commit decision is not possible under the assumption of message
loss.
The problem of infinite transaction blocking for a transaction T occurs, if a database has sent a voteCommit
message on T , but will never receive the final commit decision, e.g. due to disconnection, movement, or
network partitioning. Whenever the database can still communicate, e.g. with the user, the blocked data of
T will prevent concurrent and conflicting transactions U from being processed.

1.2. Contributions
The main contributions of this paper are:
• It describes BST, a transaction termination mechanism for mobile transactions in unreliable environ-

ments that solves the infinite transaction blocking problem, i.e. each database maintains control of
its resources during the whole transaction execution.

• It outlines how and proves that BST in combination with 2-Phase-Locking [8] guarantees serializ-
ability and atomicity.

• We give experimental results that demonstrate the feasibility of Bi-State-Termination in environ-
ments where the commit decision may get lost.

Beyond our previous contributions [18, 19], this paper further
• outlines how recovery from database main memory failures can be done with BST, and how BST

can be used as a log book,
• describes three BST implementations, one being a complete in-memory solution, one being a disk-

base solution, and one focusing on processing speed,
• outlines implementation details of the fastest variant regarding read and write operations,
• describes an evaluation comparing the presented BST implementations regarding transaction pro-

cessing time in case of blocked transactions.

2. TRANSACTION MODEL
BST is a protocol that can be applied to databases that participate in an atomic commit protocol independent
of whether or not the other databases that also participate in the same global transaction use the same BST
protocol.
During the execution of a transaction, a database enters the following phases: the read-phase, the commit
decision phase, and, in case of successful commit, the write-phase. While executing the read-phase, each
transaction invokes necessary sub-transactions and carries out write operations on its private transaction
storage only. During the commit decision phase, the participating databases use an atomic commit protocol
to decide on the transaction’s commit decision. During the atomic commit protocol, participants vote for

142

International Journal of Database Management Systems (IJDMS) , Vol.2, No.2, May 2010

read

locks acquired

voteRequest

voteCommit

phase

doCommit

phase
write

abort possible timeBST possible

result /

Figure 1. 2PC Transaction Execution

“commit” or “abort”. A database that voted for “commit” is not allowed to abort or commit the transaction
on its own until it has received the coordinator’s commit decision. A participant that voted for “abort” can
immediately abort the transaction, which means, the database must restore a state that is equal to a situation
in which the transaction has never been executed, i.e. all changes caused by the aborted transaction must be
rolled back.
If the transaction’s outcome commit decision, which can be either commit or abort, is commit, the database
executes the sub-transaction’s write phase. During this phase, the private transaction storage is transferred
to the durable database storage, such that the changes done throughout the read-phase become visible to
other transactions after completion of the write-phase. If the outcome is abort, all involved databases abort
their corresponding sub-transactions.

Definition 3 Two operations Oi and Oj conflict⇐⇒ ∃ tuple t∃ attribute a : (Oi accesses t.a
∧Oj accesses t.a ∧ ((Oi writes t.a) ∨ (Oj writes t.a)))

Definition 4 A transaction Tj depends on Ti if and only if on a database D at least one operation Oi of Ti

conflicts with an operation Oj of Tj , and Oi precedes Oj .

Definition 5 The serialization graph of a set of transactions contains the transactions as nodes and a di-
rected edge Ti → Tj for each pair (Ti, Tj) of transactions for which Tj depends on Ti.

Definition 6 Serializability requires the serialization graph of all committed transactions to be acyclic.

Definition 7 Assume a database in state S0 executes a transaction Ti. Then, we call ResultTi
(S0) the

result value that the databases returns after finishing the read phase of Ti.

Above the time line, Figure 1 shows the standard application of 2PC for a distributed transaction Ti when a
locking mechanism like 2-Phase-Locking [8] is used for transaction synchronization. Below the time line,
Figure 1 illustrates the possible database reactions in case the database does not receive expected messages
after a timeout. As long as the database has not voted for commit, it can still abort Ti and release the locks.
Different from traditional 2PC, Bi-State-Termination (BST) allows a database to terminate a transaction
even after the commit vote has been sent and before a doCommit or doAbort command has been received.
The transaction execution shown in Figure 1 involves two messages showing that the so-called lock point
was reached: Both the voteRequest message and the doCommit message indicate that all databases have
obtained all necessary locks. However, for the purpose of ensuring serializability, it is only necessary to
reach this lock point once, as atomic commit protocol optimizations like “unsolicited vote optimization”
[23] show.
As the transaction sequence is fixed after the voteRequest message has been received by each database,
serializability is guaranteed. In other words, serializability does not require to hold any lock longer than
until the database receives the voteRequest command. However, for ensuring strictness, i.e. to guarantee
recoverability and to avoid cascading aborts, each database must hold all locks until the doCommit message
is received and the write phase has been finished. Unfortunately, if the doCommit message is lost or cannot
reach a database, the database must hold the locks and cannot abort the transaction on its own, which
however, is possible before the vote for commit message has been sent.
In the remainder of this section, we develop a solution that not only unblocks and processes concurrent and
depending transactions if the commit decision cannot be received by a database for a longer period of time.
Our solution, which is called Bi-State-Termination (BST) of a transaction Ti, also guarantees atomicity.

143

International Journal of Database Management Systems (IJDMS) , Vol.2, No.2, May 2010

The main idea of BST is that if the coordinator’s decision for a transaction Ti is delayed, a concurrent
transaction Tc depending on Ti can be processed by transferring the required locks from Ti to Tc, and then
by executing Tc on two database states: one state having Ti committed, the other state having Ti aborted.
However, it is the database’s choice whether or not and after which timeout it applies BST.
We want to achieve that all transactions belonging to a distributed global transaction are executed in an
atomic fashion, and that each concurrent execution of different distributed global transactions is serializable,
i.e. the execution produces the same output and has the same effect on the databases as some serial execution
of the same distributed global transactions.

Definition 8 Assume that a database is in a state S0 that has been created by some previous transactions
before the write phase of Ti is executed. Assuming no concurrent transaction has changed the database state
while Ti is executed, we call the database state that is caused by the write phase of Ti the state STi

. Let
Ti consist of the sequence of operations Oi1 ,Oi2 , . . . ,Oin . When this sequence of operations is applied to
the database, we call the changes that have been made by the operations the delta of the transaction Ti. We
write ∆Ti

(S0) if the sequence of operations Oi1 , . . . ,Oin
is applied on the database state S0. When Ti has

been committed, the result of applying ∆Ti
to the database state S0 becomes visible for other transactions,

thus we get the new database state STi
, for which we write STi

= S0 ⊕∆Ti
(S0).

Note, that when a transaction Ti, which, for example, increments integer values, is executed on two different
database states S0 and S1, the transaction execution can lead to different deltas ∆Ti(S0) and ∆Ti(S1).
However, when Ti does not include branches or loops, the sequence of operations remains the same for all
executions.

Lemma 9 Assume a database is in state S0, a transaction Ti is executed, and a concurrent transaction Tj is
started, but Ti does not depend on Tj and vice versa. Therefore, the changes of transaction Tj do not affect
the execution of the transaction Ti. The equations

∆Tj (S0) = ∆Tj (STi) and ∆Ti(S0) = ∆Ti(STj)

hold, which means that the modifications of a transaction Tj are independent of any previous modification
of a non-dependent transaction Ti and vice versa.

Proof Assume the database state before the execution of Ti and Tj is S0.

Tj does not depend on Ti and
Ti does not depend on Tj

⇐⇒ ∀ tuple t∀ attribute a (¬Oi accesses t.a
∨¬Oj accesses t.a ∨ (Oi reads t.a ∧Oj reads t.a))

(follows from Def. 3 and 4)
=⇒ S0 ⊕∆Ti(S0)⊕∆Tj (STi)

= Ojn(. . . Oj2(Oj1(Oin(. . . Oi1(S0)))))
= Oin

(. . . Oi2(Oi1(Ojn
(. . . Oj1(S0)))))

(since operations do not conflict)
= S0 ⊕∆Tj

(S0)⊕∆Ti
(STj

)
=⇒

(
∆Tj

(S0) = ∆Tj
(STi

)
)
∧ (∆Ti

(S0) = ∆T (STj
))

Therefore, whenever a set BT of transactions is blocked, the result of a transaction T may only be influ-
enced by those transactions DBT ⊆ BT on which T is dependent.

3. SOLUTION
In the following, we focus on the question:

What can a database D executing a transaction Ti that is blocked do, when a concurrent
transaction Tc requests access to data tuples accessed by Ti in a conflicting way.

One proposed solution to answer this question can be found in standard literature for databases, and is quite
simple: Let Tc wait until Ti has released its locks and is completed. However, during the waiting, the

144

International Journal of Database Management Systems (IJDMS) , Vol.2, No.2, May 2010

S0
Ti aborts

gggggggggggggggggggg
Ti commits

WWWWWWWWWWWWWWWWWWWW Level 0

S0

Tc aborts
ooooooooooo

Tc commits
OOOOOOOOOOO S0 ⊕∆Ti(S0)

Tc aborts
ooooooooooo

Tc commits
OOOOOOOOOOO Level 1

S0 S0 ⊕∆Tc(S0) S0 ⊕∆Ti(S0) S0 ⊕∆Ti(S0)⊕∆Tc(STi) Level 2

Figure 2. Possible database states if Tc depends on Ti, and Ti blocks

number of transactions that wait concurrently may increase if the blocking continues. Furthermore, if Tc is
a distributed transaction too, this may cause further transactions to wait on other databases, too. Another
possibility is to abort the concurrent transaction Tc. Although correct, this behavior is not satisfying.
Our solution called Bi-State-Termination is based on the following observation: Whenever transaction
blocking occurs, the database does not know whether a transaction Ti waiting for the commit decision will
be aborted or committed. However, only if the transaction is committed, the database state changes. Let S0

denote the database state before Ti was executed. Although the database does not know the commit deci-
sion for Ti, it knows for sure that either S0 or S0 ⊕∆Ti

(S0) is the correct database state, depending on the
commitment of Ti. Figure 2 shows these two possible states in the tree. With this knowledge, the database
can try to execute a concurrent transaction Tc that depends on Ti on both states S0 and S0 ⊕ ∆Ti

(S0).
Whenever the two executions of Tc on S0 and on S0 ⊕ ∆Ti

(S0) return the same results to the Initiator,
i.e. ResultTc(S0) = ResultTc(STi), Tc can be committed regardless of Ti, even though Tc depends on
Ti. Otherwise, it is the application’s choice whether it handles two possible transaction results. However,
since Tc depends on Ti, we might have ∆Tc

(S0) 6= ∆Tc
(STi

). Therefore, the database must store both
deltas ∆Tc

(S0) and ∆Tc
(STi

), and if Tc commits before Ti is committed or aborted, the database knows
that either the state S0 ⊕∆Tc

(S0) is valid, or the state S0 ⊕∆Ti
(S0)⊕∆Tc

(STi
) is valid.

Figure 2 shows the execution tree different of a different situation, i.e. with both Ti and Tc being blocked.
The leaves represent the database states that may be valid depending on the decisions for the blocked
transactions Ti and Tc.

3.1. Bi-State-Termination
Let Σ = {S0, . . . , Sk} be the set of all legal possible database states for a database D. A traditional
transaction Ti is a function Ti : Σ 7→ Σ, Sa → Sb, which means the resulting state Sb of Ti depends only
on the state Sa on which Ti is executed.
A Bi-State-Terminated transaction Ti is a function BST : 2Σ 7→ 2Σ,

{Si, . . . , Sj}︸ ︷︷ ︸
Initial States

→ {Si, . . . , Sj}︸ ︷︷ ︸
Ti aborts

∪{Ti(Si), . . . , Ti(Sj)}︸ ︷︷ ︸
Ti commits

that maps a set ΣInitial ⊆ Σ of Initial States to a super set ΣInitial ∪ {Ti(Sx)|Sx ∈ ΣInitial} of new states,
where Ti(Sx) is the state that is reached when Ti is applied to Sx.
This concept of Bi-State-Termination leads to the following commit decision rules for the transaction exe-
cution of a transaction Ti on a database DB:
DB checks Ti’s dependencies on concurrent blocking transactions. The following situations may occur: Ti

is independent of all currently blocked transactions. Then, Ti can be executed immediately.
Otherwise, Ti depends on a set {T1 . . . Tn} of blocked transactions. As Ti depends on each of the trans-
actions {T1 . . . Tn}, each of them has reached its lock point before Ti. Thus, for any concurrent execution
of {T1 . . . Tn}, there is an equivalent serial execution ESE of {T1 . . . Tn}. As ESE only has to reflect the
order in which transactions leave the lock point, ESE can always be constructed, as described below. Thus,
serializability is guaranteed for {T1 . . . Tn}. Then,DB can Bi-State-Terminate the transactions {T1 . . . Tn},
i.e. DB can execute the transaction Ti on all possible combinations of abort and commit decisions of the
transactions {T1 . . . Tn} in ESE.
The serializable sequence ESE of the transactions {T1 . . . Tn}, on which Ti is executed, must obey the
following conditions. For each pair (Tj , Tk) of the transactions for which a dependency Tj → Tk exists, Tj

left its lock point before Tk left its lock point. However, in order to execute the transaction Tk that depends

145

International Journal of Database Management Systems (IJDMS) , Vol.2, No.2, May 2010

on the blocked transaction Tj , the transaction Tj must have been Bi-State-Terminated. In this case, Tj has
completed all of its operations before Tk has started. Thus, Tj is executed before Tk within ESE.
Note that if there is no dependency Tj → Tk, and no dependency Tk → Tj , the execution sequence of
the blocked transactions (Tj , Tk) does not matter since the transactions are independent of each other, cf.
Lemma 9.
This means, the transaction Ti must at most be executed on all combinations of commit and abort decisions
for the blocked transactions T1 . . . Tn, but only on one sequence (permutation) of the transactions T1 . . . Tn.
If Ti is executed on multiple database states, this might yield to different results. Let S1 . . . S2n be the states
that can be reached by any combination of commit/abort decisions on the n transactions {T1 . . . Tn} that
are Bi-State-Terminated. If ResultTi

(S0) = . . . = ResultTi
(S2n) holds, transaction Ti can be committed

since it has a unique result. Otherwise, the application that initiated Ti can choose whether
• it aborts Ti completely,
• it commits Ti and deals with multiple possible results,
• it aborts or commits Ti only for some commit/abort combinations of Bi-State-Terminated trans-

actions, called execution branches. For example, the application may specify that Ti should only
commit when Tk aborts, and that Ti should abort otherwise,

• it waits.
When Ti or a single execution branch of Ti commits, the database merges the corresponding delta of Ti

with the possible branch state.

Example 10 Assume Tc depends on Ti, but, different from Figure 2, Tc shall only commit when Ti

commits and otherwise abort. As illustrated in Figure 3, a commit of Tc would only involve the left-
most and rightmost branches of Figure 2. Therefore, ∆Ti

(S0) in Level 1 of Figure 2 is replaced with
(∆Ti

(S0)⊕∆Tc
(STi

)) in Level 1 of Figure 3 since, in this case, a commit of Ti automatically means a
commit of Tc. Note that in this example, the commit decision for Tc is made before the decision of Ti,
but the execution sequence is the other way round, namely Ti < Tc. Furthermore, the tree of Figure 3 is
flattened one level compared to Figure 2 since only Ti is yet blocked.

S0
Ti aborts

lllllllllllll
Ti commits

RRRRRRRRRRRRR Level 0

S0 S0 ⊕∆Ti(S0)⊕∆Tc(STi) Level 1

Figure 3. Tc should commit only if Ti commits

3.2. Complexity
lt can be seen that the complexity of the Bi-State-Termination of Ti depends on the number of blocked
transactions b, and that BST has a complexity ofO(2b) database states. However, our implemented solution
uses a compact data structure and optimizes read and write operations in such a way that each transaction
operation must only be executed once, regardless of the number of blocked transactions. Although, in the
worst case, the number of tuples may grow exponentially, standard database query optimization techniques
can be fully applied. Furthermore, a transaction still can wait instead of being executed on too many states.

3.3. Correctness
Theorem 11 Bi-State-Termination in combination with 2-Phase-Locking guarantees serializability.

Proof As our solution uses Two-Phase Locking (2PL) and 2PL is proven to guarantee serializability accord-
ing to [5], we show that Bi-State-Termination does not change the order of pairs of conflicting operations of
transactions given by 2PL and therefore guarantees serializability, too: Our transaction execution involves
one point, namely the lock point, where each transaction that belongs to a global transaction must hold
all locks. This means that the request to vote on a transaction T ’s commit status can only be sent by the
coordinator after all databases acquired the necessary transaction locks for their sub-transactions T1 . . . Tn

146

International Journal of Database Management Systems (IJDMS) , Vol.2, No.2, May 2010

of T , which each database indicates by sending the sub-transaction’s result. The sequence of transactions
is fixed at that time when each transaction enters its lock point and is not changed by BST. Although Bi-
State-Termination may release locks after this lock point, the release of locks does not change the order of
comitted transactions for the following reason. A transaction Tc that gets locks from a Bi-State-Terminated
transaction Ti is either executed after Ti has been committed (Ti < Tc) or Ti is aborted.

Note that although the commit command for Tc may be issued before the commit command of Ti, the order
of applying the transactions on the database is still Ti < Tc.

4. BST REWRITE RULES
Our BST rewrite rule system modifies each database relation in such a way that it gets an extra column
“Conditions” that describes for each database tuple the condition under which it is regarded as being true.
Furthermore, the database contains a single table “Rules’’ storing rules that relate these conditions to each
other.
Whenever currently active transactions insert, delete or update tuples in a relation R, whether or not a tuple
t will finally belong to R depends on the commit or abort decision of these transactions. We use a condition
in order to express which of the active transactions must commit and which must abort, such that a tuple t
finally belongs to a relation R. In our implementation, each relation R is augmented by an extra column
“Conditions” that, for each tuple t, stores the condition under which it finally belongs to R.
This can be implemented by the following rewrite rule that modifies the create table command for database
relations:
create table R (<column definitions>)
⇒ create table R’(<column definitions, string conditions>)

4.1. Status Without Active Transactions
When all transactions are completed either by commit or by abort, the column “Conditions” contains the
truth value “true” for each tuple in each relation of the database. The truth value “true” represents the fact
that the tuple belongs to the relation without any further condition about the commit status of an active
transaction.

4.2. Write Operations on the BST Model

4.2.1. Insertion

Whenever a tuple t = (value1, . . . , valueN) is inserted into a relation R by a transaction with transaction
identifier Ti, we implement this by inserting t′ = (value1, . . . , valueN , Ti) into the relation R′, i.e. the
database system implementation applies a rewrite rule:
insert into R values (value1,. . .,valueN)
⇒ insert into R’ values (value1,. . .,valueN , Ti).

The idea behind the value Ti stored in the condition column of R′ is to show that the tuple t belongs to the
database relation R if and only if transaction Ti will be committed.

4.2.2. Deletion

Whenever a tuple t = (value1, . . . , valueN) is deleted from a relation R by a transaction with transaction
identifier Ti, we look up the tuple t′ = (value1, . . . , valueN , C) ∈ R′ representing the tuple t ∈ R, where
C is the condition under which t belongs to the database relation R.
We implement the deletion of t from R by the transaction Ti by replacing the condition C found in t′ with a
condition C2 and by adding a logical rule to the table Rules stating that C2 is true if and only if C is true and
Ti is aborted. For this purpose, the database system applies the following rewrite rule, where A1, . . . , AN

denote the values (value1, . . . , valueN) for the attributes of R:

delete t from R where t.A1=value1, . . .,t.AN=valueN

⇒ update t’ in R’ where t.A1=value1, . . .,t.AN=valueN set condition=C2;
insert into rules values (C2 , C1 and not Ti)

147

International Journal of Database Management Systems (IJDMS) , Vol.2, No.2, May 2010

The idea behind this rewriting is the following. (not Ti) represents the condition that transaction Ti will
be aborted. The inserted rule states that C2 is true if C1 is true and Ti will be aborted. After the update
operation, we have a tuple t′ = (value1, . . . , valueN , C2) in R′ which represents the fact that t belongs to
R if and only if C2 is true, i.e. if C is true and Ti is aborted.

4.2.3. Update

An update of a single tuple is simply executed as a delete operation followed by an insert operation.

4.2.4. Set-Oriented Write Operations

When a transaction inserts, updates, or deletes multiple tuples within a single operation, this can be imple-
mented by a collection of individual insert, update, or delete operations.

4.2.5. Completion of a Transaction

When transaction Ti is completed with commit, the condition Ti is replaced with true in each rule in the
Rules table and in each value found in the column “Conditions” of a relation R′. However, when Ti is
completed with abort, Ti is replaced with false in each rule found in the Rules table, and each tuple of R′

containing the value Ti in the column “Conditions” is deleted.
Furthermore, rules that contain the truth value true or false are simplified. Whenever this results in a rule
(C, true) or in a rule (C, false), then C itself is replaced with the value “true” or “false” respectively. Other
rules that contain C are simplified as well. Furthermore, all tuples t′ in which C occurs are treated as
follows. If the rule is (C, true), the value C is replaced with true in each tuple t′ in which C occurs in
the column “Conditions”. However, if the rule is (C, false), each tuple t′ in which C occurs in the column
“Conditions” is deleted. Finally, rules (C, true) or (C, false) are deleted from the relation Rules.

Example

Consider a database with a relation R that only consists of the attribute “Name” and initially stores only
a single data record with the value “Mitch”. On R, the database executes the sequence T1 < T2 < T3 of
transactions:

T1: insert "Miller"
T2: delete "Mitch"
T3: change "M" to "R" in each name

Line Name Condition Comment

1 Mitch Initial

2 Mitch
{

Content after BST
of T13 Miller C1

4 Mitch C2

{
Content after BST
of T1, T25 Miller C1

6 Mitch C3

Content after BST
of T1, T2, T3

7 Miller C4

8 Ritch C5

9 Riller C6

Table 1. Content after Bi-State-Terminating T1, T2, and T3

Line 1 of Table 1 represents the initial database state S0 ofR′, lines 2-3 show the content ofR′ after BST of
T1, lines 4-5 represent the table content after BST of T1 and T2, while lines 6-9 show the table after BST of
T1, T2, and T3. The conditions Ci in the column “Condition” of Table 1 are linked to the “Rules” column
of Table 2. Table 2 defines for each condition Ci by a boolean formula composed of other conditions and/or
elementary conditions Tj , Tk, where Tj in the column “Definition” of Table 2 represents that transaction Tj

will commit and Tk represents that Tk will abort. When Ci is valid, the row (<t>, Ci) of Table 1 represents
that the tuple <t> is in R. The condition C4, for example, is fulfilled when T1 commits and T3 aborts. In
this case, line 7 of Table 1 becomes valid.

148

International Journal of Database Management Systems (IJDMS) , Vol.2, No.2, May 2010

Condition Definition Comment

– – Initial

C1 T1 Content after BST of T1

C1 T1

{
Content after BST
of T1, T2C2 T2

C3 T2T3

Content after BST
of T1, T2, T3

C4 T1T3

C5 T2T3

C6 T1T3

Table 2. Rules Table after Bi-State-Terminating T1, T2, and T3

4.3. Read Operations on the BST Model
Whenever a read operation on R is implemented by a read operation on R′, the conditions are kept as part
of the result. The relational algebra operations are implemented as follows.

4.3.1. Selection

Each selection with selection condition SC that a query applies to a relation R, will be applied to R′, i.e.
the database system applies the following rewrite rule to each selection:
SC(R)⇒ SC(R’)

4.3.2. Duplicate Elimination

Duplicate elimination is an operation that is used to implement projection and union. When duplicates
occur, their conditions are combined with the logical OR operator. That is, given the relation R′ contains
two tuples t′1 = (value1, . . . , valueN , C1) and t′2 = (value1, . . . , valueN , C2) these two tuples are deleted
and a single tuple t′ = (value1, . . . , valueN , CC12) is inserted into R, and a rule (CC12, C1 orC2) is inserted
into the Rules table.

4.3.3. Set Union

Set union of two relations R1 and R2 is implemented by applying duplicate elimination to the set union of
R′

1 and R′
2. The database system applies the following rewrite rule:

R1 ∪ R2 ⇒ removeDuplicates(R1’ ∪ R2’)

4.3.4. Projection

Projection of a relation R1 on its attributes A1, . . . , AN is implemented by applying duplicate elimination
to the result of applying the projection to R′

1 including the column “Conditions”. The database system
applies the following rewrite rule:
P(A1, . . .,An) (R1)⇒ removeDuplicates(P(A1, . . .,An, conditions) (R′

1))

4.3.5. Cartesian Product

Whenever the cartesian productR1×R2 of two relationsR1 andR2 must be computed, this is implemented
using R′

1 and R′
2 as follows. For each pair (t′1, t

′
2) of tuples t′1 = (value1, . . . , valueN , C1) of R′

1 and
t′1 = (value21, . . . , value2N , C2) of R′

2, a tuple t′12 = (value1, . . . , valueN , value21, . . . , value2N , CC12)
is constructed and stored in (R1 ×R2)′. The database system applies the following rewrite rule:
R1× R2 ⇒ (R1 × R2)’
where (R1× R2)’ can be derived by computing the set
{ (t1,t2,CC12) | (t1,C1) ∈ R1’ and (t2,C2) ∈ R2’ }
and by adding a rule (CC12, C1 and C2) for each pair of C1 and C2 to the Rules table.

149

International Journal of Database Management Systems (IJDMS) , Vol.2, No.2, May 2010

4.3.6. Set Difference

Whenever the set difference R1 − R2 of two relations R1 and R2 must be computed, this is implemented
using R′

1 and R′
2 as follows. The set difference contains all tuples t′1 = (value1, . . . , valueN , C1) of R′

1

for which no tuple t′2 = (value21, . . . , value2N , C2) of R′
2 exists, and furthermore, it contains a tuple

t′12 = (value1, . . . , valueN , CC12) for each tuple t′1 = (value1, . . . , valueN , C1) of R′
1 for which a tuple

t′2 =(value21,. . . , value2N , C2), C2 6= C1, of R′
2 exists. The condition CC12 is true if and only if (C1 and

not C2) is true. The database system applies the following rewrite rule:
R1 - R2 ⇒ R1’ - R2’
where (R1’ - R2’) can be derived by computing the union of the following sets S1 and S2:

S1 = { (t1,C1) | exists (t1,C1) ∈ R1’ and not exists C2 such that (t1,C2)∈ R2’ }
S2 = { (t1,CC34) | exists (t1,C3)∈ R1’ and exists (t1, C4)∈ R2’ such that C3 6= C4}

and by adding a rule (CC34, C3 and not C4) for each pair of C3 and C4 used in S2 to the Rules
table.

4.3.7. Other Algebra Operations

Other operations of the relational algebra like join, intersection, etc. can be constructed by combining
the implementation of the basic operations. Of course, query optimization of operations like join etc. is
possible.

5. DATABASE CONSTRAINTS
We classify two kinds of constraints: integrity constraints and consistency constraints. Following [3], in-
tegrity constraints are defined as data tuple characteristics that are independent of other data tuples. Thus,
integrity constraints can be checked row-by-row. Consistency constraints, as defined in [8], specify rela-
tionship characteristics of two or more data tuples. Thus, consistency constraints can be formulated as read
queries that return boolean values. We assume that before a constraint check is performed, the database is
in a valid state, i.e. it’s integrity and consistency constraints are fulfilled. Thus, a transaction converts the
database from one valid state to another valid state, and we only have to check whether the changes of a
transaction violate the defined constraints.

5.1. Integrity Constraints
One characteristics of BST is that the data accessed by write operations is already present in the database
before the transaction is committed, and that the data accessed by pending delete operations is still present.
Furthermore, each commit/abort combination of Bi-State-Terminated transactions is possible. Thus, in-
tegrity constraints can be checked for each database row without obeying the conditions relation. When-
ever a data item violates an integrity constraint, the transaction must be aborted, otherwise the database can
vote for commit.

5.2. Consistency Constraints
Consistency constraints formulated as boolean queries are checked as follows. The query is evaluated and
eventually returns different result values including conditions representing validity, for exampleRQ =((true),
Ck), whereas Ck can be composed of different condition formulas. Whenever a consistency constraint may
be violated, i.e. we get a result value ((false), Ck), we furthermore check whether the composed condition
formula Ck is a contradiction. If Ck is not a contradiction, the consistency constraint may be violated and
the database votes for abort. If the database gets ((true), Ck) and ((false), Cl) values and all Cl are a con-
tradiction, the database votes for abort since the consistency constraint is fulfilled and cannot be violated.

Referential Integrity Constraints

For referential integrity, we join the primary and foreign key, eliminate duplicates, and derive the corre-
sponding condition formulas for each joined data item. Then, we check for each joined tuple whether the
formulated referential integrity constraint may be violated.

Example 12 Assume the relation Order contains IDs of tuples of the relation Customer. A referential
integrity constraint C assures that each order contains an ID of a customer listed in relation Customer, i.e.

150

International Journal of Database Management Systems (IJDMS) , Vol.2, No.2, May 2010

ID Attributes Conditions
(1) 1 α1

(2) 2 α2

Table 3. R” is derived from the table R by adding the column “Conditions”

∀o ∈ Order ∃c ∈ Customer: o.CID = c.CID. Assume, a referential integrity constraint RC results in the
constraint value Rt =((true), C1 ∧ C6 ⇒ (C3 ∧ C2) ∨ C6) for a certain data item, which indicates that
the referential integrity is fulfilled when the formula Rt is true. Since Rt is a tautology, the constraint is
fulfilled regardless of which Bi-State-Terminated transactions commit or abort.

Whenever a database constraint may be violated by a transaction, the transaction cannot vote for commit
and thus is aborted.

6. FAILURE RECOVERY
The use of the Rules table allows implementing failure recovery in the following different way. A log
book for log-based failure recovery is not necessarily required for undoing or redoing a transaction for the
following reason. Whether or not a transaction is committed or aborted or currently running can be checked
by investigating the Rules table. An atomic write of the commit record to a log book can be replaced by an
atomic write operation on the Rules table which adds a rule (‘Ti‘, true) if transaction Ti commits or (‘Ti‘,
false) if transaction Ti aborts, before the entries ‘Ti‘ are replaced with true or false respectively elsewhere.
After all simplification steps have been applied to the Rules table and to the augmented relations Ri’ and
after the distributed commit decision has been acknowledged by all transaction partners, the rule entry (‘Ti‘,
true) or (‘Ti‘, false) is not needed anymore and can be deleted from the Rules table. This approach is as
safe against power supply failures as log book-based approaches, because whether or not a transaction ‘Ti‘
is completed can be seen by looking for an entry (‘Ti‘, . . .) in the Rules table, and all the derivation steps
on the Rules table and in the database relations R′

i can be reconstructed from a given entry (‘Ti‘, true) or
(‘Ti‘, false) in the Rules table.

7. IMPLEMENTATION
We have implemented BST in three versions and have compared their performance using a stress test. The
first implementation, called BST-Disk, uses the Rules table and rewrite rules as stated in Section 4, and
stores the Rules table as a separate database table on disk.
A modification of this concept, the BST-RAM implementation, stores the Rules table completely within
main memory. This makes the Rules table management faster but also susceptible to failures like power
failure.
The third implementation, called Fast-BST, does not use a separate Rules table anymore. Instead, Fast-BST
adds an additional column “Condition” of type string to each table, which stores the conditions under which
the corresponding data row becomes valid. Thus, conditions need not be derived from the Rules table; each
tuple contains its conditions within the “Condition” column. Thus, Fast-BST makes Rules table lookups
to derive the conditions under which a tuple becomes valid superfluous, and Fast-BST speeds up write
operations that operate on many tuples for the following reason: The database does not need to generate
and associate unique IDs to replaced conditions, it can update the “Condition” column in one pass by
concatenating its value with the transaction ID. Furthermore, Fast-BST is not susceptible to power failures
as BST-RAM as it does not hold the Rules table in its main memory.
In the following, we describe the Fast-BST implementation that is used in the evaluation.

7.1. Fast-BST – Write Operations
Fast-BST implements the concept of BST as follows. Fast-BST stores the before image and the after image
of tuples that have been modified by BST transactions. For this purpose, the Fast-BST adds the column
“Conditions” to each table R that it uses to construct the relation R”, cf. Table 3.
The step of Algorithm 1 is executed for each insert statement INSERT INTO R <data> of a transaction
Ti. Two equal insert statements are executed twice and are not mixed.

151

International Journal of Database Management Systems (IJDMS) , Vol.2, No.2, May 2010

Algorithm 1 Implementing Inserts

1. Insert the tuple (<data>,Ti) into the corresponding table R”, and add Ti to the column
“Conditions” of the newly inserted tuples.

For each delete statement DELETE ... WHERE <X> of a transaction Ti, the rewriting shown by Algo-
rithm 2 is required.

Algorithm 2 Implementing Deletes

1. Add the substring Ti to each entry in the column “Conditions” of each row where <X>
evaluates to true. Simplify the Conditions, if Ti wants to delete a tuple that Ti has just
inserted before.

Algorithm 3 describes the update operation for the update statement UPDATE ... WHERE <X>.

Algorithm 3 Implementing Updates
1. Copy the tuples for which <X> evaluates to true into new data tuples, and concatenate Ti to

the existing entries of the “Conditions” attribute of the new tuples. Update the newly copied
tuples according to the update statement.

2. Add Ti to each entry in the column “Conditions” of each row where <X> evaluates to true
and that was not copied and updated in Step 1.

Example 13 Assume that we execute the following sequence of three transactions T1, T2, and T3, each
containing one update statement, on Table 3.
T1: UPDATE Table1 SET Attributes=α3 WHERE ID=1
T2: UPDATE Table1 SET Attributes=α4 WHERE ID=2
T3: UPDATE Table1 SET Attributes=α2

WHERE (Attributes=α3 ∨ Attributes=α4)
Table 4 shows the result when all of the distributed transactions T1 . . . T3 block and Bi-State-Terminate.
Fast-BST marks all tuples changed by transaction T1 as before image (line (1)), copies them to line (3), and
executes the update (on line (3)). Note that Table 4 shows the result when all transactions T1, T2, and T3

block, therefore it already contains the entry for T3 in line (3). The same algorithm is applied for T2. When
T3 is executed and both transactions T1 and T2 block, T3 depends on T1 and T2. However, FAST-BST
does not explicitly check for this dependency. In our example, T3 only modifies data when either T1 or T2

commit. This dependency is maintained automatically by Step 1 of Algorithm 3 since the <condition>
of the update statement of T3 is only true in lines (3) and (4). Then, these two rows are copied to the rows
in line (5) and line (6), and T3 is added to the “Conditions” column of each of these rows.

7.2. Fast-BST – Read-Operations
Read operations are modified in the following way: Each value of the returned result additionally contains
the corresponding value of the “Conditions” column. Thus, each read operation must be processed by the
database only once, regardless of the number of depending blocked transactions. However, the result R is
not directly returned to the application, Fast-BST first checks whether the result R contains any entries in
the “Conditions” column. If this is the case, it is the application’s choice whether it handles these multiple
uncertain results, or whether the application delays the read operation until the transactions listed in the
“Conditions” column of R have been committed or aborted. If the application can handle multiple results,
we can reduce the amount of transferred data by returning an object that represents the different possible
valid database states directly within the application by means of the “Conditions” column.

152

International Journal of Database Management Systems (IJDMS) , Vol.2, No.2, May 2010

ID Attributes Conditions

(1) 1 α1 T1

(2) 2 α2 T2

(3) 1 α3 T1, T3

(4) 2 α4 T2, T3

(5) 1 α2 T1, T3

(6) 2 α2 T2, T3

Table 4. Content of Table 1 after Bi-State-Terminating T1, T2, and T3

7.3. Commit and Abort
The following rules apply when a blocked transaction Ti commits or aborts:
Ti commits: Delete all rows that contain Ti in the column ”Conditions”. Delete the string Ti from all
entries within the “Conditions” column of the table.
Ti aborts: Is treated as Ti commits.

Example 14 Assume T3 commits. In this case, lines (3) and (4) are deleted from Table 4. Furthermore, the
string T3 must be deleted in Lines (5) and (6) from the attribute values for the column “Conditions”, since
a commit of T1 or T2 automatically implies that the changes of T3 become valid.
Note that the data set increases only temporarily and collapses to the original size when the commit decision
for the Bi-State-Terminated transactions is known. For example, when the database receives the commit
decisions for T1 and T3, the database knows the exact unique value for the data tuple with ID 1, which
corresponds to Line (5) in case T3 and T1 commit, to Line (3) in case T1 commits and T3 aborts, and to
Line (1) in case T1 aborts.

8. EXPERIMENTAL EVALUATION
We choose the TPC-C benchmark [14] for generating the test data and transactions. The following questions
motivate our experimental evaluation: Which BST implementation is faster? How many transactions can be
Bi-State-Terminated until the execution time or the database size for following transactions is unacceptably
high? How does BST affect the overall transaction throughput and transaction execution time, when a
certain percentage of transactions block?

8.1. BST Stress Test
Having a data hotspot, the used BST implementation may have great influence on the transactions execution
times since in this case a lot of transactions depend on each other. As this results in a growth of database
states, we have compared the three BST implementations and determined how many blocked transactions
per tuple each BST implementation can handle in a stress test. For this stress test, we have generated
a database table consisting of a single data tuple. We have sequentially executed a number of database
transactions on this table that do not finish, i.e. the transactions do not get a commit decision and thus
block. Each of these blocked transactions has incremented or decremented the same data that is initially
present. In order to be able to process further transactions, we have used our three BST implementations
to terminate each blocked transaction. For this reason, each blocked transaction has doubled the number of
possible database states, and thus the number of possible values for the initial tuple grows exponentially for
the number of blocked transactions. We have measured the time for processing the (n + 1)th transaction
when n transactions are blocked and terminated by BST for each BST implementation.
The y-axis of Figure 4 indicates the required time to process a single update transaction when the number
of transactions indicated on the x-axis is terminated by BST. As all of these blocked transactions depend
on each other, and all of them are coded to modify the initial tuple, the resulting growth in time and space
is exponential. However, as the test indicates, the processing of a transaction when 10 blocked transactions
have been terminated by BST does not take a large overhead for the Fast-BST implementation.
Both implementations that use a separate “Rules” table, i.e. BST-Disk and BST-RAM, are significantly
slower than the Fast-BST implementation. The reason is that when transactions update a lot of data tuples,

153

International Journal of Database Management Systems (IJDMS) , Vol.2, No.2, May 2010

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12

Time (s)

No. of blocking transactions

Time for processing a single transaction
when x depending transactions block

BST- Disk

BST- RAM

Fast-BST

Figure 4. BST Stress Test – Performance

the corresponding condition must be derived from the Rules table for each updated data tuple, and a new
condition ID must be generated and assigned separately to each data tuple. In comparison, Fast-BST only
adds the transaction’s ID to the “Conditions” column of all updated tuples, which can be done much faster.
On the y-axis, Figure 5 shows the number of tuples that are generated by BST for a single update operation,
while the number of transactions indicated on the x-axis has been terminated by BST. Note that our BST
implementations do not differ in the number of resulting tuples. Although the database’s size grows expo-
nentially each time a blocked transaction is terminated by BST, it is the database’s decision to use BST for
a transaction Ti or to wait until the decision for transactions on which Ti depends is known.
As we have seen, using the Fast-BST implementation allows the database to terminate more blocked trans-
actions without a significant loss of performance. For this reason, we use the Fast-BST implementation in
the following TPC-C benchmark test.

8.2. BST TPC-C Test
The TPC-C benchmark [14], an online transaction processing benchmark test, simulates an online-shop-
like environment in which users execute order transactions against a database. The transactions addition-
ally include recording payments, checking the status of orders, and monitoring the level of stock at the
warehouses.
We used a TPC-C “scaling factor” of 2, which results in 139 MB of data and a total amount of 294 trans-
actions, 41,8% of them containing update operations. Characteristic for our implementation of the TPC-C
benchmark is that the involved update transactions operate on a set of data tuples whose cardinality is low
(i.e. 2 tuples), so we can expect a lot of depending write transactions. In order to simulate transaction block-
ing, a separate coordinator instance coordinates each transaction and delays the commit command based
on different parameters in order to simulate blocked distributed transactions. For example, to simulate a
transaction blocking of 1% of all transactions, we delayed the commit command of each 100th transaction.
Figure 6 shows the sum of all successfully committed transactions on the y-axis. On the x-axis, the overall
time is shown. The different curves indicate whether BST was enabled, and they vary in the percentage of
blocked transactions. Note that due to our simulated hotspot, a huge amount of transactions depend on each
other. We can see that BST-enabled transaction processing is able to commit a lot more transactions than
BST disabled transaction processing.

154

International Journal of Database Management Systems (IJDMS) , Vol.2, No.2, May 2010

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12

No. of Tuples

No. of blocking transactions

Number of tuples accessed by a single transaction
updating one tuple of R when x depending

transactions block

Bi-State-Termination

Figure 5. BST Stress Test – Space

Note that the additional space used by BST is rather low, i.e., in our TPC-C experiments, BST requires only
about 2% more space.

8.3. Evaluation Summary
We have run a stress test to compare three implementations for BST. While the BST-Disk and BST-RAM
implementation use a separate Rules table in order to manage the dependencies of the before- and after-
images of the transactions, the Fast-BST implementation directly annotates the rule under which each data
tuple becomes valid to the data row. The Fast-BST implementation is able to cope with 10 blocked trans-
actions that all write on the same tuple without causing a loss of performance, while the BST-Disk and
BST-RAM implementations can only handle 5 to 7 blocked transactions accessing the same tuple within
reasonable time.
When setting up a transaction scenario, two extreme scenarios are possible that influence the outcome of
BST: In the first scenario, each transaction operates on different tuples that are not accessed by any other
transaction. In the second scenario, each transaction operates on the same tuples. As transaction blocking
in the first scenario does not have any influence on other transactions, enabling BST does not commit more
transactions than disabling BST. In the second scenario, a blocked transaction would immediately prevent
all following transactions from being processed. In this scenario, BST would allow the commitment of
almost all transactions, while disabling BST would result in a total blocking situation.
Due to these two possible extreme scenarios, we used the TPC-C benchmark that simulates a typical ware-
house environment to get an impression of how BST enhances transaction processing in a real-world sce-
nario. We have preferred the Fast-BST implementation, which is able to enhance the amount of committed
transactions in our TPC-C benchmark by 40 to 70%, depending on the number of blocked transactions.
Finally, note that if no more space is available or the required processing time grows, the database can decide
for each individual transaction whether to use BST or to wait for the commit decision as in 2PC. In other
words, our solution does not force the database to accept long execution times, and BST-enabled transaction
processing never blocks more transactions than traditional transaction processing. Our approach can be
regarded as a generalization of traditional 2PC in the sense that for each individual transaction executed on
a local database, BST is possible but not required.

155

International Journal of Database Management Systems (IJDMS) , Vol.2, No.2, May 2010

0

10

20

30

40

50

60

70

80

90

100

0 0,
5 1 1,

5 2 2,
5 3 3,

5 4 4,
5 5 5,

5 6 6,
5 7 7,

5 8 8,
5

Time (Minutes)

% of committed
Transactions

BST enabled, 1% blocking

BST enabled, 5% blocking

BST enabled, 10% blocking

BST disabled, 1% blocking

BST disabled, 5% blocking

BST disabled, 10% blocking

138,71 MB Data; 294 Transactions
(41,8% Update, 58,2% Select)

Figure 6. BST evaluation on the TPC-C benchmark

9. RELATED WORK
Concurrency control like multiversion concurrency control [4, 24], timestamp-based concurrency control
[17], or optimistic concurrency control [12, 16] omit the use of locks. However, these approaches do not
solve the infinite transaction blocking problem on concurrent transactions since each database that has sent
the voteCommit message proposes that it will commit the transaction regardless of the used concurrency
control mechanism. Therefore, without Bi-State-Termination, the database cannot process a transaction U
that is depending on a transaction T , while T waits for the final commit decision, even if the database uses
locking-free concurrency control. This motivates the use of BST, which is a termination mechanism that
supports the actually used concurrency control mechanism.
Other approaches rely on compensation of transactions. [15], for instance, proposes a timeout-based proto-
col especially for mobile networks, which requires a compensation of transactions. However, inconsisten-
cies may occur when some databases do not immediately receive the compensation decision or when the
coordination process fails.
In order to enhance the availability of the coordination process, some proposals rely on multiple coordina-
tors. [10], for instance, proposes a consensus-based commit protocol that involves multiple coordinators.
However, the problem of transaction blocking in the sense of Definition 2, which occurs when the executing
database disconnects from the network after sending the voteCommit message, has, to the authors’ knowl-
edge, not been studied yet. Even 1PC [1, 2], which does not require a vote message but acknowledges each

156

International Journal of Database Management Systems (IJDMS) , Vol.2, No.2, May 2010

operation, encounters the problem of transaction blocking since each acknowledged operation that accesses
a data tuple must block this data tuple until the transaction is successfully completed.
Our solution relates to three ideas that are used in different contexts: Escrow locks [11], speculative locking
[21], and multiversion databases [6, 7, 13].
Escrow locks are a refinement of field calls, which are used in environments where data hotspots are fre-
quently accessed. The escrow lock calculates an interval [i, k] for an attribute a by means of the currently
processed updates. The interval indicates the actual upper and lower boundary that the attribute a may take.
When a further transaction relies on a precondition for a, the database checks whether the precondition
evaluates to true for each value of a that is contained in the interval [i, k]. In contrast to the escrow locking
technique, Bi-State-Termination, is a transaction termination mechanism. BST neither relies on numerical
values, nor assumes that an attribute value must lie in a given interval. BST always knows the exact values
that an attribute can actually have and even allows an application to decide that a transaction Ti may only
be committed in a certain constellation of commit and abort decisions of transactions on which Ti depends.
Another related locking mechanism is Speculative Locking (SL) [21]. SL was proposed to speed up trans-
action processing by spawning multiple parallel executions of a transaction that waits for the acquisition
of required locks. SL has in common with Bi-Sate-Termination that SL also allows a transaction Tc to
access the after-image of a transaction Ti while Ti is waiting for its commit decision. However, unlike
Bi-State-Termination, SL does not allow committing Tc before the final commit decision for Ti has been
received. This means, SL cannot successfully terminate Tc while the commit vote for Ti is missing. For
this reason, SL cannot be used to solve the infinite transaction blocking problem that may occur in mobile
networks. Furthermore, our Fast-BST implementation can execute read-operations in one pass even if they
return multiple result values due to transactions that wait for the commit decision.
Multiversion database systems [6, 7, 13] are used to support different expressions of a data object. They
are used for CAD modelling and versioning systems. However, compared to BST, multiversion database
systems allow multiple versions to be concurrently valid, while BST allows only one valid version, but
lacks the knowledge which of the multiple versions is valid due to the atomic commit protocol. Whenever
BST requires multiple transaction executions that all return the same result, BST is even transparent to the
application. Furthermore, multiversion database systems are mostly central embedded databases that are
not designed to deal with distributed transactions. Instead, the user explicitly specifies on which version he
wants to work.
Complementing this contribution, [19] describes how arbitrary database constraints beyond functional de-
pendencies and referential integrity constraints, can be checked on the BST implementation. Further-
more, [19] suggests a different treatment for row-based integrity constraints and general consistency con-
straints.

10. SUMMARY AND CONCLUSION
Transaction blocking occurs very frequently, i.e. a sub-transaction has voted for commit, but has not re-
ceived the commit decision, yet. We argue that the risk of infinite transaction blocking, which can occur if
the database moves or disconnects, is not appropriately solved by other approaches to distributed transac-
tion processing. We have explained the concept of Bi-State-Termination that is useful to terminate blocked
transactions without violating atomicity, even without knowing the explicit coordinator decision on commit
or abort. We have described three different implementations and have experimentally evaluated them.
Our experimental results have shown that Bi-State-Termination enhances the number of committed trans-
actions and that BST is able to deal with a large number of depending blocked transactions without expe-
riencing significant performance loss. This justifies using BST in mobile ad-hoc networks that are exposed
to the risk of transaction blocking.
To summarize, we consider Bi-State-Termination as a useful option that is usable for mobile networks in
order to terminate a transaction instead of just waiting for the commit decision for a long time.

157

International Journal of Database Management Systems (IJDMS) , Vol.2, No.2, May 2010

REFERENCES
[1] M. Abdallah, R. Guerraoui, and P. Pucheral. One-phase commit: Does it make sense? In ICPADS ’98: Proceed-

ings of the 1998 International Conference on Parallel and Distributed Systems, page 182, Washington, DC, USA,
1998. IEEE Computer Society.

[2] Y. J. Al-Houmaily and P. K. Chrysanthis. 1-2pc: the one-two phase atomic commit protocol. In Proceedings of
the 2004 ACM Symposium on Applied Computing (SAC), Nicosia, Cyprus, March 14-17, pages 684–691, 2004.

[3] R. Bayer, H. Heller, and A. Reiser. Parallelism and recovery in database systems. ACM Trans. Database Syst.,
5(2):139–156, 1980.

[4] P. A. Bernstein and N. Goodman. Multiversion concurrency control - theory and algorithms. ACM Trans.
Database Syst., 8(4):465–483, 1983.

[5] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

[6] W. Cellary and G. Jomier. Consistency of versions in object-oriented databases. In D. McLeod, R. Sacks-Davis,
and H.-J. Schek, editors, 16th International Conference on Very Large Data Bases, August 13-16, 1990, Brisbane,
Queensland, Australia, Proceedings, pages 432–441. Morgan Kaufmann, 1990.

[7] I.-M. A. Chen, V. M. Markowitz, S. Letovsky, P. Li, and K. H. Fasman. Version management for scientific
databases. In P. M. G. Apers, M. Bouzeghoub, and G. Gardarin, editors, Advances in Database Technology
- EDBT’96, 5th International Conference on Extending Database Technology, Avignon, France, March 25-29,
1996, Proceedings, volume 1057 of Lecture Notes in Computer Science, pages 289–303. Springer, 1996.

[8] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of consistency and predicate locks in a
database system. Commun. ACM, 19(11):624–633, 1976.

[9] J. Gray. Notes on data base operating systems. In M. J. Flynn, J. Gray, A. K. Jones, et al., editors, Advanced
Course: Operating Systems, volume 60 of Lecture Notes in Computer Science, pages 393–481. Springer, 1978.

[10] J. Gray and L. Lamport. Consensus on transaction commit. ACM Transactions on Database Systems (TODS),
31(1):133–160, 2006.

[11] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann, 1993.
[12] T. Haerder. Observations on optimistic concurrency control schemes. Inf. Syst., 9(2):111–120, 1984.
[13] R. H. Katz. Toward a unified framework for version modeling in engineering databases. ACM Comput. Surv.,

22(4):375–409, 1990.
[14] W. Kohler, A. Shah, and F. Raab. Overview of TPC Benchmark C: The Order-Entry Benchmark. Technical report,

http://www.tpc.org, Transaction Processing Performance Council, 1991.
[15] V. Kumar, N. Prabhu, M. H. Dunham, and A. Y. Seydim. Tcot - a timeout-based mobile transaction commitment

protocol. IEEE Transactions on Computers, 51(10):1212–1218, 2002.
[16] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control. ACM Trans. Database Syst.,

6(2):213–226, 1981.
[17] P.-J. Leu and B. K. Bhargava. Multidimensional timestamp protocols for concurrency control. In Proceedings of

the Second International Conference on Data Engineering, pages 482–489, Washington, DC, USA, 1986. IEEE
Computer Society.

[18] S. Obermeier and S. Böttcher. Avoiding infinite blocking of mobile transactions. In Proceedings of the 11th
International Database Engineering & Applications Symposium (IDEAS), Banff, Canada, 2007.

[19] S. Obermeier and S. Böttcher. Constraint checking for non-blocking transaction processing in mobile ad-hoc net-
works. In Proceedings of the 12th International Conference on Enterprise Information Systems (ICEIS), Funchal,
Madeira - Portugal, 2010.

[20] P. K. Reddy and M. Kitsuregawa. Reducing the blocking in two-phase commit with backup sites. Inf. Process.
Lett., 86(1):39–47, 2003.

[21] P. K. Reddy and M. Kitsuregawa. Speculative locking protocols to improve performance for distributed database
systems. IEEE Transactions on Knowledge and Data Engineering, 16(2):154–169, 2004.

[22] D. Skeen. Nonblocking commit protocols. In Y. E. Lien, editor, Proceedings of the 1981 ACM SIGMOD Inter-
national Conference on Management of Data, Ann Arbor, Michigan, pages 133–142. ACM Press, 1981.

[23] M. R. Stonebraker. Concurrency control and consistency of multiple copies of data in distributed ingres. In
Distributed systems, Vol. II: distributed data base systems, pages 193–199, Norwood, MA, USA, 1986. Artech
House, Inc.

[24] G. Weikum and G. Vossen. Transactional information systems: theory, algorithms, and the practice of concur-
rency control and recovery. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2001.

158

International Journal of Database Management Systems (IJDMS) , Vol.2, No.2, May 2010

Authors

Sebastian Obermeier works as a Scientist at ABB Cor-
porate Research. He holds a PhD and Diploma in Com-
puter Science from the University of Paderborn, Ger-
many. His research areas include the use of database
transaction technology within mobile ad-hoc networks
and security for critical infrastructures.

Stefan Böttcher is a Professor of Computer Science at
the University of Paderborn. His research areas cover
query optimization and compression in XML databases,
transactions in mobile ad-hoc networks, security and pri-
vacy. Before he joined the University of Paderborn, he
worked for several years at the German research labs of
IBM and Daimler Benz.

159

