
International Journal of Database Management Systems (IJDMS) Vol.2, No.3, August 2010

DOI : 10.5121/ijdms.2010.2304 31

MINING OF USERS’ ACCESS BEHAVIOUR

FOR FREQUENT SEQUENTIAL PATTERN

FROM WEB LOGS

S.Vijayalakshmi

Senior Lecturer, Department of Computer Applications

Thiagarajar College of Engineering, Madurai, Tamil Nadu, India

E-mail: svlcse@tce.edu

V.Mohan

Professor and Head Department of mathematics

Thiagarajar College of Engineering, Madurai, Tamil Nadu, India

E-mail: vmohan@tce.edu; srubi77@yahoo.com

S.Suresh Raja
Senior Lecturer, Department of Computer Applications

K.L.N College of Engineering, Madurai , Tamil Nadu, India

E-mail: suresh.csr@gmail.com

ABSTRACT:

 Sequential Pattern mining is the process of applying data mining techniques to a

sequential database for the purposes of discovering the correlation relationships that exist

among an ordered list of events. The task of discovering frequent sequences is

challenging, because the algorithm needs to process a combinatorially explosive number

of possible sequences. Discovering hidden information from Web log data is called Web

usage mining. One common usage in web applications is the mining of users’ access

behaviour for the purpose of predicting and hence pre-fetching the web pages that the

user is likely to visit. The aim of discovering frequent Sequential patterns in Web log data

is to obtain information about the access behaviour of the users.

 Finding Frequent Sequential Pattern (FSP) is an important problem in web usage

mining. In this paper, we explore a new frequent sequence pattern technique called

AWAPT (Adaptive Web Access Pattern Tree), for FSP mining. An AWAPT combines

Suffix tree and Prefix tree for efficient storage of all the sequences that contain a given

item. It eliminates recursive reconstruction of intermediate WAP tree during the mining

by assigning the binary codes to each node in the WAP Tree. Web access pattern tree

(WAP-tree) mining is a sequential pattern mining technique for web log access

sequences, which first stores the original web access sequence database(WASD) on a

prefix tree, similar to the frequent pattern tree (FP-tree) for storing non-sequential data.

WAP-tree algorithm then, mines the frequent sequences from the WAP-tree by

recursively re-constructing intermediate trees, starting with suffix sequences and ending

with prefix sequences. An attempt has been made to AWAPT approach for improving

efficiency. AWAPT totally eliminates the need to engage in numerous reconstructions of

intermediate WAP-trees during mining and considerably reduces execution time.

Keywords: Data Mining, Sequential pattern mining, frequent pattern mining, web usage

mining, AWAPT.

International Journal of Database Management Systems (IJDMS) Vol.2, No.3, August 2010

 32

1. INTRODUCTION

One of the data mining methods is sequential pattern discovery introduced in [2].

Informally, sequential patterns are the most frequently occurring subsequence’s in

sequences of sets of items. Among many proposed sequential pattern-mining algorithms,

most of them are designed to discover all sequential patterns exceeding a user specified

minimum support threshold. In this paper, we explore a new frequent sequence pattern

technique called AWAPT (Adaptive Web Access Pattern Tree), for FSP mining..

1.1 Web Mining Approaches
World Wide Web Data Mining includes content mining, hyperlink structure mining, and

usage mining. All three approaches attempt to extract knowledge from the Web, produce

some useful results from the knowledge extracted, and apply the results to certain real-

world problems. The first two apply the data mining techniques to Web page contents

and hyperlink structures, respectively. The third approach, Web usage mining, the theme

of this article, is the application of data mining techniques to the usage logs of large Web

data repositories in order to produce results that can be applied to many practical

subjects, such as improving Web sites/pages, making additional topic or product

recommendations, user/customer behavior studies, etc. A Web usage mining system must

be able to perform five major functions: i) data gathering, ii) data preparation, iii)

navigation pattern discovery, iv) pattern analysis and visualization, and v) pattern

applications.

 Web mining can be categorized into three different classes based on which part

of the Web is to be mined. These three categories are (i) Web content mining, (ii) Web

structure mining and (iii) Web usage mining.

1.2 Web content mining is the task of discovering useful information available on-line.

There are different kinds of Web content which can provide useful information to users,

for example multimedia data, structured (i.e. XML documents), semi-structured (i.e.

HTML documents) and unstructured data (i.e. plain text). The aim of Web content

mining is to provide an efficient mechanism to help the users to find the information they

seek. Web content mining includes the task of organizing and clustering the documents

and providing search engines for accessing the different documents by keywords,

categories, contents etc.

1.3 Web structure mining is the process of discovering the structure of hyperlinks

within the Web. Practically, while Web content mining focuses on the inner-document

information, Web structure mining discovers the link structures at the inter-document

level. The aim is to identify the authoritative and the hub pages for a given subject.

Authoritative pages contain useful information, and are supported by several links

pointing to it, which means that these pages are highly referenced. A page having a lot of

referencing hyperlinks means that the content of the page is useful, preferable and maybe

reliable. Hubs are Web pages containing many links to authoritative pages, thus they help

in clustering the authorities. Web structure mining can be achieved only in a single portal

or also on the whole Web. Mining the structure of the Web supports the task of Web

content mining. Using the information about the structure of the Web, the document

retrieval can be made more efficiently, and the reliability and relevance of the found

documents can be greater. The graph structure of the web can be exploited by Web

International Journal of Database Management Systems (IJDMS) Vol.2, No.3, August 2010

 33

structure mining in order to improve the performance of the information retrieval and to

improve classification of the documents.

1.4 Web usage mining
There are three types of log files that can be used for Web usage mining. Log files are

stored on the server side, on the client side and on the proxy servers. By having more

than one place for storing the information of navigation patterns of the users makes the

mining process more difficult. Really reliable results could be obtained only if one has

data from all three types of log file. The reason for this is that the server side does not

contain records of those Web page accesses that are cached on the proxy servers or on the

client side. Besides the log file on the server, that on the proxy server provides additional

information. However, the page requests stored in the client side are missing. Yet, it is

problematic to collect all the information from the client side. Thus, most of the

algorithms work based only the server side data. Some commonly used data mining

algorithms for Web usage mining are association rule mining, sequence mining and

clustering.

2. Web Access pattern Mining

Web Access pattern mining is also called as Web usage mining. Web usage

mining, from the data mining aspect, is the task of applying data mining techniques to

discover usage patterns from Web data in order to understand and better serve the needs

of users navigating on the Web [13]. As every data mining task, the process of Web

usage mining also consists of three main steps: (i) pre-processing, (ii) pattern discovery

and (iii) pattern analysis. The pre-processing step contains three separate phases. Firstly,

the collected data must be cleaned, which means that graphic and multimedia entries are

removed. Secondly, the different sessions belonging to different users should be

identified. Thirdly, a session is understood as a group of activities performed by a user

when he is navigating through a given site. To identify the sessions from the raw data is a

complex step, because the server logs do not always contain all the information needed.

In this work, pattern discovery means applying the introduced frequent Sequential pattern

discovery methods to the log data. For this reason the data have to be converted in the

pre-processing phase such that the output of the conversion can be used as the input of

the algorithms. Pattern analysis means understanding the results obtained by the

algorithms and drawing conclusions. The motivation behind pattern analysis is to filter

out uninteresting rules or patterns from the set found in the pattern discovery phase. The

exact analysis methodology is usually governed by the application for which Web mining

is done. The most common form of pattern analysis consists of a knowledge query

mechanism such as SQL. Visualization techniques, such as graphing patterns or assigning

colours to different values, can often highlight overall patterns or trends in the data.

Content and structure information can be used to filter out patterns containing pages of a

certain usage type, content type, or pages that match a certain hyperlink structure.

International Journal of Database Management Systems (IJDMS) Vol.2, No.3, August 2010

 34

Fig-3: Process of web usage mining

3. Research Problem

The objective of this work is to apply data mining techniques to a sequential

database for the purposes of discovering the correlation relationships that exist among an

ordered list of events. Given a WASD (Web Access Sequence Database), the problem to

find frequently occurring Sequential patterns on the basis of minimum support provided.

 In this paper, we focus on mining web access patterns. In general, a web log can be

regarded as a sequence of pairs of user identifier and event. In this investigation, web log

files are divided into pieces per mining purpose. Pre-processing can be applied to the

original web log files, so that pieces of web log can be obtained. Each piece of web log is

a sequence of events from one user or session in timestamp ascending order. We model

pieces of web log as sequences of events, and mine the sequential patterns over certain

support threshold.

3.1 Problem Statement

 The problem of web user access pattern mining is: given web access sequence

database WASD and a support threshold ξ, mine the complete set of ξ-patterns of WASD.

Example: Let {s, t, u, v, w, x} be a set of events and 100, 200, 300, and 400 are

identifiers of users. A fragment of web log records the information as follows.

(100, s) (100, t) (200, s) (300, t) (200, t) (400, s) (100, s) (400, t) (300, s) (100, u) (200, u)

(400, s) (200, s) (300, t) (400, u) (400, u) (300, s)

A pre-processing which divides the log files into access sequences of individual users is

applied to the log file, while the resulting access sequence database, denoted as WAS, is

shown in the first two columns in Table 1 .

There are totally 4 access sequences in the database. They are not with same length. The

first access sequence, stvsu, is a 5-sequence, while st is a subsequence of it. In access

sequence of user 200, both w and wswtu prefix with respect to su. xu is a 50% pattern

International Journal of Database Management Systems (IJDMS) Vol.2, No.3, August 2010

 35

because it gets supports from access sequence of user 300 and 400. Please note that even

xu appears twise in the access sequence of user 400, sxtsuxu, but the sequence contributes

only one to the count of xu.

User ID Web access Sequence Frequent subsequence

100 stvsu stsu

 200 wswtusu stus

300 tstxswu tsts

400 sxtsuxu stsuu

Table-4.1 A web access sequence Database.

4. Related Work:

4.1 Sequential Pattern Mining:
The sequential pattern mining problem was first introduced by Agrawal and

Srikant in [2]: Given a set of sequences, where each sequence consists of a list of

elements and each element consists of a set of items, and given a user-specified

min_support threshold, sequential pattern mining is to find all frequent subsequences, i.e.,

the subsequences whose occurrence frequency in the set of sequences is no less than

min_support.

Sequential Pattern Mining comes in Association rule mining. For a given transaction

database T, an association rule is an expression of the form X � Y, where X and Y are

subsets of A and X � Y holds with confidence τ, if τ % of transactions in D that support

X also Y. The rule X � Y has support σ in the transaction set T if σ % of transactions in

T support X U Y. Association rule mining can be divided into two steps. Firstly, frequent

patterns with respect to support threshold minimum support are mined. Secondly

association rules are generated with respect to confidence threshold minimum

confidence.

[3] Proposed a method for discovering access patterns from web logs based on a new

type of association patterns. They handle the order between page accesses, and allow

gaps in sequences. They use a candidate generation algorithm that requires multiple scans

of the database. Their pruning strategy assumes that the site structure is known. [2]

presented an algorithm for finding generalized sequential patterns that allows user-

specified window-size and user-defined taxonomy over items in the database. This

algorithm required multiple scans of the database to generate candidates.

In this paper, we systematically explore a pattern-growth approach for efficient mining of

sequential patterns in large sequence database. The approaches adopts a divide-and

conquer, pattern-growth principle as follows: Sequence databases are recursively

projected into a set of smaller projected databases based on the current sequential

pattern(s), and sequential patterns are grown in each projected databases by exploring

only locally frequent fragments. Based on this philosophy, we first examine a

straightforward pattern growth method, FreeSpan (for Frequent pattern-projected

Sequential pattern mining), which reduces the efforts of candidate subsequence

generation. we examine another and more efficient method, called PrefixSpan (for Prefix-

projected Sequential pattern mining), which offers ordered growth and reduced projected

databases. To further improve the performance, a pseudo projection technique is

International Journal of Database Management Systems (IJDMS) Vol.2, No.3, August 2010

 36

developed in PrefixSpan. A comprehensive performance study shows that PrefixSpan, in

most cases, outperforms the Apriori-based algorithm GSP, FreeSpan. PrefixSpan,

integrated with pseudo projection, is the fastest among all the tested algorithms. The

PrefixSpan consumes a much smaller memory space in comparison with GSP. This

pattern-growth methodology can be further extended to mining multilevel,

multidimensional sequential patterns, and mining other structured patterns.

we examine whether one can fix the order of item projection in the generation of a

projected database. Intuitively, if one follows the order of the prefix of a sequence and

projects only the suffix of a sequence, one can examine in an orderly manner all the

possible subsequence’s and their associated projected database. WE examine WAP tree

structure for frequent sequence pattern mining in web log files.

5.1 WAP-tree:

WAP-tree, which stands for web access pattern tree. A nice data structure, WAP-tree, is

devised to register access sequences and corresponding counts compactly, so that the

tedious support counting can be avoided. It also maintains linkages for traversing prefixes

with respect to the same suffix pattern efficiently. A WAP-tree registers all and only all

information needed by the rest of mining. Once such a data structure is built, all the

remaining mining processing is based on the WAP-tree. The original access sequence

database is not needed any more. Because the size of WAP-tree is usually much smaller

than that of the original access sequence database, the construction of WAP-tree is quite

efficient by simply scanning the access sequence database twice.

An efficient recursive algorithm is proposed to enumerate access patterns from WAP-

tree. No candidate generation is required in the mining procedure, and only the patterns

with enough support will be under consideration. The philosophy of this mining

algorithm is conditional search. Instead of searching patterns level-wise as Apriori,

conditional search narrows the search space by looking for patterns with the same suffix,

and count frequent events in the set of prefixes with respect to condition as suffix.

Conditional search is a partition-based divide-and-conquer method instead of bottom-up

generation of combinations. It avoids generating large candidate sets.

The main steps involved in this technique are summarized. The WAP-tree stores the web

log data in a prefix tree format similar to the frequent pattern tree (FP-tree) for non-

sequential data.

• The algorithm first scans the web log once to find all frequent individual events.

• Secondly, it scans the web log again to construct a WAP-tree over the set of

frequent individual events of each transaction.

• Thirdly, it finds the conditional suffix patterns.

• In the fourth step, it constructs the intermediate conditional WAP-tree using the

pattern found in previous step.

International Journal of Database Management Systems (IJDMS) Vol.2, No.3, August 2010

 37

• Finally, it goes back to repeat Steps 3 and 4 until the constructed conditional

WAP-tree has only one branch or is empty.

Based on the above observations, a Web access pattern tree structure, or WAP-tree in

short, can be defined as follows.

1. Each node in a WAP-tree registers two pieces of information: label and count, denoted

as label: count. The root of the tree is a special virtual node with an empty label and

count 0. Every other node is labeled by an event in the event set E, and is associated with

a count which registers the number of occurrences of the corresponding prefix ended with

that event in the Web access sequence database.

2. The WAP-tree is constructed as follows: for each access sequence in the database,

filter out any non frequent events, and then insert the resulting frequent subsequence into

WAP-tree. The insertion of frequent subsequence is started from the root of WAP-tree.

Considering the first event, denoted as e, increment the count of child node with label e

by 1 if there exists one; otherwise create a child labeled by e and set the count to 1. Then,

recursively insert the rest of the frequent subsequence to the subtree rooted at that child

labeled e.

3. Auxiliary node linkage structures are constructed to assist node traversal in a WAP-

tree as follows. All the nodes in the tree with the same label are linked by shared-label

linkages into a queue, called event-node queue, The event node queue of with label ei is

also called ei queue. There is one header table H for a WAP-tree, and the head of each

event-node queue is registered in H.

Fig 5.4.1 Complete WAP Tree.

The WAP-tree is shown in Figure 5.4.1, which is constructed as follows. First, insert the

sequence abac into the initial tree with only one virtual root. It creates a new node (a: 1)

(i.e., labeled as a, with count set to 1) as the child of the root, and then derives the a-

branch \ (a: 1)! (B: 1)! (A: 1)! (c: 1)", in which arrows point from parent nodes to

children ones. Second, insert the second sequence abcac. It starts at the root. Since the

root has a child labeled a, a's count is increased by 1, i.e., (a : 2) now. Similarly, we have

(b : 2). The next event, c, does not match the existing node a, and a new child node c : 1

International Journal of Database Management Systems (IJDMS) Vol.2, No.3, August 2010

 38

is created and inserted. The remaining sequence insertion process can be derived

accordingly.

WAP-tree algorithm scans the original database only twice and avoids the

problem of generating explosive candidate sets as in Apriori-like algorithms. Mining

efficiency is improved sharply, but the main drawback of WAP-tree mining is that it

recursively constructs large numbers of intermediate WAP-trees during mining and this

entails storing intermediate patterns, which are still time consuming operations.

5. AWAPT (Adaptive Web Access Pattern Tree)

5.1 Concept of AWAPT

Our goal is to find a data structure that supports efficient FSP (Frequent Sequence

Pattern) mining in terms of both memory and time. Below we propose a special data

structure, AWAPT, for this purpose. Table 4.1 shows some example Web Access

Sequences. To detect FSPs.

The AWAPT approach is based on WAP-tree, but avoids recursively re-

constructing intermediate WAP-trees during mining of the original WAP tree for frequent

patterns. The AWAPT algorithm is able to quickly determine the suffix of any frequent

pattern prefix under consideration by comparing the assigned binary position codes of

nodes of the tree.

A tree is a data structure accessed starting at its root node and each node of a tree

is either a leaf or an interior node. A leaf is an item with no child. An interior node has

one or more child nodes and is called the parent of its child nodes. All children of the

same node are siblings. Like WAP-tree mining, every frequent sequence in the database

can be represented on a branch of a tree. Thus, from the root to any node in the tree

defines a frequent sequence. For any node labeled e in the WAP-tree, all nodes in the

path from root of the tree to this node (itself excluded) form a prefix sequence of e. The

count of this node e is called the count of the prefix sequence. Any node in the prefix

sequence of e is an ancestor of e. On the other hand, the nodes from e (itself excluded) to

leaves form the suffix sequences of e.

5.2 Rule of AWAPT:

Given a WAP-tree with some nodes, the binary code of each node can simply be

assigned following the rule that the root has null position code, and the leftmost child of

the root has a code of 1, but the code of any other node is derived by appending 1 to the

position code of its parent, if this node is the leftmost child, or appending 10 to the

position code of the parent if this node is the second leftmost child, the third leftmost

child has 100 appended, etc. In general, for the nth leftmost child, the position code is

obtained by appending the binary number for 2n-1 to the parent’s code. A node α is an

ancestor of another node β if and only if the position code of α with “1” appended to its

end, equals the first x number of bits in the position code of β, where x is the ((number of

bits in the position code of α) + 1).

International Journal of Database Management Systems (IJDMS) Vol.2, No.3, August 2010

 39

5.3 Construction of AWAPT

The tree data structure, similar to WAP-tree, is used to store access sequences in the

database, and the corresponding counts of frequent events compactly, so that the tedious

support counting is avoided during mining. A Binary code is assigned to each node in

AWAPT. These codes are used during mining for identifying the position of the nodes in

the tree. The header table is constructed by linking the nodes in sequential events fashion.

Here the linking is used to keep track of nodes with the same label for traversing prefix

sequences. This mining algorithm is prefix sequence search rather than suffix search.

In data structure, when implementing a general tree data structure, a tree is

usually transformed into its equivalent binary tree, which has a fixed number of child

nodes. To convert a given general tree, T , with nodes at n levels, and root at level 0, the

leaf nodes at level (n − 1), to a binary tree, the following rule is applied. The root of the

binary tree is the leftmost child of the root of the general tree, T. Then, starting from level

1 of the general tree and working down to level n − 1 of the tree, for every node:

(1) the leftmost child of this node in the general tree is the left child of the node in the

binary tree, and

(2) the immediate right sibling of this node in the general tree is the right child of this

node in the binary tree. For example, given a tree shown as figure 5.4.1, it can be

transformed into its binary tree equivalent shown in figure 6.3, where every node has at

most two links, one is its left child, and the other is its sibling.

The position code is assigned to the nodes on the binary tree equivalent of the tree using

the Huffman coding idea. Here, the code assignment rule, starts from the leftmost child of

the root node of the general tree, which has a binary position code of 1 because this node

is the root of the binary tree equivalent of the tree. Thus, given the binary tree equivalent

of a tree, with root node having a code of 1, the single temporary position code

assignment rule assigns 1 to the left child of each node, and 0 is assigned to the right

child of each node. These temporary position codes are used to define the actual binary

position code for each node in the original general tree. The position code of a node on

the WAP tree is defined as the concatenation of all temporary position codes of its

ancestors from the root to the node itself (inclusive) in the transformed binary tree

equivalent of the tree.

 For example, in figure 6.3, (s: 1:1110) is an ancestor of (u: 1:111011) because the

position code of (u: 1:1110) is 1110, and after appending 1 at the end of 1110, we get

11101, which is equal to the first 5 (i.e., length of u + 1) bits of (u: 1:111011). On the

other hand, (u: 1:1110) is not the ancestor of (u: 1:101111), since after appending 1, the

code will be 11101 and is not equal to the first 5 bits position code of (u: 1:101111). Not

only can we use the position code to find the ancestor and descendant relationships

between nodes, but we can also find whether one node belongs to the right-tree or left-

tree of another node. From figure 6.1, it can be seen that node (u: 1:1111) and node (u:

1:111011) are two nodes that belong to two sub trees, which are rooted at (s: 2:111) and

(s: 1:1110) respectively. The node (s: 1:1111) belongs to a left-tree of (s: 1:111011) since

the fourth bit of (s: 1:111011) is 0, which means the node is extended from the node with

International Journal of Database Management Systems (IJDMS) Vol.2, No.3, August 2010

 40

position code 1110. The node with position code 1110 is a right sibling of node with 111,

which is an ancestor of node (s: 1:1111). Thus, (s: 1:111011) is a right-tree of (s: 1:1111).

Fig 6.3: Position code assignment with node position in its Complete AWAPT (binary

tree)

5.4 Algorithm of AWAPT

The algorithm scans the access sequence database first time to obtain the support

of all events in the event set, E. All events that have a support greater than or equal to the

minimum support are frequent. Each node in a AWAPT registers three pieces of

information: node label, node count and node code, denoted as label: count: position. The

root of the tree is a special virtual node with an empty label and count 0. Every other

node is labeled by an event in the event set E. Then it scans the database a second time to

obtain the frequent sequences in each transaction. The non-frequent events in each

sequence are deleted from the sequence.

This algorithm also builds a prefix tree data structure by inserting the frequent

sequence of each transaction in the tree the same way the WAP-tree algorithm would

insert them. Once the frequent sequence of the last database transaction is inserted in the

tree, the tree is traversed to build the frequent header node linkages. All the nodes in the

tree with the same label are linked by shared-label linkages into a queue. Then, the

algorithm recursively mines the tree using prefix conditional sequence search to find all

web frequent access patterns.

 Starting with an event, ei on the header list, it finds the next prefix frequent event

to be appended to an already computed m-sequence frequent subsequence, which

confirms an en node in the root set of ei, frequent only if the count of all current suffix

trees of en is frequent. It continues the search for each next prefix event along the path,

using subsequent suffix trees of some en (a frequent 1-event in the header table), until

there are no more suffix trees to search.

To mine the tree, the algorithm starts with an empty list of already discovered

frequent patterns and the list of frequent events in the head linkage table. Then, for each

event, ei, in the head table, it follows its linkage to first mine 1- sequences, which are

R

s:3 t:1

t:3

u:1

s:1

s:1

s:1

t:1
s:1

u:1

u:1
u:1

s

t

u

International Journal of Database Management Systems (IJDMS) Vol.2, No.3, August 2010

 41

recursively extended until the m-sequences are discovered. The algorithm finds the next

tree node, en; to be appended to the last discovered sequence, by counting the support of

en in the current suffix tree of ei (header linkage event). Note that ei and en could be the

same events. The mining process would start with an ei event and given the tree, it first

mines the first event in the frequent pattern by obtaining the sum of the counts of the first

en nodes in the suffix subtrees of the Root. This event is confirmed frequent if this count

is greater than or equal to minimum support. To find frequent 2-sequences that start with

this event, the next suffix trees of ei are mined in turn to possibly obtain frequent 2-

sequences respectively if support thresholds are met. Frequent 3-sequences are computed

using frequent 2-sequences and the appropriate suffix subtrees. All frequent events in the

header list are searched for, in each round of mining in each suffix tree set. Once the

mining of the suffix subtrees near the leaves of the tree are completed, it recursively

backtracks to the suffix trees towards the root of the tree until the mining of all suffix

trees of all patterns starting with all elements in the header link table are completed.

6. Algorithm
Algorithm 1 (WAP-tree Construction for Web access sequences)

Input: Access sequence database D (i), min support MS (0< MS ≤ 1)

Output: frequent sequential patterns in D (i).

Variables: Cn stores total number of events in suffix trees, A stores whether a node is

ancestor in queue.

Begin

1. Create a root node for T;

2. For each access sequence S in the access sequence database AWAPT do

a) Extract frequent subsequence S
1
 =S1 S2 …...Sn , WHERE

S1(1<=I<=n) are events in S
1
.Let current node point to the root of T.

b) for i=1 to n do ,

if cuurent_node has a child labled Si by 1 and make cuurent_node point Si ,

else

create a new childnode(S1:1),make current_node point to the new node,and insert

it into the Si queue

3. Return (T);

7. Experimental Evaluation and performance study.
In this section, we report our experimental results on the performance of AWAPT

in comparison with WAP Tree and FS-Tree. It shows that AWAPT outperforms other

previously proposed methods and is efficient and scalable for mining sequential patterns

in large databases. All the experiments are performed on a 2.20 GHz core2duo laptop

with 3 GB memory, running Microsoft Windows/NT. The synthetic datasets we used for

our experiments were generated using standard procedure described in [2]. The same data

generator has been used in most studies on sequential pattern mining, such as [11, 6]. We

refer readers to [2] for more details on the generation of data sets.

The execution time of every algorithm decreases as the minimum support increases. This

is because when the minimum support increases, the number of candidate sequence

decreases. Thus, the algorithms need less time to find the frequent sequences. The

AWAPT algorithm always uses less runtime than the WAP algorithm. WAP tree mining

International Journal of Database Management Systems (IJDMS) Vol.2, No.3, August 2010

 42

incurs higher storage cost (memory or I/O). Even in memory only systems, the cost of

storing intermediated trees adds appreciably to the overall execution time of the program.

It is however, more realistic to assume that such techniques are run in regular systems

available in many environments, which are not memory only, but could be multiple

processor systems sharing memories and CPU’s with virtual memory support. As the

minimum support threshold decreases, the number of events that meet minimum support

increases. This means that WAP-tree becomes larger and longer, and the algorithm needs

much more I/O work during mining of WAP tree. As minimum support decreases, the

execution time difference between WAP-tree and AWAPT increases.

Table 8.1 Execution times for dataset at different Minimum supports.

Figure 8.1. Execution times trend with different minimum supports.

In summary our performance study shows that AWAPT is more efficient and scalable

than WAP Tree and FS-Tree, Whereas WAP tree is faster than FS -tree when the support

threshold is low, and there are many long patterns. The AWAPT algorithm eliminates the

need to store numerous intermediate WAP trees during mining. Since only the original

tree is stored, it drastically cuts off huge memory access costs, which may include disk

I/O cost in a virtual memory environment, especially when mining very long sequences

with millions of records. This algorithm also eliminates the need to store and scan

intermediate conditional pattern bases for reconstructing intermediate WAP trees.

Algorithms Time in sec’s at different supports

 2 3 4 5 10

WAP 750 510 330 280 150

AWAPT 230 160 110 95 48

International Journal of Database Management Systems (IJDMS) Vol.2, No.3, August 2010

 43

9. Conclusions:
In this paper, we have developed a novel, scalable, and efficient frequent sequential

pattern mining method, called AWAPT. Our systematic performance study shows that

AWAPT mines the complete set of patterns and is efficient and runs considerably faster

than both based WAP Tree and FS-Tree algorithms. This algorithm uses the pre-order

linking of header nodes to store all events ei in the same suffix tree closely together in the

linkage, making the search process more efficient. A simple technique for assigning

position codes to nodes of any tree has also emerged, which can be used to decide the

relationship between tree nodes without repetitive traversals. The Extended version of

Web Access Pattern approach is based on AWAPT, and avoids recursively re-

constructing intermediate WAP-trees during mining of the original WAP tree for frequent

patterns. The AWAPT algorithm is able to quickly determine the suffix of any frequent

pattern prefix under consideration by comparing the assigned binary position codes of

nodes of the tree.

References:

[1] Agrawal, R. and Srikant, R.,. Fast algorithms for mining association rules in large

databases. In Proceedings of the 20
th

 International Conference on very Large Databases

Santiago, Chile, p.487–499, 1994.

[2] Agrawal, R. and Srikant, R. Mining sequential patterns. In Proc. 1995 Int. Conf.

Data(ICDE’95), p.3–14, March 1995.

[3] A. Nanopoulos and Y. Manolopoulos. Mining patterns from graph traversals. Data

and Knowledge Engineering, 37(3):243– 266, 2001.

[4] Etzioni, O. The world wide web: Quagmire or gold mine. Communications of the

ACM, p.65 – 68, 1996.

[5] Han, J., Pei, J. et al. FreeSpan: Frequent pattern projected sequential pattern mining.In

SIGKDD, p.355–359, Aug. 2000.

[6] Han, J., Pei, J., Yin, Y. and Mao, R. Mining frequent patterns without candidate

generation: A frequent-pattern tree approach. International Journal of Data Mining and

Knowledge Discovery, p.53– 87, Jan 2004.

[7] Srivastava, J., Cooley, R., Deshpande, M. and Tan, P. Web usage mining: Discovery

and applications of usage patterns from web data. SIGKDD Explorations, 2000.

[8] Han, J., Pei, J., Mortazavi-Asl, B. and Pinto, H. Prefixspan: Mining sequential

patterns efficiently by prefix-projected pattern growth. In Proceedings of the 001

International Conference on Data Engineering (ICDE 01), p.214–224, 2001.

[9] Han, J., Pei, J., Mortazavi-Asl, B. and Zhu, H. Mining access patterns efficiently from

web logs. In Proceedings of the Pacific- Asia Conference on Knowledge Discovery and

Data Mining (PAKDD’00) Kyoto Japan, 2000. Jian Pei, Jiawei Han, Behzad Mortazavi-

asl, and Hua Zhu

International Journal of Database Management Systems (IJDMS) Vol.2, No.3, August 2010

 44

[10] Han, J., Pei, J., Mortazavi-Asl, B., and Pinto, H. 2001. PrefixSpan: Mining

sequential patterns efficiently by prefixprojected pattern growth. In Proceedings of the

2001 International Conference on Data Engineering (ICDE’01). Germany, Heidelberg, p.

215–224.

[11] J. Pei, J. Han, B. Mortazavi-Asl, and H. Zhu, “Mining access patterns efficiently

from web logs,” in PADKK ’00: Proceedings of the 4th Pacific-Asia Conference on

Knowledge Discovery and Data Mining, Current Issues and New Applications. London,

UK: Springer-Verlag, 2000, pp.396-407

[12] R. Cooley, B. Mobasher, and J. Srivastava, “Data preparation for mining world wide

web browsing patterns,” Knowledge and Information Systems, Vol. 1, No. 1, pp. 5-32,

1999

[13] J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan, “Web usage mining:

Discovery and applications of usage patterns from web data,” SIGKDD Explorations,

Vol. 1, No. 2, pp. 12-23,2000

[14] M. S. Chen, J. S. Park, and P. S. Yu, “Data mining for path traversal patterns in a

web environment,” in Sixteenth International Conference on Distributed Computing

Systems, 1996, pp. 385-392

[15] J. Punin, M. Krishnamoorthy, and M. Zaki, “Web usage mining:Languages and

algorithms,” in Studies in Classification, Data Analysis, and Knowledge Organization.

Springer-Verlag, 2001

[16] R. Cooley, B. Mobasher, and J. Srivastava. Web Mining: Information and Pattern

Discovery on the World Wide Web. In 8th IEEE Intl. Conf. on Tools with AI, 1997.

[17] M. Spiliopoulou and L.C. Faulstich. WUM: A Tool for Web Utilization Analysis. In

EDBT Workshop WebDB’98, LNCS 1590. Springer Verlag, March 1998.

[18] R. Srikant and R. Agrawal. Mining generalized association rules. In 21st VLDB

Conf., 1995.

 [19] S.Vijayalakshmi, Dr.V.Mohan and S.Suresh Raja.” Optimization Of Constraint-

Based Multidimensional Frequent Sequential Pattern in Web Usage Mining Using

Association Rule Mining Techniques” in International conference of Data management

[ICDM 2008], New Delhi.

[20] E. Cohen, B. Krishnamurthy, and J. Rexford. Improving end-to-end performance of

the web using server volumes and proxy filters. In Proc. ACM SIGCOMM, pages

241{253, 1998.

[21] M. Eirinaki and M. Vazirgiannis, “Web mining for web personalization,”ACM

Trans. Inter.Tech., Vol. 3, No. 1, pp. 1-27, 2003

International Journal of Database Management Systems (IJDMS) Vol.2, No.3, August 2010

 45

[22] S.Vijayalakshmi, Dr.V.Mohan and S.Suresh Raja.” Mining Constraint-based

multidimensional Frequent Sequential Pattern in Web Logs” in European Journal of

Scientific Research , ISSN 1450-216X Vol.36 No.3 (2009), pp 480-490 © EuroJournals

Publishing, Inc. 2009.

[23] Zaki, M. SPADE: An efficient algorithm for mining frequent sequences. Machine

Learning, p.31–60, 2001.

[24] Ezeife, C. and Lu, Y. Mining web log sequential patterns with position coded

preorder linked wap-tree. International Journal of Data Mining and Knowledge

Discovery (DMKD) Kluwer Publishers, p.5–38, 2005.

[25] J. Pei, J. Han, B. Mortazavi-Asl, and H. Zhu, “Mining access patterns efficiently

from weblogs,” in PADKK ’00: Proceedings of the 4th Pacific-Asia Conference on

Knowledge Discovery and Data Mining, Current Issues and New Applications. London,

UK: Springer-Verlag, 2000, pp.396-407

[26] A. Nanopoulos, D. Katsaros and Y. Manolopoulos, “A data mining algorithm for

generalizedweb prefetching,” ISEEE Transactions on Knowledge and Data Engineering,

Vol. 15, No. 5,pp. 1155-1169, 2003.

[27] C.I. Ezeife. and Mostafa Monwar, “A Plwap-Based Algorithm For Mining Frequent

Sequential Stream Patterns, International Journal of Information” Technology and

Intelligent Computing (ITIC), Vol.2, No.1, 2007, pp.89-116, endorsed by IEEE

Computing Intelligence Society (http://itic.wshe.lodz.pl).

