
International Journal of Database Management Systems (IJDMS) Vol.2, No.3, August 2010

DOI : 10.5121/ijdms.2010.2310 116

Commit Protocols in Mobile Environments:

Design & Implementation

Salman Abdul Moiz
1
, Dr. Lakshmi Rajamani

2
& Supriya N.Pal

3

1
Centre for Development of Advanced Computing, Bangalore, India

salman.abdul.moiz@ieee.org
2
University College of Engineering, Osmania University, Hyderabad, India

drlakshmiraja@gmail.com
3
Centre for Development of Advanced Computing, Bangalore, India

supriya@ncb.ernet.in

ABSTRACT

In any database environment either wired or wireless, if multiple host access similar data items it

may lead to concurrent access anomalies. As disconnections and mobility are the common

characteristics in mobile environment, preserving consistency in presence of concurrent access is a

challenging issue. Most of the approaches use locking mechanisms to achieve concurrency control.

This leads to increase in blocking and abort rate in mobile environments. However the dynamic timer

adjustment strategies may use locking mechanism to efficiently implement concurrency control. To

reduce deadlocks and blocking of resources an enhanced optimistic approach for concurrency

control is proposed. To show the effectiveness of the commit protocols in mobile environments, a

simulator is designed and implemented to demonstrate how the transactions are committed and how

the data consistency is maintained when the transactions are executed concurrently. The simulator

was tested for both pessimistic and optimistic approaches.

KEYWORDS

Concurrency Control, Coordinator, Participant, Mobile Host, Fixed Host, Transaction.

1. INTRODUCTION

Mobile computing is widely used in many applications such as mobile banking, traffic status,

weather forecasting, etc., [10, 5]. In order to provide these services, required information is

retrieved from database server via a wireless channel and is passed on to the mobile hosts.

Concurrency Control is one of the important components of transaction management. Several

valuable attempts were made to efficiently implement the concurrency control strategies in

mobile environment.

The concurrency control strategies presented in literature are based on three mechanisms viz.,

locking, timestamps and optimistic concurrency control. Due to various constraints in the

mobile environment and nature of different online applications, these schemes may not work

effectively. Several valuable attempts have been made to efficiently implement the commit

protocols in traditional and mobile environments.

International Journal of Database Management Systems (IJDMS) Vol.2, No.3, August 2010

117

The choice of a protocol depends on type of the mobile application and the choice of the data

service provider. In this paper the design and implementation of both protocols are presented.

The remaining part of this paper is organized as follows: Section 2 summarizes the survey of

commit protocols proposed in the literature, section 3 describes the environment and the

elements of mobile databases, section 4 specifies the conceptual architecture, section 5 describes

the design & implementation of optimistic protocols, section 6 presents mobility issues, section

7 specifies the results and section 8 concludes the paper.

2. RELATED WORK

As long as the mobile clients are not involved in the concurrent access of data items, the

database consistency can be preserved. When multiple mobile hosts initiate the transactions

requesting for the same data item, it can be locked by only one of the transaction. After the

execution of the transaction, the data items are unlocked and the same are acquired by the

waiting transaction. When one transaction is being executed, the other transaction that needs the

same data items, locked by the former has to wait for invariant time. The delay in acquiring the

data items may further increase due to disconnections of mobile hosts for longer time. To solve
these problems, following concurrency control techniques are proposed.

The basic idea is that a transaction has to be executed within certain time period (Execution

time). This information is maintained by fixed host. To achieve concurrency control, two phase

locking protocol was used in the traditional environment. However this protocol requires clients

to communicate continuously with the server to obtain locks and detect the conflicts. Hence it is

not suitable for mobile environments. In [3], A Timeout based Mobile Transaction Commitment

Protocol uses timeouts to provide non-blocking protocol with restrained communication. It faces

the problem of the time lag between local and global commit. In [4] the proposed Mobile 2PC

protocol preserves the 2PC principle and minimizes the impact of unreliable wireless

communication. This protocol assumes that all communicating partners are stationary hosts,

equipped with sufficient computing resources and power supply with permanently available

bandwidth.

In the pessimistic approaches, the items may be blocked for certain period of time. To avoid the

blocking of data items and allowing multiple users to access the shared data items requires

strong conflict resolution strategies. For this reason, an optimistic concurrency control technique

is frequently used in wireless environments [13, 14, 15].

An optimistic concurrency control technique detects and resolves data conflicts in the phase of

transaction validation. In a mobile environment the transaction validation is done on the server,

it may lead to delayed response causing overhead at the server. An Optimistic Concurrency

Control with Dynamic Time stamp Adjustment Protocol requires client side write operations.

However because of the delay in execution of a transaction, it may never be executed [16]. In

[17], the conventional optimistic concurrency control algorithm is enhanced with an early

termination mechanism on conflicting transactions. However because of early termination a

transaction need to be initiated again and again.

Optimistic concurrency control protocols (OCC) [19, 20, 22] are non-blocking and deadlock-

free, which make them efficient to use in mobile computing and have been adopted in the

Disconnected Operation [21] and Kangaroo Transaction model. However, without locks to data

items, transactions might access conflicting data items under an optimistic concurrency control

protocol (OCC). Two concurrent transactions conflict if one of them performs a write on similar

International Journal of Database Management Systems (IJDMS) Vol.2, No.3, August 2010

118

data items. Therefore, approaches to terminate conflicting transactions are proposed [17,18]. In

these approaches if the conflict rate increases, more and more transactions get aborted.

Pessimistic commit protocols suitable for mobile environments are presented from [5] to [8].

Further a Real Time optimistic Commit protocols with a conflict resolution strategy is presented

in [9]. The Design & Implementation of Pessimistic Commit protocols is described in [10]. The

design and implementation of the optimistic commit protocol is presented in this chapter.

3. MOBILE DATABASE MODEL

3.1 Mobile Database Architecture

The mobile computing environment generally consists of three entities Fixed Host (FH), Mobile

Hosts (MH) and Base Stations (BS) respectively. Terminals, desktop, servers are the fixed host,

which are interconnected by means of a fixed network.

Figure 1. Mobile Database Architecture [9]

Large databases can run on servers that guarantee efficient processing and reliable storage of

database. Fixed hosts perform the transaction and data management functions with the help of

data base servers (DBS). Mobile units are the portable computers which can retain the network

connections through the support of the Base Stations (BS).

The request for execution of a transaction is initiated at a mobile host may but it may be

executed at fixed host or mobile host. A Base station connects to a mobile unit and is equipped

with a wireless interface. It is also known as a Mobile Support Station. Mobile Hosts (MH) may

not always be connected to the fixed network. They may be disconnected for different reasons.

Mobile host may differ with respect to the computing power and storage space; however MH

can run a DBMS module.

The commit protocols assume that the transaction request is sent to the Base Station which acts

as the coordinator. The Mobile host and the Database systems act as the participants. The

decision regarding the final commit, scheduling of transaction etc is done by the base station to

which the mobile host was registered when it initiated the transaction request.

International Journal of Database Management Systems (IJDMS) Vol.2, No.3, August 2010

119

The component of the mobile transaction management system that are designed, implemented

and tested includes the Pessimistic & Optimistic commit protocols.

3.2 Pessimistic Commit Protocols

The pessimistic approach says “No one can cause concurrency violation with my data if I don’t

let them at the data which I have it” [1]. In pessimistic commit protocols a row is locked for

execution of the transaction. Once the transaction completes it is unlocked and can be acquired

by the waiting transaction which needs the shared resource.

The pessimistic commit protocols uses locking of data items yet enhances throughput. Four

variations of this pessimistic approach are presented. The Algorithmic approach uses static time

out mechanisms to reduce the starvation of waiting process [8]. The Single Lock Manager

Approach [5] uses the dynamic timer adjustment strategy to increase the overall commit rate.

However to reduce the rollback operations the Concurrency control with reduced rollbacks [6]

uses pre-emptive approach of scheduling the transactions and the strategy for concurrency

control [7] uses predictive approach for scheduling the transaction execution. These

approaches may be selected based on the business logic of the mobile application. The design

and implementation of pessimistic commit protocols was presented in [10].

3.3 Optimistic Commit Protocols

In optimistic concurrency control strategy, the data items are not locked and can be used by
more than one mobile host at the same time. The transaction executes in two phases: In the first
phase the transaction is committed locally on mobile host using the on-demand approach[9]. In
the second phase the results are updated onto the fixed host. In on demand multicasting , the
data fragment needed by mobile host for executing the transactions is only requested from the
mobile host and whenever the data conflict occurs, the invalidation reports along with request
for re-execution of transactions is only sent to the mobile host using the shared data item.

In optimistic replication, shared data is replicated on mobile hosts and users are allowed to

continue their work while disconnected. Updates performed by fixed host and later propagated

to servers. In the earlier approaches whenever a concurrency violation occurs i.e data items are

updated at fixed host the conflicting transaction using the similar data items was aborted. In this

approach the conflicting transaction is not aborted but it is restated with new state of the data

items.

4 ARCHITECTURE OF OPTIMISTIC CONCURRENCY

CONTROL STRATEGY

The generic architecture of optimistic concurrency control strategy is represented in

figure 2. This architecture is suitable for both online and offline transactions. However the
emphasis is on offline transactions in this paper, where the transactions are executed at mobile
host and later on the results are reconciled with the fixed host.

International Journal of Database Management Systems (IJDMS) Vol.2, No.3, August 2010

120

Figure 2. Architecture of Optimistic Concurrency Control Strategy

At Mobile Host, the Local Transaction Manager is responsible for managing the transactions at
respective mobile hosts. When a local transaction is committed, the Local Log Manager
maintains log records to support Durability. The commit record in the log storage helps in
reconciliation of the results onto the fixed hosts. The Data Sharing Manager or cache manager
manages the shared data which is obtained to initiate the offline transactions. Transaction
Execution Manager is responsible for executing offline transactions and the Local Mobility
Manager manages the handoff information when mobile host moves from one cell to another.

At Fixed Host, the Global Transaction Manager is responsible for managing the transactions
submitted my mobile host after the offline processing. The Global Log Manager is responsible
for making the final decision regarding the completion of a transaction and it is also responsible
to maintaining durability after a failure. The Global Mobility Manager is responsible to manage
sub-transactions to decide the final result of the transaction when the mobile host was on move
during its execution.

The optimistic concurrency control supports offline transactions. Hence the mobile host initiates
the request for the transaction. The Base station acts as a Global Transaction Manager.

The base station acts as the coordinator and the Mobile hosts and the Database System as
participants. In figure 2 the architectural elements specified at fixed host i.e. Global Transaction
Manager, Global Log Manager & Global Mobility Manager are logical components of the
coordinator i.e. the base station.

5 DESIGN & IMPLEMENTATION OF OPTIMISTIC COMMIT

PROTOCOLS

In the optimistic approaches, the data item requested for offline transactions are not locked,

rather the transaction proceeds tolerating the conflicts. Later at the time of reconciliation of

results the conflict is detected and respective resolution strategy is adopted.

International Journal of Database Management Systems (IJDMS) Vol.2, No.3, August 2010

121

Object1 : GUI Object2 : Base_Station : Transaction_Info Object3 : Current_Transactions

: MobileHost

1 : fillform()

: DBS

2 : submit()

3 : isTransValid()

4 : addInfo()

5 : readDataItem()

Figure 3. Behaviour of Initiating a Transaction

Figure 3 depicts the behaviour of Initiate Transactions for Optimistic strategy for concurrency
control. The implementation of optimistic protocols is divided into two phases. In the tentative
phase, the data items are read by mobile host and the transaction is executed locally. In the
commit phase, the final commit decision is made by resolving conflicts.

In offline transactions, whenever a mobile host initiates the transaction (1: fillform()), the
request is sent to the base station (2: submit()). The base station checks whether the requested
transaction can be executed (3: isTransValid()), by comparing the Transaction_id with the one
which is requested by the mobile host. Then the information regarding the new transaction
request is entered in Current_Transaction relation (4: addInfo()). The data items are then read by
the mobile host (5: readDataItem()). Figure 5 describes the behavior of executing a transaction.

When the transactions are committed locally (1:localCommit()), the local transaction manager
sends the result (2: Propagate()) to the coordinator. The Global Transaction Manager at the Base
station makes a decision regarding committing the transaction (3: isCommit()) based on the
forward or backward validation strategy.

International Journal of Database Management Systems (IJDMS) Vol.2, No.3, August 2010

122

Object1 : LocalTransaction : Base_Station

: MobileHost

1 : localCommit()

: DBS

2 : Propagate()

3 : isCommit()

4 : updateData()

5 : reExecute()

Figure 4. Behaviour of Executing A Transaction

The result is then updated to the database (4: updateData()). If more than one mobile host were
sharing the same data items, then there exists a conflict. Conflict is resolved by multicasting the
updated values to those mobile host which are the vicitims of data conflict. The new value of the
data is sent to the mobile host by instructions to restart the execution of the transaction (5:
reExecute()) at the respective mobile host.

6. MOBILITY MANAGEMENT IN OPTIMISTIC STRATEGY FOR

CONCURRENCY CONTROL

Whenever a mobile host moves from one cell to another during the execution of a
transaction, it registers with the mobile host in foreign cell. Figure 5 describes the behavior of
execute transaction for optimistic protocols when the mobile host moves from one cell to
another

When a mobile host completes the transaction in foreign cell (1: localCommit()), it sends the
result to the base station to which it is registered to (2: propagate()) . The base station checks
whether the mobile host started its execution in the same cell (3: isMhInHloc()) i.e in home
location. Otherwise the result is propagated to the base station where the transaction started the
execution (4: Propagate ()).

The base station makes a final commit decision (5: isCommit()). Once the coordinator
decides to commit the transactions the results are updated in the database (6: updateData()). In
case of any conflicts with other mobile host, the new values of data items are propogated to the
mobile host using the conflicting data items (7: reExecute()).

International Journal of Database Management Systems (IJDMS) Vol.2, No.3, August 2010

123

Object1 : LocalTransaction : BS : BS

: Mobile Host

1 : localCommit()

: DBS

2 : propagate()

3 : isMhInHloc()

4 : propagate()

5 : isCommit()

6 : updateData()

7 : reExecute()

Figure 5 Handoff During Transaction Execution

7. RESULTS

In this section we compare the results of the proposed Real Time Optimistic Concurrency

Control strategy with the optimistic strategies proposed in the literature.

In OCC/DTA (Optimistic Concurrency Control-Dynamic Timer Adjustment) [23], client side

validation procedure is used that enhances the transaction throughput by adjusting the
serialization order. In validation phase the mobile clients perform partial validation for

committing a transaction. If the partial validation is successful global validation is performed. A

transaction is expected to complete its execution within the specified time stamp. If the Lower

bound crosses the higher bound value the transaction is aborted. As the mobile hosts have

varying processing capabilities, restricting a transaction to be executed within certain timestamp

may increase the abort rate. When a transaction is aborted, it may have to request for execution

later, this unnecessary increase the uplink bandwidth too.

As proposed in the real time optimistic strategy the when a conflict is detected the transaction

may not initiate the transaction request again, instead the updated value of conflicting data items

if any will be multicasted to those mobile hosts using the shared data item with a request to re-

execute the transaction. Though there may be possibility of increase in re-execution request, but

this reduces the abort rate, decreases the uplink bandwidth and also avoids sending irrelevant

information to the mobile host by using multicasting.

FBOCC [15] adopts optimistic concurrency control technique suitable for broadcast

environments. In this technique the transaction is aborted immediately upon detection of

conflict without adjustment of any serialization order. When the transactions are aborted

immediately after detecting the conflicts, the abort rate is much higher and uplink bandwidth

will almost be equivalent to the downlink bandwidth.

The proposed optimistic concurrency control strategy is compared with FBOCC. To simulate

the results the Mobile transactions were generated at each client to measure the number of

aborted transactions due to data conflict. As the number of mobile clients gets increased, the

frequency of data conflicts gets increased. The maximum numbers of clients used to generate

International Journal of Database Management Systems (IJDMS) Vol.2, No.3, August 2010

124

different transactions were 20. At any instant of time 50% of transactions used the same shared

data items.

Table 1. Comparison of FBOCC with the Proposed Optimistic Strategy

No. of Clients

Abort rate
No. of times uplink bandwidth is

utilized

FBOCC
Proposed

Strategy

FBOCC
Proposed

Startegy
2 1 0 2 2
4 3 0 3 0
8 7 1 7 1

12 11 2 11 2
16 15 3 15 3
20 19 4 19 4

In FBOCC the transaction is aborted once a conflict is detected, whereas in proposed protocol,

the transaction is re-executed with new values of data items. However it might be aborted after

3 attempts (say) of re-execution requests. The number of re-execution requests varies from one

transaction to another and/or one application to another. The number of possible attempts for re-

execution of a transaction is maintained at the fixed host.

The results in table 7.3 are based on the speed of execution of a transaction & the execution

request was sent to the coordinator dynamically. A mobile host might request for execution

quiet later but can be committed earlier. In the first case 2 clients have requested for same

shared data item. In the second case 4 clients have requested for same shared data items. There

is a possibility the transaction which was aborted might have also requested for execution of

transaction immediately. It is also obvious that as the abort rate increases the uplink bandwidth

also increases.

8 CONCLUSION

The Optimistic Concurrency Control Strategy doesn’t use any locking which doesn’t block the

shared resources. Further concurrency can be guaranteed by first executing transactions locally

and later on propagating the results. In this scheme whenever a fixed host detects a concurrency

violation, it propagates the updated shared data item to the mobile host using the same data item

without aborting it. The mobile host which successfully completes the transaction locally will be

committed irrespective of its arrival time. In this scheme there could be a possibility that the

transaction which arrived quiet early might not get executed because the other mobile hosts are

executing faster. The future work may introduce a priority field to give chance to the

transaction which requested first or a hybrid approach for concurrency control that enters into

pessimistic approach by partially locking data items to complete its execution is needed.

REFERENCES

[1] Smith Wayne Plourede: “Handling Concurrency Issues in .NET”,
http://www.15seconds.com/issue/030604.htm, Web retreieve on February 19, 2005).

[2] Samidip Basu & Syed M. Rahman, “Improving Optimistic Concurrency Control using Hybrid

Techniques of Snapshot Isolation & ROCC”, Proceedings of Mid-west Instruction & Computing
Symposium, 2006.

International Journal of Database Management Systems (IJDMS) Vol.2, No.3, August 2010

125

[3] Vijay Kumar, Nitin Prabhu, Maggie Dunham, Ayse Yasemin Seydim, “TCOT - A Timeout based

Mobile Transaction Commitment Protocol”, IIS 9979453, 2004.

[4] Nadia Nouali, Anne Doucet, Habiba Drias, “A Two-Phase Commit Protocol for Mobile Wireless

Environment”, Vol. 39, 16
th

Australasian Database Conference, 2005.

[5] Salman Abdul Moiz, Dr. Lakshmi Rajamani, “Single Lock Manager Approach for achieving

Concurrency in Mobile Environments”, 14
th

IEEE International Conference on High Performance
Computing (HiPC), 2007. Springer LNCS 4873, ISBN 978-3-540-77219-4, pp. 650-660, 2007.

[6] Salman Abdul Moiz, Dr. Lakshmi Rajamani, “Concurrency Control Strategy to Reduce frequent

rollbacks in Mobile Environments”, 2009 IEEE/IFIP International Symposium on Trusted Computing
(TrustCom 2009), ISBN# 978-0-7695-3823-5, Vol 2. Pp. 709-714, 2009.

[7] Salman Abdul Moiz, Dr. Lakshmi Rajamani, “An Efficient Strategy for achieving Concurrency

Control in Mobile Environments”, 12th IEEE Asia Pacific Network Operations & Management
(APNOMS) symposium, 2009. Springer LNCS 5787, ISBN# 978-3-642-04491-5, pp. 519-5222, 2009.

[8] Salman Abdul Moiz, Dr. Lakshmi Rajamani, “An Algorithmic approach for achieving concurrency in
Mobile Environments”, 1st National Conference on Computing for Nation Development, INDIACom
2007, ISBN #978-81-094526-0-1, ISSN # 0973-7529.

[9] Salman Abdul Moiz, Dr. Lakshmi Rajamani, “A Real Time Optimistic Strategy to achieve

Concurrency control in Mobile Environments using on-demand multicasting”, International Journal of

Wireless & Mobile Networks (IJWMN), Vol.2, No.2, May 2010, pp. 172-185, ISSN #0975-3834

(online), ISSN #0975-4679 (print).

[10] Salman Abdul Moiz, Dr. Lakshmi Rajamani, Supriya N. Pal, “ Design and Implementation of

Pessimistic Commit Protocols in Mobile Environments”, The First International Workshop on

Database Systems (DMS-2010), Springer Verlag Berlin Hiedelberg, CNSA 2010, CCIS 89, pp. 603-

612, 2010

[11] Barbara, D., "Mobile computing and databases-a survey”, IEEE Transaction of Knowledge

Data Engineering, volume 11 issue 1, pp.108-117, 1999

[12] Imielinski, T. and Badrinath, B. R., "Mobile wireless computing: challenges in data management",

Communications of the ACM 37(10), pp. 18-28, 1994

[13] Mei-Wai Au, Edward Chan and Kam-Yiu Lam, “Concurrency Control for Mobile Systems

with Data Broadcast”, Journal of Interconnection Networks, pp.253-267, 2001

[14] Pitoura E., "Supporting Read-Only Transactions in Wireless Broadcasting", Proc. DEXA

Workshop on Mobility in Database and Distributed Systems, pp.428-433, 1998.

[15] Victor C.S.Lee, Kwok Wa Lam, Tei-wei Kuo,”Efficient Validation of Mobile Transactions in

Wireless Environments”, The Journal of Systems and Software 69(2004), 183-193.

[16] Ho Chin Choi, Byeong-Soo Jeong, , “A Timestamp-Based Optimistic Concurrency Control for

Handling Mobile Transactions, Springer Verlag, LNCS 3981, PP. 796-805, 1996

[17] Anand Yendluri, Wen-Chi Hou, and Chih-Fang Wang, “Improving Concurrency Control in Mobile

Databases”, Springer Verlag LNCS 2973, PP. 642-655, 2004.

[18] Barbara D. and T. Imielinski. "Sleepers and Workaholics: Strategies in Mobile Environments," Proc.

ACM pp. 1-12, May 1994.

[19] Bernstein, P.A, Hadzilacos, V. and Goodman, N, "Concurrency Control and Recovery in

database System", Addison-Wesley 1987

International Journal of Database Management Systems (IJDMS) Vol.2, No.3, August 2010

126

[20] H. T. Kung and J. T. Robinson, "On Optimistic Methods for Concurrency Control," ACM TODS, 6(

2), June 1981.

[21] J. Kisler, and M. Satyanarayanan, Disconnected Operation in the Coda File System, ACM

Transactions on Computer Systems, 10(1), 1992.

[22] T. Härder. “Observations on optimistic concurrency control schemes”. Information Systems,

9(2):111–120, 1984.

[23] Ho Chin Choi, Byeong-Soo Jeong, “A Timestamp-Based Optimistic Concurrency Control for

Handling Mobile Transactions”, Springer Verlag, LNCS 3981, PP. 796-805, 2006.

Authors

Salman Abdul Moiz is a Research Scientist at Centre for Development of

Advanced Computing, Bangalore. He received his B.Sc from Osmania

University, MCA from Osmania University, M.Tech(cse) from Osmania

University and M.Phil(Cs) from Madurai Kamaraj University.

He is a Research Scholar at Osmania University and published 25 papers in

various National/International Conferences and Journals. His areas of interests

include Mobile databases, Software Process Improvements, Agile

Methodology & Disaster Recovery.

Dr. Lakshmi Rajamani is working as Professor & Head of the Department,

CSE, University College of Engineering, Osmania University, Hyderabad. She

received M.Sc (Statistics) from IIT Kanpur, M.Phil (Computer methods) from

University of Hyderabad and PhD (CSE) from Jadavpur University, Kolkata.She

authored more than 30 papers in various National/International conferences and

Journals. Her research interests are in the areas of Neural Networks, Artificial

Intelligence, Distributed Computing & Data Mining.

Supriya N. Pal holds a Master's degree in Computer Science from the University

of Mumbai. She is a Technical Lead in applied research projects of the Database

Systems & Software Engineering division in C-DAC, Electronics City, Bangalore.

Her research interests include SW Re-engineering, SOA, Messaging middleware,

and Mobile Computing and its applications.

