
International Journal of Database Management Systems (IJDMS), Vol.2, No.4, November 2010

DOI : 10.5121/ijdms.2010.2410 116

SELECTION OF MATERIALIZED VIEW USING

QUERY OPTIMIZATION IN DATABASE

MANAGEMENT : AN EFFICIENT METHODOLOGY

Mr. P. P. Karde
1

and Dr. V. M. Thakare
2

1
Department of IT, HVPM’s College of Engg. & Tech, Amravati, (M.S),India

P_karde@rediffmail.com
2
Post Graduate Deptt. of Computer Science, SGB, Amravati University, Amravati,

vilthakare@yahoo.co.in

ABSTRACT

In large databases particularly in distributed database, query response time plays an important role as

timely access to information and it is the basic requirement of successful business application. A data

warehouse uses multiple materialized views to efficiently process a given set of queries. Quick response

time and accuracy are important factors in the success of any database. The materialization of all views is

not possible because of the space constraint and maintenance cost constraint. Selection of Materialized

views is one of the most important decisions in designing a data warehouse for optimal efficiency.

Selecting a suitable set of views that minimizes the total cost associated with the materialized views and is

the key component in data warehousing. Materialized views are found to be very useful for fast query

processing. This paper gives the results of proposed tree based materialized view selection algorithm for

query processing. In distributed environment where database is distributed over the nodes on which query

should get executed and also plays an important role. This paper also proposes node selection algorithm

for fast materialized view selection in distributed environment. And finally it is found that the proposed

methodology performs better for query processing as compared to other materialized view selection

strategies.

KEYWORDS:

Data warehousing, Materialize views, Net benefit, Query cost, Storage cost, View maintenance, View

selection

1. INTRODUCTION

A basic requirement for the success of a data warehouse is the ability to provide decision makers

with both accurate and timely consolidated information as well as fast query response times. For

this purpose, a common method that is used in practice for providing higher information and

best response time is the concept of materialized views, where a query is more quickly

answered. One of the most important decisions in designing data Warehouse is selecting views

to materialize for the purpose of efficiently supporting the decision making. The view selection

problem defined is to select a set of derived views to materialize that minimizes the sum of total

query response time & maintenance of the selected views. So the goal is to select an appropriate

set of views that minimizes total query response time and also maintains the selected views [1,

25]. The decision “what is the best set of views to materialize?” must be made on the basis of the

system workload, which is a sequence of queries and updates that reflects the typical load on the

International Journal of Database Management Systems (IJDMS), Vol.2, No.4, November 2010

117

system. One simple criterion would be to select a set of materialized view that minimizes the

overall execution time of the workload of queries.

A view is defined as a function from a set of base tables to a derived table and the function is

recomputed every time the view is referenced. On the other hand, a materialized view is like a

cache i.e., a copy of data that can be accessed quickly. Utilizing materialized views that

incorporate not just traditional simple SELECT-PROJECT-JOIN operators but also complex

online analytical processing operators play crucial role to improve the OLAP query

performance. Materialized views are useful in applications such as data warehousing, replication

servers, data recording systems, data visualization and mobile systems [2, 3, 4]. In certain

situation, it is more profitable to materialize a view than to compute the base tables every time

the view is queried. Materializing a view causes it to be refreshed every time a change is made to

the base tables that it references. It can be costly to rematerialize the view each time a change is

made to the base tables that might affect it. So it is desirable to propagate the changes

incrementally i.e., the materialized view should be refreshed for incremental changes to the base

tables. In the last few years, several view maintenance methods have been designed and

developed to obtain an efficient incremental view maintenance plan [5]. In this paper a

methodology has been presented. First is tree based materialized view selection, in which views

are selected at the time of query processing. Second is node selection, in which the nodes are

selected in the distributed environment for the execution of faster query performance. In next

section various recent past work that has been carried out in the field of materialized view

selection and their utilization for the query processing are stated. The proposed algorithm and its

implementation details are explained in Section 4 The experimental results that are obtained

after the implementation of algorithm are stated and discussed in Section 5. The work that has

been carried out is concluded in last section.

2. MATERIALIZED VIEW MANAGEMENT AND SELECTION

Materialized View Management & Selection Approach

The motivation for using materialized views is to improve performance but the overhead

associated with materialized view management can become a significant system management

problem. The common materialized view management activities include: identifying which

materialized view to create; indexing the materialized view; ensuring that all materialized views

and materialized view indexes are refreshed properly each time the database is updated;

checking which materialized views have been used; determining how effective each materialized

view has been on workload performance; measuring the space being used by materialized views;

determining which existing materialized views should be dropped; archiving old detail and

materialized view data that is no longer useful [6,28].

The view selection problem is to choose a set of views to materialize in order to achieve the best

query performance for a given query workload. Typically view selection is under a space

constraint, and / or a maintenance cost constraint [7, 8, 28]. Unlike answering queries using

views that need to handle adhoc queries, in view selection scenarios, the queries are known.

Hence, most view selection algorithms start from identifying common sub-expressions among

queries. These common sub expressions serve as the candidates of the materialized views. One

fundamental practical issue with view selection is that there are many possibly competing factors

International Journal of Database Management Systems (IJDMS), Vol.2, No.4, November 2010

118

to be considered during the view selection phase, such as view selectivity, query complexity,

database size, query performance, update performance etc.

Figure 1: View Materialization Process

In the above architecture the view selector interacts with the query processor (QP). Based on

the query processing plan it applies the notion of view relevance to select the views for a given

set of queries.

3. RELATED WORK

Harinarayan et al. [10] presented a greedy algorithm for the selection of materialized views so

that query evaluation costs can be optimized in the special case of “data cubes”. However, the

costs for view maintenance and storage were not addressed in this piece of work. Yang et al.

[11] proposed a heuristic algorithm which utilizes a Multiple View Processing Plan (MVPP) to

obtain an optimal materialized view selection, such that the best combination of good

performance and low maintenance cost can be achieved. However, this algorithm did not

consider the system storage constraints. Himanshu Gupta and Inderpal Singh Mumick [12]

developed a greedy algorithm to incorporate the maintenance cost and storage constraint in the

selection of data warehouse materialized views. “AND-OR” view graphs were introduced to

represent all the possible ways to generate warehouse views such that the best query path can be

utilized to optimize query.

In case of 0-1 Programming Algorithm [13] it considers all possible plans for each query to

generate a single optimal view processing plan by applying 0-1 integer programming techniques.

This works with all the possible join plan trees, therefore it can definitely get the best view

processing plan in terms of query access frequency. In A* Heuristic Algorithm [14] , an AND-

OR view graph and disk space constraints S is given, to deliver a set of views M that has an

optimal query response time such that the total maintenance cost of M is less than by satisfying

the constraint S. A* algorithm searches for an optimal solution in search graph.

Ziqiang Wang and Dexian Zhang [15] proposed a modified genetic algorithm for the selection

of a set of views for materialization. The proposed algorithm is superior to heuristic algorithm

and conventional genetic algorithm in finding optimal solutions. Kamel Aouiche et al. [16]

proposed a framework for materialized view selection that exploits a data mining technique

(clustering), in order to determine clusters of similar queries. They also proposed a view

merging algorithm that builds a set of candidate views, as well as a greedy process for selecting

a set of views to materialize.

International Journal of Database Management Systems (IJDMS), Vol.2, No.4, November 2010

119

The distributed model is quickly becoming the preferred medium for file sharing and distributing

data over the Internet. A distributed network consists of numerous peer nodes that share data and

resources with other peers on an equal basis. Unlike traditional client-server models, no central

coordination exists in a distributed system; thus, there is no central point of failure. Distributed

networks are scalable, fault tolerant, and dynamic, and nodes can join and depart the network

with ease. The most compelling applications on distributed systems to date have been file

sharing and retrieval. For example, P2P systems such as Napster [17] and KaZaA [18] are

principally known for their file sharing capabilities, for example, the sharing of songs, music,

and so on. Furthermore, researchers have been interested in extending sophisticated infrared (IR)

techniques such as keyword search and relevance retrieval to distributed databases.

It has been observed that in most typical data analysis and data mining applications, timeliness

and interactivity are more important considerations than accuracy; thus, data analysts are often

willing to overlook small inaccuracies in the answer, provided that the answer can be obtained

fast enough. This observation has been the primary driving force behind the recent development

of approximate query processing techniques for aggregation queries in traditional databases and

decision support systems [19, 20]. Numerous approximate query processing techniques have

been developed: The most popular ones are based on random sampling, where a small random

sample of the rows of the database is drawn, the query is executed on this small sample, and the

results are extrapolated to the whole database. In addition to simplicity of implementation,

random sampling has the compelling advantage that, in addition to an estimate of the aggregate,

one can also provide confidence intervals of the error, with high probability. Broadly, two types

of sampling-based approaches have been investigated: 1) pre-computed samples, where a

random sample is pre-computed by scanning the database and the same sample is reused for

several queries and 2) online samples, where the sample is drawn “on the fly” upon encountering

a query. So the selection of these random samples in distributed environments for query

processing is addressed in [21].

A number of parameters, including users query frequencies, base relation update frequencies,

query costs, should be considered in order to select an optimal set of views to be materialized.

Heuristic Algorithm (HA) [22] will set materialized views such that the total cost for query

processing and view maintenance is minimal by comparing the cost of every possible

combination of nodes. HA algorithm determines multiple view processing plans regardless of

their query cost. HA may include the best processing plan because HA only works with the

optimal plans.

An efficient implementation of materialized sample view is difficult. The primary technical

contribution is given in [23] in terms of index structure called the Appendability, Combinability,

and Exponentially (ACE) Tree, which can be used for efficiently implementing a materialized

sample view. Such a view, stored as an ACE Tree, has the following characteristics:

1. It is possible to efficiently sample (without replacement) from any arbitrary range query

over the indexed attribute at a rate that is far faster than is possible by using techniques

proposed by Olken [24] or by scanning a randomly permuted file. In general, the view

can produce samples from a predicate involving any attribute having a natural ordering,

and a straightforward extension of the ACE Tree can be used for sampling from

multidimensional predicates.

2. The resulting sample is online, which means that new samples are returned continuously

as time progresses and in a manner such that at all times, the set of samples returned is a

International Journal of Database Management Systems (IJDMS), Vol.2, No.4, November 2010

120

true random sample of all of the records in the view that match the range query. This is

vital for important applications like online aggregation and data mining.

3. Finally, the sample view is created efficiently, requiring only two external sorts of the

records in the view and with only a very small space overhead beyond the storage

required for the data records. Note that although the materialized sample view is a

logical concept, the actual file organization used for implementing such a view can be

referred to as a sample index, since it is a primary index structure for efficiently

retrieving random samples.

The ranges associated with each section of a leaf node are determined by the ranges associated

with each internal node on the path from the root node to the leaf. For example, consider the

path from the root node down to leaf node L4, the ranges that we encounter along the path are 0-

100, 0-50, 26-50, and 38-50. Thus, for L4, L4:S1 has a random sample of records in the range 0-

100, L4:S2 has a random sample in the range 0-50, L4:S3 has a random sample in the range 26-50,

whereas L4:S4 has a random sample in the range 38-50.

4. PROPOSED ALGORITHMS AND IMPLEMENTATION DETAILS

In distributed database environment database is present on various nodes. It may happen that

same copy of database is present on multiple nodes. Therefore query execution on each and

every node will be cumbersome and time consuming in distributed environment. This becomes

more complicated when materialized views are created for the distributed database. The

maintenance and selection of materialized views for query execution is challenging task. Two

proposed algorithms are presented for handling the problem of materialized view maintenance

and selection.

The first algorithm is for generation and maintenance of materialized view. The tree based

approach is used for creating and maintaining materialized views. Initially all records are

arranged in ascending order of their key values. Then the middle record is selected as root

element of tree. The records are then split till the threshold doesn’t reach so that the leaf of tree

should contain the number of records that will be available in materialized view. Then the

materialized view is created for each leaf node, indirectly each leaf represents materialized view

that has to be created and maintain. The materialized view is selected as per the query. The

records for which the query is intended the materialized view and only those records will be

selected for the processing. This minimizes the total execution time for query processing. The

selective approach can also be used for creating the materialized views that minimizes the

storage cost.

The second algorithm is for node selection. This algorithm decides the nodes in the distributed

environment for which materialized view should be created, updated or to be maintained. The

random walk algorithm is used as base for designing the node selection algorithm and gossip

protocol is used to find the best set of the nodes.

In the following algorithm initially records are arranged in an ascending order of their key values

using arrange(R). Then the middle record is selected as a root node. For each record on the

available nodes, if the threshold is less than the number of records in leaf node then again split

the records in equal sets; otherwise create the materialized view for next available records in the

leaf node & add this materialized view in the view set.

International Journal of Database Management Systems (IJDMS), Vol.2, No.4, November 2010

121

Algorithm 1: Tree Based Materialized View Creation and Maintenance

 r: Threshold for number of records that should be kept in materialized view

 P: Root Node

 S: Number of records in leaf

Inputs:

 R: Total records in database

 m: Number of nodes to visit

Output:

 S: Set of Materialized views

Begin

1. arrange (R)

2. N = middle (R)

3. Repeat

3.1 If (S > r)

 Split (S)

3.2 Else create Materialized_View (S).

4. Add (View)

5. Until R ! = NULL

End

For node selection algorithm, initially it checks the available active nodes from available ‘S’

nodes. If there is only one node then the query will be executed on the same node; otherwise the

random nodes will be identified from the available ‘P’ active nodes on which query will get

executed.

Algorithm 2: For Node Selection

M: Total number of nodes in network

N: Number of Active Nodes

m: Number of nodes to visit

j: jump size for randomly selecting nodes

t: max tuples to be processed per node

Inputs:

Q: Query with selection condition

Sink: Node where query is initiated

Output: Query result to Sink (node where query is initiated)

Begin

1. N = Active Nodes (M)

2. If N = = 1

International Journal of Database Management Systems (IJDMS), Vol.2, No.4, November 2010

122

2.1. Execute query on N

3. Else m = random (N)

4. Curr = Sink; Hops = 1;

5. While (Hops < j * m) {

5.1. If (Hops % j)

5.1.1. Visit (Curr);

5.1.2. Hops ++;

5.1.3. Curr = random adjacent node }

6. Visit (Curr)

7. If (# tuples of Curr) <= t)

7.1. Execute Q on all tuples

8. Else

8.1. Execute Q on t randomly sampled tuples

9. Return Result to Sink

10. Compute Processing Time

11. Return this Result to Sink

End

Cost Analysis

The total cost for materializing views can computed using the following strategy. The

proposed algorithm considers query processing cost (for selection, aggregation and joining),

view maintenance cost, storage cost, net benefit and storage effectiveness for computing the total

cost. The cost is calculated in terms of block size B. The query processing cost in terms of block

access is equal to size of materialized view Vi. [25, 28, 1,12]

 CB (Vi) = S(Vi)

The query cost involving the joining of n dimensional tables with view Vi is given by

 Cj(Vd1, Vd2,…, Vdn , Vi) = (S(Vd1) + S(Vd1) *S(Vi)) + (S(Vd2) + S(Vd2) *S(Vi)) +

 …..+ (S(Vdn) + S(Vdn)* S(Vi))

To process user’s query qi, which requires not only selection and aggregation of the view, but also the

joining of view with other dimension tables, the query cost Cq(qi) is given by

 Cq(Vi) = CB (Vi) + Cj(Vd1, Vd2,…, Vdn , Vi) =

 S(Vi) + (S(Vd1) + S(Vd1) *S(Vi)) + (S(Vd2) + S(Vd2) *S(Vi)) + ….

 + (S(Vdn) + S(Vdn) *S(Vi))

Thus the total Query cost Total (Cqr) for processing r user queries is given by

The re-computation of each view requires selection and aggregation from its ancestor view

Vai, and their joining with n dimension tables. Therefore the maintenance cost is given by

 Cm(Vi) = CB (Vai) + Cj(Vd1, Vd2,…, Vdn , Vai) =

 S(Vi) + (S(Vd1) + S(Vd1) *S(Vai)) + (S(Vd2) + S(Vd2) *S(Vai)) +

International Journal of Database Management Systems (IJDMS), Vol.2, No.4, November 2010

123

 ….+ (S(Vdn) + S(Vdn) *S(Vai))

If there are j views which are materialized, the total maintenance cost Total (Cm) for these

materialized views is given by

The cost for storing materialized views depends on the availability of hard disk space. The

storage factor U represents the estimated ratio of the storage capacity required by the data

warehouse to the availability of hard disk space it is given by

 U = (Total (Cstore) + (1+Q) * Y *Sa) / Total available storage capacity

Where ‘(1+Q) * Y * Sa’ estimates the total increase in storage capacity for accommodation of

new data during processing or creation of materialized views. Here Q is the estimated increase

rate in data volume per year within data warehouse, Y is the estimated processing cycle of the

data warehouse, and Sa is the storage space required to store added new data and their

materialized data.

The storage cost of view in terms of data block B is given by

 Cstore (Vi) = U * S (Vi)

In most of the today’s systems storage space doesn’t matter because large amount of hard

disk space is available with less prize so in proposed algorithm implementation the value of

U=1. Therefore the total storage cost is calculated as

 Cstore (Vi) = S(Vi)

The net benefit and the storage effectiveness can be calculated to determine an optimal set of

materialized views. The net benefit of materializing view calculated as follows [26, 27,1]

 Net Benefit = Benefit – Maintenance cost –Storage cost

Here, Vni represents one of the descendent views of Vi and m is the total number of

descendent views. Ct represents the cost of accessing materialized view. Therefore, the net

benefit for materialized view can be calculated as Net () = - Cm (Vi) - Cstore (Vi)

The storage effectiveness of views is given by ni = Net () / S ().

Consider Total(Call) is the total cost for processing user’s queries when no views are

materialized in the data warehouse. When the materialized views are used then total cost is given

by

Ctotal = Total (Call) -

International Journal of Database Management Systems (IJDMS), Vol.2, No.4, November 2010

124

5. EXPERIMENTAL RESULTS AND DISCUSSION

The experiment results are carried out on different databases. BMC, Northwind, Electricity, Web

searches and All words databases are used to carry out the experiments using proposed method.

The subset of typical user queries is shown in Table 1. The total cost is calculated on the basis of

query processing, maintenance and storage cost for three materialized view strategies the all-

virtual-views method, all-materialized-views method and the proposed materialized-views

method.

Table 2 represents the calculation results, from which following observations can be stated: The

all-virtual-views method requires the highest cost of query processing with no view maintenance

and storage costs are incurred. The all-materialized-views method can provide the best query

performance but highest cost of view maintenance since this method requires the minimum

query processing cost. However, its total maintenance and storage expenses are the highest. The

proposed-materialized-views method requires a lower query processing cost than all-

materialized-views method, also its total cost is also minimized.

Table 1: Subset of user queries

Queries

Query

freq.

Views Number of

Records in

Summary view

Table

Size

(in Bytes)

SELECT SR, DO, AREA,

CUSTOMER, EMTBRANCH, PRINCIPAL,

MODEL, CNCCONTROL, MACHINESR,

DELYON, STARTON, COMMON, COMMANBY,

WARRENTYUPTO, REMARKS, TARGETDT

FROM BMC ORDER BY DO;

2

BMC View

4387

289.00

SELECT DIVISIONSTATE, RESIDENTIAL,

COMMERCIAL, INDUSTRIAL,

TRANSPORTATION, ALLECTORS

FROM ELEPRICEPERUSER

ORDER BY ALLSECTORS;

1

ELEPRICEP

ERUSER

View

4660

310.00

SELECT URL, DATE FROM SEARCHES

ORDER BY DATE;

1

SEARCHES

View

3000

156.00

SELECT PRODUCTID, NAME, DEALER,

PURCHASEDATE, QUANTITY,

MANUFACTURINGDATE, SOLD,

PRODUCTGRPID FROM PRODUCTDETAILS

GROUP BY PRODUCTID;

1

PRODUCTD

ETAILS

View

5564

380.00

Table 2: The Query Processing, Maintenance and Storage cost for three Materialization

Strategies

Strategy Query

Processing Cost

Maintenance

Cost

Storage

cost

Total

Cost

All-virtual-views 16230 0 0 16230

All-materialized-views 1026 2689 1135 4850

Proposed-materialized-

views

986 2380 380 3746

International Journal of Database Management Systems (IJDMS), Vol.2, No.4, November 2010

125

 The total cost computation is given in Table 3 as per the cost computation strategy

described in proposed work. This table computes the total cost including the storage cost,

maintenance cost & Net benefit interms of number of blocks. Table 2 represents the total cost for

all three possibilities, but the proposed method gives the lowest cost than others

Graph 1: Comparison of Query Processing Cost, Maintenance Cost and Storage Cost for

three algorithms. The cost is multiple of X10
3

Graph1 shows the comparison of query processing cost, maintenance cost & storage cost for all

three approaches including the All materialized view, All virtual views & proposed materialized

view & it identifies that the proposed method gives the minimum cost. Most of the algorithms

have considered the disk space constraint as a storage cost but now a days it is available in cheap

price, therefore we can neglect this parameter while computing the total cost

Table 3: Cost Evaluation of Materialized view in terms of Number of Blocks

Views Total

(Call)

Benefit

Storage

Cost

Cstore (Vi)

Maintenan

ce Cost

Cm(Vi)

Net

Benefit

Net

Total

Cost

Ctotal

BMC View 150456 103458 289 1784 101385 49071

ELEPRICE PER

USER View

103290 88930 310 2116 86504 16786

SEARCHES View 90345 82350 156 584 81610 8735

PRODUCT

DETAILS View

123504 94356 380 2380 91596 31908

0

2

4

6

8

10

12

14

16

18

Proposed Materialized ViewAll Materialized ViewAll Virtual Views

Query Processing Cost

Maintenance Cost

Storage Cost

International Journal of Database Management Systems (IJDMS), Vol.2, No.4, November 2010

126

Graph 2: Total Cost Comparison of all Virtual Views & Materialized Views. Cost is

multiple of X10
5

0

2

4

6

8

10

12

14

16

Total Cost for All Virtual

Views

Total Cost Using

Materialized View

The above graph shows that the cost which comes from the materialized is less compared with

the all virtual views. We considered the four different views here including the BMCview,

ELEPRICEPERUSER View, SEARCHES View, and PRODUCTDETAILSView. The total cost

for all these views is less than other. We again compared our proposed algorithm with memetic

algorithm (MA) Heuristic algorithm (HA) and Genetic algorithm (GA). Table 4 represents the

running time over 10, 20, 40, 60 and 80 queries, respectively. From the experimental results, it

can be seen that the running time of the proposed algorithm is fewer than HA and GA in all

queries.

Table 4: Comparison of Proposed Method with Other Algorithm Values

Query Proposed

Algorithm

MA GA HA

10 0.5 Min 1.5 Min 17.3 Min 1.2 Hour

20 1.4 Min 7.4 Min 30.9 Min 5.3 Hour

40 2.3 Min 16.8 Min 52.4 Min 10.7 Hour

60 4.2 Min 24.5 Min 1.6 Hour 21.4 Hour

80 6.5 Min 36.3 Min 2.8 Hour 35.6 Hour

We again compared our proposed methodology with CEMS & Optimized CEMS algorithm.

Table 5 represents the running time over 10, 20, 40, 60 and 80 queries, respectively. From the

International Journal of Database Management Systems (IJDMS), Vol.2, No.4, November 2010

127

experimental results, it is observed that the running time of the proposed algorithm is less than

CEMS & Optimized CEMS for all queries.

Table 5: Algorithm Comparison based on Database Size and Execution Time.

Database Size

(KB)

Proposed

Algorithm

CEMS

Optimized

CEMS

0.5

0.078

0.266

0.188

1

0.095

0.297

0.25

1.5

0.198

0.39

0.358

2

0.679

5.125

5.016

2.5

0.986

38.204

38.047

3

1.589

51.828

51.688

Graph 4: Execution Time (Sec) vs. Database Size (KB)

0

20

40

60

80

10 20 40 60

Proposed Algorithm

MA

GA

 Graph 5: Execution Time (Sec) vs. Database Size (KB)

0

10

20

30

40

50

60

0.5 1 1.5 2 2.5 3.5

Optimized CEMS

Proposed Algorithm

In Graph 4 & 5, the execution time taken by the proposed MV algorithm with memetic

algorithm (MA) Heuristic algorithm (HA) and Genetic algorithm (GA). The execution time is

given in terms of milliseconds. Here the comparison is also implemented with CEMS &

International Journal of Database Management Systems (IJDMS), Vol.2, No.4, November 2010

128

Optimized CEMS (cost effective approach for Materialized View Selection) on the basis of

execution time and it is observed that proposed method requires a minimum time for execution

& this minimizes the total cost of query for processing [25,26].

6. CONCLUSION

The materialized view is most beneficial for improving query performance as it stores pre-

computed data. But all of the views or queries are not candidates for materialization due to the

view maintenance cost. The selection of views to materialize is the important issues in data

warehouse. In this article we have outlined a methodology whether the views created for the

execution of queries is beneficial or not by considering the various parameters: cost of query,

cost of maintenance, net benefit & storage space. We have presented proposed methodology for

selecting views to materialize so as to achieve the best combination good query performance.

These algorithms are found efficient as compared to other materialized view selection and

maintenance strategies. The total cost, composed of different query patterns and frequencies are

evaluated for three different view materialization strategies: 1) all-virtual-views method, 2) all

materialized-views method, and 3) proposed materialized-views method. The total cost

evaluated from using the proposed materialized-views method is proved to be the smallest

among the three strategies. Further, an experiment was conducted to record different execution

times of the proposed strategy in the computation of a fixed number of queries and maintenance

processes. Again, the proposed materialized-views method requires the shortest total processing

time which minimizes the total cost of query processing.

REFERENCES:

[1] Gorettiv K.Y. Chan, Qing Li and Ling Feng, “Optimized Design of Materialized Views in a Real-

Life Data Warehousing Environment,” International Journal of Information Technology Vol.7,

No 1 Sept 2008.

[2] S.Chaudhuri and U. Dayal, “An Overview of Data Warehousing and OLAP Technology,”

SIGMOD Record, vol. 26, no. 1, pp. 65-74, 1997.

[3] S Chen and E.A. Rundensteiner, “GPIVOT: Efficient Incremental Maintenance of Complex

ROLAP Views,” 21st International Conference on Data Engineering (ICDE’05), pp. 552-563,

2005.

[4] A.N.M.B. Rashid and M.S. Islam, “Role of Materialized View Maintenance with PIVOT and

UNPIVOT Operators,” IEEE International Advance Computing Conference (IACC’09), Patiala,

India, pp. 951-955, March 6-7, 2009.

[5] S.R. Valluri, S. Vadapalli, and K. Karlapalem, “View Relevance Driven Materialized View

Selection in Data Warehousing Environment,” Proceedings of the 13th Australian Database

Conference (ADC2002), Melbourne, Australia, vol. 5, pp. 187-196, 2002.

[6] H. Gupta, “Selection of Views to Materialize in a Data Warehouse,” Proceedings of ICDT, pp.

98-112, 1997.

[7] H. Gupta, “Selection of Views to Materialize in a Data Warehouse,” Proceedings of ICDT, pp.

98-112, 1997.

International Journal of Database Management Systems (IJDMS), Vol.2, No.4, November 2010

129

[8] H. Gupta and I.S. Mumick, “Selection of Views to Materialize under a Maintenance Cost

Constraint,” Proceedings of ICDT, pp. 453-473, 1999.

[9] R. Chirkova, A.Y. Halevy, and D. Suciu, “A Formal Perspective on the View Selection

Problem,” Proceedings of VLDB, pp. 59–68, 2001.

[10] Gupta, H. & Mumumick, I., “Selection of Views to materialize in a Data warehouse”, IEEE

transactions on Knowledge & Data Engineering, vol: 17, no:1, pp:24-43, 2005.

[11] J.Yang, K. Karlapalem, and Q.Li. “A framework for designing materialized views in data

warehousing environment”. Proceedings of 17th IEEE International conference on Distributed

Computing Systems, Maryland, U.S.A., May 1997.

[12] H. Gupta. “Selection of Views to Materialize in a Data Warehouse”. Proceedings of

International Conference on Database Theory, Athens, Greece 1997.

[13] J.Yang, K. Karlapalem and Q. Li, “Algorithms for materialized view design in data warehousing

environment,” Proceedings of Twenty Third Intl. Conf. on Very Large Data Bases, pp.136-145,

Aug 1997.

[14] Gang Gou, Jeffery Xu Yu and Hongjun Lu, “A* Search: An Efficient and Flexible Approach to

Materialized View Selection”, IEEE Trans. on Systems, Man and Cybernetics – Part C: Appl.

And Reviews, Vol. 36, No. 3, May 2006.

[15] Ziqiang Wang and Dexian Zhang, “Optimal Genetic View Selection Algorithm Under Space

Constraint”, International Journal of Information Technology, vol. 11, no. 5, pp. 44 - 51,2005.

[16] K. Aouiche, P. Jouve, and J. Darmont. “Clustering-based materialized view selection in data

warehouses”, In ADBIS’06, volume 4152 of LNCS, pages 81–95, 2006.

[17] Napster Homepage, http://www.napster.com,

[18] Kazaa Homepage, http://www.kazaa.com, 2006.

[19] B. Babcock, S. Chaudhuri, and G. Das, “Dynamic Sample Selection for Approximate Query

Processing,” Proc. 22nd ACM SIGMOD Int’l Conf. Management of Data (SIGMOD ’03), pp.

539-550, 2003.

[20] C. Gkantsidis, M. Mihail, and A. Saberi, “Random Walks in Peerto-Peer Networks,” Proc. IEEE

INFOCOM ’04, 2004.

[21] Benjamin Arai, Gautam Das, Dimitrios Gunopulos, and Vana Kalogeraki, “Efficient

Approximate Query Processing in Peer-to-Peer Networks,” IEEE Trans on Knowledge and Data

Engg., Vol. 19, No. 7, Jul 2007.

[22] C.H. Choi, J. X. Yu and G. Gou, “What difference heuristic make: maintenance cost view

selection revisited,” Proceedings of the third Intl. Conf. on Advances in Web-Age Information

Management, Springer-Verlag.pp.313-350, Jan 2002.

[23] Shantanu Joshi and Christopher Jermaine, “Materialized Sample Views for Database

Approximation,” IEEE Trans on Knowledge and Data Engg., Vol. 20, No. 3, Mar 2008.

[24] F. Olken, “Random Sampling from Databases,” PhD dissertation, 1993.

International Journal of Database Management Systems (IJDMS), Vol.2, No.4, November 2010

130

[25] B.Ashadevi and R.Subramanian, “ Optimized Cost Effective Approach for Selection of

Materialized views in Data Warehousing”, International Journal of Computer Science and

Technology, Vol.9 No.1 ,April 2009.

[26] Ashadevi and R.Subramanian, “A Cost Effective Approach for Materialized Views Selection in

Data Warehousing Environment”, IJCSNS International Journal of Computer Science and

Network Security, vol.8 No.10, October2008.

[27] K.Y.Can, Qing Li ,Lin Fen, “Design and Selection of Materialized Views in a Data warehousing

Environment : A Case Study”.

[28] A.N.M. Bazlur Rashid and M. S. Islam , “An Incremental View Materialization Approach in

ORDBMS” International Conference on Recent Trends in Information, Telecommunication and

Computing 2010

Author Information

1. Mr. Pravin P.Karde staying at Amravati, Maharstra . He received the Post

Graduate Degree (M.E.) in Computer Science & Engineering from S.G.B. Amravati

University, Amravati in the year 2006 & pursuing the Ph.D degree in Computer

Science & Engineering. Currently he is working as an Assistant Professor & Head in

Information Technology Department at H.V.P.M’s College of Engineering &

Technology, Amravati. His interest is in Selection & Maintenance of Materialized

View.

2. Dr. V.M. Thakare staying at Amravati, Maharashtra. He was worked as Assistant

Professor for 10 Years at Professor Ram Meghe Institute of Technology & Research,

Badnera and P.G.Department of Computer Science, S.G.B. Amravati University,

Amravati. Currently he is working as Professor & Head in Computer Science from

last 9 years, Faculty of Engineering & Technology, Post Graduate Department of

Computer Science, SGB Amravati University, Amravati. He has published 86 papers

in various National & International Conferences & 20 papers in various International

journals. He is working on various bodies of Universities as a chairman & members.

He has guided around 300 more students at M.E / MTech, MCA M.S & M.Phil level.

He is a research guide for Ph.D. at S.G.B. Amravati University, Amravati. His

interest of research is in Computer Architecture, Artificial Intelligence and Robotics,

Database and Data warehousing & Mining.

