
International Journal of Database Management Systems (IJDMS), Vol.3, No.1, February 2011

DOI: 10.5121/ijdms.2011.3109 133

RDBNorma: - A semi-automated tool for relational
database schema normalization up to third normal form.

Y. V. Dongare

1
, P. S. Dhabe

2
and S. V. Deshmukh

3

1
Department of Computer Engg., Vishwakarma Institute of Info.Technology, Pune, India

yashwant_dongre@yahoo.com
2
Department of Computer Engg., Vishwakarma Institute of Technology, Pune, India

dhabeps@gmail.com
3
Department of Computer Engg., Pune Vidhyarthi Griha’s College of E&T, Pune, India

supriya_vd2005@yahoo.com

Abstract— In this paper a tool called RDBNorma is proposed, that uses a novel approach to

represent a relational database schema and its functional dependencies in computer memory using only

one linked list and used for semi-automating the process of relational database schema normalization up

to third normal form. This paper addresses all the issues of representing a relational schema along with its

functional dependencies using one linked list along with the algorithms to convert a relation into second

and third normal form by using above representation. We have compared performance of RDBNorma with

existing tool called Micro using standard relational schemas collected from various resources. It is

observed that proposed tool is at least 2.89 times faster than the Micro and requires around half of the

space than Micro to represent a relation. Comparison is done by entering all the attributes and functional

dependencies holds on a relation in the same order and implementing both the tools in same language and

on same machine.

Index Terms— relational databases, normalization, automation of normalization, normal forms.

1. INTRODUCTION

Profit of any commercial organization is depends on its productivity and quality of the product. To

improve the profit they need to increase productivity without scarifying quality. To achieve this, it is

necessary for organizations to automate the tasks involved in the design and development of their products.

From past few decades relational databases proposed by Dr. Codd [1] are widely used in almost all

commercial applications to store, manipulate and use the bulk of data related with a specific enterprise, for

decision making. Detail discussion on relational database can be found in [2]. Their proven capability to

manage the enterprise in a simple, efficient and reliable manner increased a great scope for software

industries involved in the development of relational database system for their clients.

Success of relational database modeled for a given enterprise is depending on the design of

relational schema. An important step in the design of relational database is “Normalization”, which takes

roughly defined bigger relation as input along with attributes and functional dependencies and produces

more than one smaller relational schema in such a way that they will be free from redundancy, insertion

and deletion anomalies [1]. Normalization is carried out in steps. Each step has a name First normal form,

second normal form and third normal form represented shortly with 1NF, 2NF and 3NF respectively. First

three normal forms are given in [1] [2]. Some other references also help to understand the process of

normalization [3], [4], [5], [6], [7], [8] and [9].

We found some papers very helpful about normalization. This paper [10], explains 3NF in an

easiest manner. The 3NF is defined in different in equivalent ways in various text books again their

approach is non-algorithmic. They have compared definitions of 3NF given in various text books and

present it an easy way so that students can understand it easily. They have also claimed that an excellent

algorithmic method of explaining 3NF is available which is easy to learn and can be programmed. Ling

et.al [11], proposed an improved 3NF, since Codds 3NF relations may contain Superfluous (redundant /

International Journal of Database Management Systems (IJDMS), Vol.3, No.1, February 2011

134

unnecessary) attributes resulting out of transitive dependencies and inadequate prime attributes. In their

improved 3NF guarantees removal of superfluous attributes. They have proposed a deletion normalization

process which is better than decomposition method. Problems related with functional dependencies and

algorithmic design of relational schema are discussed in [12]. They have proposed a tree model of

derivation of functional dependency from other functional dependencies, a linear time algorithm to test if a

functional dependency is in closure set and quadratic time Bernstein’s third normal form. Concept of

multivalued dependency [13] which is generalization of functional dependency and 4NF which is used to

deal with it is defined in [3]. This normal form is stricter as compared to Codd’s 3NF and BCNF. Every

relation can be decomposed into family of relations into 4NF without loss of information. The 5NF also

called as PJ/NF is defined in [14]. This is an ultimate normal form where only projections and joins

operations are considered hence called PJ/NF. It is stronger than 4NF. They have also discussed

relationship between normal forms and relational operators. In [15] a new normal form is defined called

DK/NF. That focuses on domain and key constraints. If a relation is in DK/NF then it has no insertion and

deletion anomalies. This paper defines concept of domain dependency and key dependency. A 1NF relation

is in DK/NF if every constraint is inferred from domain dependencies and key dependencies. This paper

[16] proposed a new normal form between 3NF and BCNF. It has qualities of both. Since 3NF has

inadequate basis for relational schema design and BCNF is incompatible with the principle of

representation and prone to computational complexity. [17] proposed new and fast algorithms of databse

normalization.

2. RELATED WORK

Normalization is mostly carried out manually in the software industries, which demand skilled

persons with expertise in normalization. To model today’s enterprise we require large number of relations,

each containing large number of attributes and functional dependencies. So, generally, more than one

persons need to be involved in manual process of normalization. Following are the obvious drawbacks of

normalization carried out manually.

1. It is time consuming and thus less productive:- To model an enterprise a large number of

relation containing large number of attributes and functional dependencies may be required.

2. It is prone to errors: - due to reasons stated in 1.

3. It is costly: - Since it need skilled persons having expertise in Relational database design.

To eliminate these drawbacks several researchers already tried for automation of normalization by

proposing new tools/methods. We have also seen a US patent [18], where a database normalizing system is

proposed. This system takes input as a collection of records already stored in a table and by observing a

record source it normalizes the given database. Hongbo Du and Laurent Wery [19] proposed a tool called

Micro, which uses two linked lists to represent a relation along with its functional dependencies. One list

stores all the attributes and other stores functional dependencies holds on it. Ali Ya zici, et.al [20] proposed

a tool called JMathNorm, which is designed using inbuilt functions provided by Mathematica and thus

depend on Mathematica. This tool provides facility to normalize a given relation up to Boyce-codd normal

form including 3NF. Its GUI interface is written in Java and linked with Mathematica using Jlink library.

Bahmani et. al [21], proposed an automatic database normalization system that creates dependency matrix

and dependency graph. Then algorithms of normalization are defined on them. Their method also generates

relational tables and primary keys.

In this work, we also found some good tools specifically designed for

learning/teaching/understanding the process of normalization, since the process is difficult to understand,

dry and theoretical and thus it is difficult to motivate the students as well as researchers. Maier [22], also

claimed that the theory of relational data modeling (normalization) tend to be complex for average

designers. CODASYS, a tool that helps new database designer to normalize with consultation [23]. A web

based, client-server, interactive tool proposed in [24], called LBDN (Learn DataBase Normalization) that

can provide hands-on training to students and some lectures for solving assignments. It represents

attributes, functional dependencies and keys of a relation in the form of sets, stored as array of strings. A

similar tool is proposed in [25], which is also web based and can be used for system analysis and design

International Journal of Database Management Systems (IJDMS), Vol.3, No.1, February 2011

135

and data management courses. Authors of this tool claimed that this tool is having a positive impact on

students.

Our tool RDBNORMA uses only one linked list to represent a relation along with functional

dependencies holds on it and thus a novel approach that requires less space and time as compared to Micro.

Our proposed system RDBNORMA works at schema level

 This paper is a sincere attempt to develop a new way of representation of a relational schema and

its functional dependencies using one linked list thus saving memory and time both. This representation

helps to automate the process of relational database schema normalization using a tool which works at

schema level, in a faster manner. This work reduces the drawbacks of manual process of normalization by

improving productivity.

Remaining parts of the paper are organized as follows. Section 3 describes signally linked list

node structure used to represent a relation in computer memory along with Functional Dependencies (

FD’s). Algorithms for storing a relations and their FD’s are described in section 4. Section53 demonstrates

a real world example for better understanding of algorithms to store a relation. Design constraints are

discussed section 6. Section 7 elaborates algorithm for 1NF. Algorithm of minimal cover is discussed in

Section 8. Algorithm of 2NF and 3NF are discussed in Section 9 and 10, respectively. Standard relational

schemas used for experimentation are discussed in Section 11. Experimental results and comparison is done

in Section 12. Conclusions based on empirical evidences are drawn in section 13 and references are cited at

the end.

3. NODE STRUCTURE USED FOR REPRESENTATION OF A

RELATION IN RDBNORMA

A.Problems in representing a relation

At the initial stage we have decided to represent a relation using a signally linked linear list. But we need to

address two things for it; first, how to store attributes? and the second, how to store FD’s?. We have

decided to store one attribute per linked list node as in Micro [Du and Wery, 1999]. But using a separate

linked list for storing all the FD’s holds on that relation as in Micro [Du and Wery, 1999], according to us,

although it is convenient but not optimal. Thus we have decided to incorporate the information about the

FD’s in the same linked list and come up with following design of the node structure. Again in what order

we have to inter attributes into a linked list? Need to be finalized. We have decided to enter all the prime

attributes first and then non prime ones. This specific order helps us to get determiners of non prime

attributes since they will be already entered in linked list.

B. Node structure
The node structure used to represent a relation need to have ten fields as shown in Fig. 1.

attribute_name

attribute_type

determiner

nodeid

determinerofthisnode1

determinerofthisnode1

determinerofthisnode1

determinerofthisnode1

keyattribute

ptrtonext

Fig. 1. Linked list Node structure.

The description and use of these fields are as follows.

International Journal of Database Management Systems (IJDMS), Vol.3, No.1, February 2011

136

1. attribute_name:- This field is used to hold the attribute name. It allows underscores and special character

and size can at least 50 characters or more based on the problem at hand . We assume unique attribute

names within a given databases, but two relations can have same attribute names for referential integrity

constraints like foreign keys.

2. attribute_type:- This field is used to hold type of the attribute and will hold *-for multivaled attribute, 1

 for atomic attribute. It will be of size 1 character long.

3. determiner: - Determiner is a field which takes part in left hand side of FD. This field indicates whether

 this attribute is determiner or not and of binary valued a size of 1 character will be more than sufficient.

 If this filed is set to 1 indicates that this attribute is a determiner otherwise it is dependant.

4. nodeid:- It is a node identifier (a unique number) assigned to each newly generated node and is stored

 inside the node itself . This number can be generated by using a NodeIDCounter, which needs to be reset

 for normalizing a new database. When new node is added on a linked list NodeIDCounter will be

 incremented by 1. A sufficient range need to be defined for this nodeid e.g. [0000-9000]. Upper bound

 9000 indicate that a database can have at most 9000 attributes. Size of this filed is based on the range

 defined for this attribute.

5-8. determinerofthisnode1, determinerofthisnode2, determinerofthisnode3 and determinerofthisnode4:-

 These fields hold all the determiners of this attribute assuming that there can be at the most 4

 determiners of an attribute, for example as shown in following FD’s an attribute E has 4 determiners

 ABCD, GH, AH and DH.

E H D,

E H A,

EH G,

ED C, B, A,

→

→

→

→

A Determiner can be composite or atomic. E.g. Consider this node represents an attribute C and we have

AB->C and D->C then the two determiners of C are (A,B) and (D) and thus their nodeid’s will be stored in

determinerofthisnode1 and determinerofthisnode2and determinerofthisnode3 and determinerofthisnode4

will be hold NULL. Each of this field can hold at most 4 nodeid’s, it means that left hand side of a FD’s

can not have more than 4 attributes. To illustrate use of these fields consider following set of FD’s for a

dependant attribute H.

H G

HF E,

D C, B, A,

→

→

→ H

If nodeid’s of attribute A, B, C, D, E, F and G are 100, 101, 102, 103, 104, 105, and 106 respectively then

determiners fields of node representing attribute H is as shown in Fig. 2, if these FD are entered in the same

order as shown.

Fig.2. Determiner fields of attribute H.

9. keyattribute:- This is a binary filed and hold 1 if this attribute is taking participation in primary key else

 it is 0. Size of 1 character is sufficient for this purpose.

10. ptrtonext:- This filed hold pointer (link) to next node and will be NULL if this is the last node on the

 list.

100

… …
101

102

103

104

105

NULL

NULL

106

NULL

NULL

NULL

NULL

NULL

NULL

NULL

International Journal of Database Management Systems (IJDMS), Vol.3, No.1, February 2011

137

4. ALGORITHMS FOR STORING A RELATION AND ITS

FUNCTIONAL DEPENDENCIES (FD’S)

This tool needs three algorithms for doing its work. Representing a relation using linked list in

computer memory involve adding a new node for each attribute and for adding each separate FD’s we need

to update information in nodes representing those attributes participating in this FD’s. For adding all the

attributes of a relation we need algorithm AddNewAttribute, which uses another algorithm CreateNewNode

internally. User has to find out composite attributes and need to be replaced by their atomic attribute

components, thus 1NF can be achieved at the attribute entry level.

A. Algorithm for adding a new attribute on linked list.

Algorithm AddNewAttribute (listptr, x, NodeIDCounter)

This algorithm adds a new attribute node with attribute name x on linked list using a nodeid=

NodeIDCounter value. Name of the relation is used as listptr, which points to the first node on that linked

list. If listptr=NULL means list is empty we need to create first node for that relation. It uses function

CreateANewNode(), which creates a new node and returns its link. This algorithm uses two variable

pointers p and q. This algorithm is described in Fig. 3.

B. Algorithm for creating a new node.
Algorithm CreateANewNode()

This algorithm returns a list node pointer. Operator new will create a new node of struct node type as

shown in Fig. 1 and will return its pointer. It is as shown in Fig. 4.

International Journal of Database Management Systems (IJDMS), Vol.3, No.1, February 2011

138

Fig. 3. Algorithm for adding a new node on linked list.

Fig.4. Algorithm to create a new node.

Input: pointer to list listptr (relation name if it at least one attribute node is created),

 x a new attribute to be added on list, counter value to set nodeid of this new node.

Output: Returns nothing, but adds new attribute node on linked list.

ΕND

p;ptrtonextq

:NULLptertonextp

/1;*either ypeattributetp

1”);-Atomic *,-Multivaled is? x attribute of kind(“What print

end

0;tekeyattribup

else

1;tekeyattribup

YES If

”)attribute?key a x print(“Is

end

0;determinerp

else

1;determinerp

YES If

?”)determiner a x print(“Is

ter;NodeIDCoun nodeid p

x;ameattributen p

endif

); Node(CreateANew p

/* list. on the nodelast thepoint to willq Now * /

 ptrtonext;qq

NULL) !ptrtonext (q hile w

listptr;q

/* nullnot islistptr if * /

 else

p;listptr

); Node(CreateANewp

/ * listptr. pointer to itsset and

 node new a create empty then islist if means */

 then NULL listptr If

/* namerelation islistptr * /

BEGIN

=→

=→

=→

=→

=→

=→

=→

=→

=→

=

→=

=→

=

=

=

==

 Input: - None

Output: - It returns a pointer to newly created

 node.

END

(q)return

NULL;4ofthisnodedeterminerq

NULL;3ofthisnodedeterminerq

NULL;2ofthisnodedeterminerq

NULL;1ofthisnodedeterminerq

 type)node(struct new q

BEGIN

=→

=→

=→

=→

=

International Journal of Database Management Systems (IJDMS), Vol.3, No.1, February 2011

139

C. Algorithm for adding a new functional dependency of a relation in its linked list.

Algorithm AddAFD (determiner,dependant, listptr)

This algorithm assumes that The functional dependency set it is taking into account is a minimal

cover, which is having minium number of FD’s and no redundant attribute. Since 2NF and 3NF algorithms

work heavily on FDs using minimal cover make them more efficient. Thus each FD’s has exactly one

attribute towards its right hand side. This algorithm takes input as one FD at a time containing composite or

atomic determiner (left hand side of FD)of a single dependent attribute and set this information in the node

structure of that dependent by taking into account the nodeids of its determiner nodes. E.g. Consider a FD,

CAB → then determiner1 string of node representing attribute C will hold nodeids of A and B and

determiner2, determiner3 and determiner4 will be set to NULL. An attribute can have at most 4

determiners may be composite or atomic since only 4 fields named determinerofthisnode1,

determinerofthisnode2, determinerofthisnode3 ,and determinerofthisnode4 are used. It is shown Fig. 5.

There will be no problem in finding nodeid’s of determiners, since we have imposed an order in

which attributes need to be entered is that all the prime attributes need to be entered first, then all the

attributes which are nonprime and determiners of some attributes and at last all those attributes which are

non-prime and non determiners.

5. AN EXAMPLE OF STORING A REAL WORLD RELATION AND

ITS FUNCTIONAL DEPENDENCIES USING ONE LINKED LIST

This section describes an example of representing a real word relation and its FD’s using a

signally linked list for better understanding of algorithms discussed above. Consider a relation employee

taken from [9] containing e_id as primary key e_s_name as employee surname, j_class indicating job

category and CHPH representing charge per hour. This relation and all FD’s holds on it are shown below.

)2(CHPHj_class

(1)CHPHj_class,e_s_name,e_id

CHPH)j_class,e_s_name,(e_id,Employee

→

→

≡

Initially a new and first node will be created for the prime attribute e_id. Let that NodeIDCounter

is set to 001. Then a node for e_id attribute will be created and is as shown in Fig. 6 and will be pointed by

a pointer Employee (name of the relation).

The second field in Fig.6 is set to 1, since e_id is an atomic attribute. Third field is set to 1, since

e_id is a determiner. Fourth field is set to 001, since it is the nodeid of this node. Remaining four fields are

set to NULL, indicating that each cell of this field is set to NULL. The ninth field is set to 1, since e_id is a

key attribute. The last attribute is set to NULL indicating it is the last node on the list.

International Journal of Database Management Systems (IJDMS), Vol.3, No.1, February 2011

140

Fig.5. Algorithm of adding a new FD in a relations linked list.

Fig. 6. Snap shot of linked list when first node is added on it.

Fig. 7 shows linked list when all the attributes are added on linked list. After adding all the attributes we

need to add information about all the FD’s holds on the relation Employee in the linked list representation

of this relation using algorithm described in Fig. 5. Note that FD’s will be added one after the other. One

more thing is that we need to convert FD into a format such that right hand side will contain only

dependant, this will be automatically done in finding minimal cover. Thus FD (1) will be broken into three

FD’s as follows

CHPH e_id

j_class e_id

e_s_name e_id

→

→

→

Thus we will have total 4 FD’s to be added. When these four FD will be added one after the other linked

list will look like as shown in Fig. 8. Not that only the determiner of this node fields will be updated and

the nodeid’s of their corresponding determiner are set in these fields according to algorithm shown in Fig.5.

6. DESIGN CONSTRAINTS.

Every system needs to be designed by taking into account set of constraints. Our system has following

constraints

1. It restricts the total number of determiners of a single dependant attribute to four. But as per

knowledge of authors more frequently observed real world relations generally do not have more

Input: Names of determiner1 to determiner4 and a dependent attribute name extracted

 from a FD.

Output: Updated linked list with the new FD information added on it.

END

node. thisof determinerempty first in FD theof side handleft

in ingparticipat attributes theall of nodeids set the Otherwise 4. be tosdeterminer

 fixed ofnumber maximum a assume tool thisSince halt. and failurereport

 so determinerfifth eaccommodat toroom no is thereand filledbeen already are

dependent thisof sdeterminerfour theall that meansit foundnot is field asuch If

4.ofthisnodedeterminer and 3ofthisnodedeterminer 2,ofthisnodedeterminer

 1,ofthisnodedeterminer ofout ofthisnodedeterminer NULL all first, Find 2. Step

p. bepointer Let this

 listptr.pointer list linked using nodedependant ofpointer node theFind Step1.

relation. on this holds FDeach for Repeat

BEGIN

International Journal of Database Management Systems (IJDMS), Vol.3, No.1, February 2011

141

than four attributes as composite determiner. If implementation is done in Java then this restriction

can also be removed. But if needed it can be increased.

2. It also applies restrictions on length of attribute name but by setting as much length as possible

e.g. 100, any possible attribute name can be stored.

3. Order of entering the attribute can also be treated as a constraint, but it is immaterial to the user.

 In overall we want to say that the constraints can easily handle most frequently observable real

world relations and thus they are less restrictive.
.

 Fig. 7. Linked list when all four attributes are added

7. ALGORITHM OF 1NF.

 Converting a relation into 1NF is done at the time of entering the relation using a GUI

interface like [19]. For each composite attribute GUI asks for the set of atomic attributes corresponding to

composite attribute. Thus 1NF is achieved at the time of entering the relation schema like Micro [19].

Similarly, multi-valued attributes are handled as follows. Each multi-valued attribute is replaced by

“attribute name_ID”, so that only one valus can be inserted at a time in that column.

Fig. 8. Linked list after adding all FD’s.

International Journal of Database Management Systems (IJDMS), Vol.3, No.1, February 2011

142

8. ALGORITHM OF NORMALIZATION

This algorithm takes input as a Head pointer of linked list, which stores a relation in 1NF, in

computers memory in a linked list format as discussed above. Second input is a Flag3NF. Database

designer will provide value of flag Flag3NF, if designer want to normalize this relation up to 3NF, one will

set this flag. For normalizing this relation in 2NF, designer will reset this flag. During the process of

normalization, in step 2 it creates table structures , which are nothing but array of strings and then these

table structures are used to create actual tables in Oracle. This algorithm internally uses another algorithm

called AttributeInfo, that provides PrimeAttributes[], AllAttributes[] and PrimeKeyNodeIds[] , which are

used by remaning part of the algorithm.

Algorithm_Normalization(Head, Flag3NF)

{

Input: - Head pointer of linked list holding all the attributes and functional dependencies of

 a relation to be normalized. A flag named Flag3NF, which is set to 1 if user wants

 to normalize up to 3NF otherwise normalization will be done up to 2NF only.

Output: - If flag3NF=1 Tables created in 3NF in Oracle,

 else Tables created in 2NF in Oracle.

Let A1, A2and A3 be the string arrays used to hold the set of related attributes taking participation in full

FD, partial FD and transitive dependencies (TD), respectively. A2 and A3 are divided into two components

namely determiner and dependent, for storing determiner and dependent attributes participating in a given

type of dependency. A2 has two components as A2-dependent[] and A2-determiner[] used for storing

dependent and determiner attributes, respectively, participating in a partial FD. Similarly A3 will have two

components A3-determiner[] and A3-dependent[], used for storing determiner and dependent attributes,

respectively, participating in TD. Let Listptr and Trav are pointer variables of type structure node.

1. Calculate number of prime attributes and store attributes taking participation in different types

of functional dependencies in string arrays A1, A2 and A3.

Set listptr=Head;

/*Here Head is a pointer variable pointing to first node of linked list.

 Call { PrimeKeyNodeIds[], PrimeAttributes[], AllAttributs[]}=AttributeInfo (listptr)

/* it returns total no of prime attributes in KeyCount.

/*After execution of this algorithm we will get node_ids of all the prime

/*attributes in array primeKeyNodeId[] and their attribute names in array

/* PrimeAttributes[] and list of all attributes in array AllAttributes[]

For (each non- key attribute) do the following

 {

1a. Initialization.

 Set Flag1=0 Flag2=0, Flag3=0; index1=1, index2=1; index3=1.

 /* index1, index2 and index3 are used for indexing of array A1, A2 and A3,

 /* respectively. A2-determiner[] array is used to store determiners and

 /* A2-dependant[] stores dependant attributes participating in Partial FD.

 /* Flag1, Flag2 and Flag3 are set for Full, Partial and transitive dependency,

 /* respectively.

1b. Finding non-key attributes and their determiners for finding each type of

 dependency holds on this relation by traversing its linked list.

 Node * trav;

Trav = Head;

while(Trav �ptrTonext ≠ NULL)

If (Trav � keyAttribute = 0)

 Then

 Find the determiner_ id[] of Trav

 /* where determiner_id[] is an array of node-ids of all

International Journal of Database Management Systems (IJDMS), Vol.3, No.1, February 2011

143

 /*the determiner attributes

 If (determiner_id[] of Trav == primeKeyNodeId[])

 Then Set Flag1=1; /* Full FD exists

 /* two arrays are equal if they have exactly same elements

 /* may be ordered in different sequence.

 End

 If (determiner_id [Trav] ⊂ primeKeyNodeId[])

 /*means partial FD exists

 Then Set Flag2=1

 End

 /* where ⊂ is proper subset operator

 If (determiner_id [Trav] ∉primeKeyNodeId[])

 /* where ∉ is does not belong to operator

 /*means Transitive FD exists

 Then Set Flag3=1

 End

1c.Storing attributes participating in full functional dependencies in A1.

If (Flag1==1) /* means full functional dependency exists */

Then

/*save attribute pointed by Trav in array A1, as

 []Pr)_()1(1)1(1 tesimeAttribunameattributeTravindexAindexA ∪→∪=

End

/* note that A1 will always have only one entry

1d. Storing attributes participating in partial functional dependencies in

 A2-dependant and A2-determiner.

If (Flag2==1) /* means partial dependency exist */

 then

/*save attributes pointed by Trav and all its determiner attributes in arrays

 /*A2-dependant and A2-determiner.

 If (determiners of this non-key attribute is already present in A2-determiner

 at k th index)

then)_()(2)(2 nameattributeTravkdependantAkdependantA →∪−=−

else /* add a new entry in A2-dependant and A2-determiner

)_()2(2 nameattributeTravindexdependantA →=−

)min(det)2(mindet2 TravoferserindexererA =−

 ++2index

 End

1e. Storing attributes participating in transitive dependencies.

If (Flag3==1) /* means transitive FD exist */

 Then

/*save attributes pointed by Trav and all its determiner attributes in arrays

 /*A3-dependant and A3-determiner

 If (determiners of this non-key attribute is already present in A3-determiner

 at k th index)

 Then)_()(3)(3 nameattributeTravkdependantAkdependantA →∪−=−

 else /* add a new entry in A3-dependant and A3-determiner

)_()3(3 nameattributeTravindexdependantA →=−

)min(det)3(mindet3 TravoferserindexererA =−

 ++3index

International Journal of Database Management Systems (IJDMS), Vol.3, No.1, February 2011

144

 End

 }EndFor

2. Create tables in oracle

{

 This step first creates table structures T1,T21, T22,..,T2n, T31,T32,…,T3m, which are nothing

but string arrays that can be directly converted to actual table definitions.

 If (Flag3NF=0) /* means normalize up to 2NF only

 Then

 /*create following table structures

 2a. Create a new table structure T1, using union of A1 and all entries in

 A3-determiner and A3-dependent, with primary key as all the elements in

 PrimeAttributes[].

 determinerAdependantAAT −∪−∪= 3311

 2.b. Create a separate table structures T2i from union of each entry of A2-

 determiner and A2-dependent, with primary key as element of A2-

 determiner for that entry. Let A2 has n entries then create table structures

 as,)(2)(22 ideterminerAidependantAiT −∪−= for ni ...,2,1= .

 Create tables in Oracle using table structures defined in step 2a and step 2b

 along with their primary key definitions.

 else /* means normalize up to 3NF

 2c. Create a new table structure T1 using all the attributes present in A1, with

 primary key as all the elements of PrimeAttributes[].

 11 AT =
 2d. Same as step 2b

 2e. Create separate table structures T3i from union of each entry of

 A3-determiner and A3-dependent, with primary key as element of

 A3-determiner for that entry. Let A2 has n entries then create table

 structures as)(3)(33 ideterminerAidependantAiT −∪−= for

 ni ...,2,1= .

 Add primary key of each table structures T3i as foreign key in the table

 Structures T1, if it is not already there and update their table structures accordingly.

 Create tables in Oracle according to the table structures created and or

 updated in step 2c, 2d and 2e by defining primary and foreign keys.

 End

}

}

AttributeInfo(Head)

{

 Trav is variable pointer to node structure.

 Trav=Head;

 AllAttributes[]=0,PrimeAttributes[]=0,PrimeKeyNodeIds[]=0;

 While (Trav → ptrTonext ≠ NULL)

 {

 If (Trav→KeyAttribute=1)

 Then

 PrimeAttribute[]=PrimeAttribute[] ∪ Trav→AttributeName,

 PrimeKeyNodeIds[]=PrimeKeyNodeIds[] ∪ Trav→nodeid,

 Else

International Journal of Database Management Systems (IJDMS), Vol.3, No.1, February 2011

145

 AllAttributes[]=AllAttributes[] ∪ Trav→AttributeName,

 End

 }

 Return AllAttributes[], PrimeAttributes[], PrimeKeyNodeIds[];

}

9. EXAMPLE TRACE OF NORMALIZATION ALGORITHM

Let the relation R= {a, b, c, d, e, f, g} having the following functional dependencies hold on it. FD’s ={

a,b� c; a, b� d; b� e; d� f; d�g }. Let sequence of storing attribute be a, b, c, d, e, f and g with

node_id as 001, 002, 003, 004, 005, 006 and 007.therefore values of primeKeyNodeId[],PrimeAttributes[]

will be primeKeyNodeId=[001,002],PrimeAttributes=[a, b]

For the first non- key attribute “c”, determiner_id[]=[001, 002],on comparing it with

PrimeKeyNodeId=[001,002],we will get Flag1=1 (Full FD) hence attribute ”c” and primary key will be

saved in A1as A1[1] =[a, b, c]. For the next non-key attribute “d”, determiner_id[]=[001,002],on

comparing it with primeKeyNodeId=[001.002],we will get Flag1=1 (Full FD) hence array A1 will be

updated to A1[1] =[a, b, c, d]. For the third non-key attribute “e”, determiner_id[]=[002],on comparing it

with primeKeyNodeId=[001,002],we will get Flag2=1 (PFD) hence A2 will be updated as

A2-determiner[1]=b, A2-dependants[1]=e. For the fourth non-key attribute “f”, determiner_id[]=[004],on

comparing it with primeKeyNodeId=[001.002],we will get Flag3=1(TD) hence A3 will be updated as

 A3-determiner[1]=d, A3-dependants[1]=f. For the next non-key attribute “g”,

determiner_id[]=[004],on comparing it with primeKeyNodeId=[001.002],we will get Flag3=1 hence A3

will be updated as A3-determiner[1]=d, A3-dependents[1]=[f, g], since both attributes “f” and “ g”

have same determiner “d” .

After completion of step 1, contents of A1, A2 and A3 are as shown in Fig. 11.

 A1 A2-determiner

1 b

A2-dependent

1 e

1 a, b, c, d A3-determiner

1 d

A3-dependent

1 f, g

Fig. 11. Contents of A1, A2 and A3.

Table structures defined in step 2 if Flag3NF=0 are as follows

 T1=[a, b, c, d, f, g]

 T2=[b, e]

Table structures defined in step 2 if Flag3NF=1 are as follows

 T1=[a, b, c, d]

 T2=[b, e]

 T31=[d, f, g]

Since primary key of T31, “d” is already part of T1 there is no need to add it in T1.

10. STANDARD RELATIONS USED FOR EXPERIMENTATION.

We want to test the performance of our tool RDBNorma with the existing tool Micro [19]. For this purpose

we have collected 10 examples of relation normalization up to 3NF from various research papers. Table 1

shows description of these relations. Table 2 shows the decomposition of relations shown in Table 1 into

2NF and 3NF. In Table 1 and 2 FD are separated by semicolon. Table 1 is spread over multiple pages.

Table 2 is used for testing the output of our tool RDBNorma. These relations can also be helpful to the

readers as a reference.

International Journal of Database Management Systems (IJDMS), Vol.3, No.1, February 2011

146

Sr

No

Relation Name

Relation Description

No of

Attributes

No

of

FD’s

1

 Beer_Relation

[26]

Beer_Relation { beer, brewery, strength, city, region, warehouse,

quantity }

quantity} warehousebeer,

region;city city;brewery

strength; beer brewery; {beer FDs

→

→→

→→=

7

5

2

GH_Relation

[21]

GH {A, B, C, D, E, F, G, H, I, J, K, L}

K}J L;A,K

IF,HG, ;K J,E,A,G

; DA,E C;B,A { FDs

→→

→→

→→=

12

13

3

 ClientRental

[27]

ClientRental { clientNo, propoertyNo, cName, pAddress,

rentStart, rentFinish,rent, ownerNo, oName}

} ;rentFinish cName, clientNo,rentStart o,propoertyN

oName; ownerNo, rent, ,rentFinish

 pAddress, ,prpoertyNo rentStart clientNo,

oName; ownerNo, rent, pAddress, opropoertyN

 oName; wnerNo; cName clientNo

 ; rentFinish rentStart, opropoertyN clientNo,

 { FDs

→

→

→

→→

→

=

9

17

4

AB_Relation

[21]

AB {A, B, C, D, E, F, G, H}

} E;D,A,FC,B,

G;F,E,D,A,HC,B,

H;FB, G;F

D;A H;G,F,E,C,B{A, FDs

→

→

→→

→→=

8

16

International Journal of Database Management Systems (IJDMS), Vol.3, No.1, February 2011

147

Sr

No

Relation Name

Relation Description

No of

Attributes

No

of

FD’s

5

Invoice Relation

[28]

Invoice(Order_ID , Order_Date, Customer_ID,

Customer_Name, Customer_Address, Product_ID ,

Product_Description, Product_Finish, Unit_Price

,Order_Quantity)

} tity;Order_QuanProduct_IDOrder_ID,

;Unit_PriceProduct_ID

nish;Product_FiProduct_ID

 scription;Product_DeProduct_ID

ddress;Customer_ADCustomer_I

ame;Customer_N DCustomer_I

ddress;Customer_A Order_ID

ame;Customer_N Order_ID

D;Customer_I Order_ID

;Order_Date Order_ID { FDs

→

→

→

→

→

→

→

→

→

→=

10

10

6

Emp Relation

[27]

 Emp {emp_id,emp_name, emp_phone, dept_name,

dept_phone, dept_mgrnname, skill_id, skill_name,

skill_date, skill_lvl}

} skill_lvl; ,skill_dateskill_idemp_id,

;skill_nameskill_id

; amedept_mgrnn,dept_phonedept_name

; dept_nameemp_id

emp_phone; emp_name,emp_id { FDs

→

←

→

→

→=

 10

8

7

 Project Relation

[29]

Project {project code, project title, project manager,

project budget, employeeNo, employeeName, deptNo,

deptName, hourlyRate }

} deptName;deptNo

;hourlyRateemployeeNo e,projectCod

deptName;employeeNo

deptNo;employeeNo

me;employeeNaemployeeNo

budget;project eprojectCod

manager;project eprojectCod

tle;project tieprojectCod { FDs

→

→

→

→

→

→

→

→=

9

8

International Journal of Database Management Systems (IJDMS), Vol.3, No.1, February 2011

148

Sr

No

Relation Name

Relation Description

No of

Attributes

No

of

FD’s

8

WellmeadowsHo

spital [30]

WellmeadowsHospital {(Patient_No, DrugNo, Start_Date,

Full_Name, Ward_No, Ward_Name, Bed_No,

Drug_Name, Description, Dosage, Method_Admin,

Units_Day, Finish_Date}

} Ward_No; Start_Date Drug_No, ,Patient_No

 e;Finish_dat Start_Date Drug_No, ,Patient_No

nits_Day; Start_Date Drug_No, ,Patient_No

 in;Method_Adm Dosage,Drug_No

n;Descriptio Name, DrugDrug_No

Bed_No;Ward_Name, Ward_No

Full_Name;Patient_No { FDs

→

→

→

→

→

→

→=

U

13

10

9

StaffProperyInsp

ection

[27]

StaffProperyInspection(PropertyNo, idate, itime,

pAddress, coments, staffNo, sName, carReg)

}; comentspAddress,iTimeiDate,staffNo,

;PropertyNoiTimeiDate,staffNo,

sName;staffNo,iTimeiDate,carReg,

coments;iTimeiDate,carReg,

pAddress;iTimeiDate,carReg,

;PropertyNoiTimeiDate,carReg,

carRegidate , staffNo sName; staffNo

pAddress; PropertyNo

carReg;idate,PropertyNo

sName; idate,PropertyNo

staffNo;idate,PropertyNo

; comentsidate,PropertyNo

; itime idateo,{PropertyNFDs

→

→

→

→

→

→

→→

→

→

→

→

→

→=

8

16

10

 Report

[31]

Report (reportNo, editor, deptNo, deptName, deptAddress,

authourId, authourName,authourAddress)

} ress;authourAddauthourId

e;authourNamauthourId

s;deptAddres deptName, deptNo

deptNo; editor, reportNo { FDs

→

→

→

→=

8

6

Table 1. Description of standard relations used for experimentation.

International Journal of Database Management Systems (IJDMS), Vol.3, No.1, February 2011

149

11. EXPERIMENTAL RESULTS OF RDBNORMA.

Table 2 shows the expected output of RDBNorma collected from the above research papers. We have

compared output of RDBNorma with the expected output from Table 2 and can say that output of

RDBNorma is valid and it works in expected manner.

Sr

No

Relation Name

2NF

3NF

1

 Beer_Database

beer {beer, brewery, strength, city,

region} beerwarehouse {beer ,

warehouse, quantity}

beer {beer, brewery, strength}

brewery {brewery, city}

city{(city, region}

beerwarehouse {beer,

warehouse,quantity}

2

 GH_Relation

GH {G, H, F, I}

G {G, A, B, C, D, E, J, K, L}

GH {G, H, F, I}

G {G, E, J}

J {J, K}

K {K, A, L}

E {E, A, D}

A {A, B, C}

3

 ClientRental

Client (clientNo, cName)

rental(clientNo, propoertyNo, rentStart,

 rentFinish)

PropertyOwner(propoertyNo, pAddress,

 rent, ownerNo, oName)

Client (clientNo, cName)

rental l(clientNo, propoertyNo,

 rentStart, rentFinish)

PropertyOwner(propoertyNo,

 pAddress, rent, ownerNo)

Owner(ownerNo, oName)

4

 AB_Relation

AB (A, B, C, E, F, G, H)

 A (A, D)

AB(A, B, C, E, F, G, H)

 F (F, G)

 A (A, D)

5

 Invoice Relation

OrderLine (order_id, product_id,

 ordered_qty)

ProductID (product_id, product_desc,

 product_finish, unit_price)

OrderID(order_id, order_date,

customer_id, customer_name,

customer_address)

OrderLine (order_id,

product_id,ordered_qty)

 Product (product_id,

product_desc,

 product_finish,unit_price)

Order(order_id, order_date,

 customer_id)

Customer(customer_id,

customer_name,

customer_address)

6

 Emp Relation

empID {emp_id, emp_name, emp_phone,

 dept_name, dept_phone,

dept_mgrnname}

skill_id {skill_id, skill_name}

empID{emp_id, emp_name,

emp_phone,dept_name}

Dept {dept_name, dept_phone,

International Journal of Database Management Systems (IJDMS), Vol.3, No.1, February 2011

150

emp_id skill_id {emp_id, skill_id,

skill_date, skill_lvl}

dept_mgrnname}

SkillID{skill_id, skill_name}

EMP{emp_id, skill_id, skill_date,

skill_lvl}

Sr

No

Relation Name

2NF

3NF

7

 Project Relation

projectCode(ProjectCode, project title,

project manager, project budget)

employeeNo

(employeeNo,employeeName,

deptNo, deptName}

projectCodeemployeeNo(projectCode,

employeeNo, hourlyRate)

projectCode (ProjectCode,

project title, project manager,

project budget)

employeeNo (employeeNo ,

employeeName, deptNo)

projectCodeemployeeNo(

projectCode, employeeNo,

hourlyRate)

deptNo (deptNo, deptName)

8

WellmeadowsHosp

ital

Hospital (Patient_No,

Drug_No,Start_Date,

Ward_No, Ward_Name, Bed_No,

Units_Day, Finish_Date)

Drug(Drug_No, Name, Description,

Dosage, Method_Admin)

Patient (Patient_No, Full_Name)

Hospital (Patient _No, Drug_No,

Start_Date, Ward_No, Bed_No,

Units_Day, Finish_Date)

Drug (Drug_No, Name,

Description,

Dosage, Method_Admin)

Patient (Patient_No, Full_Name)

Ward (Ward_No, Ward_Name)

9

StaffProperyInspec

tion

PropertyNo(PropertyNo, pAddress)

PropertyNoidate(PropertyNo,idate,itime,

 coments,staffNo,sName,carReg)

PropertyNo(PropertyNo,

pAddress)

PropertyNoidate(PropertyNo,idat

e,itime, coments,staffNo,carReg)

staffNo(staffNo, sName)

10

Report

ReportNo(report_no,editor, dept_no,

dept_name, dept_addr)

Authorid (author_id, author_name,

 author_addr)

ReportNo(report_no,editor,

dept_no)

DeptNo(dept_no, dept_name,

dept_addr)

Authorid(author_id,

author_name,

 author_addr)

Table 2. Shows 2NF and 3NF of standard relations taken in Table 1.

12. PERFORMANCE COMPARISON OF RDBNORMA WITH MICRO.

For comparison purpose both RDBNORMA and Micro [Du and Wery, 1999], are implemented

using Java. We have compared performance of RDBNORMA with the Micro in terms of time required to

convert a relation into 2NF and 3NF, in milli seconds. Table 3 shows this performance of Micro.

Performance of proposed tool RDBNorma, is shown in Table 4.

International Journal of Database Management Systems (IJDMS), Vol.3, No.1, February 2011

151

The time, on average, required to convert a given relation in 2NF by Micro is around 3.9 times the

time required by RDBNorma. The time, on average, required to convert a given relation into 3NF by Micro

is 2.89 times the time required by RDBNorma. Thus RDBNorma is more faster than Micro in both 2NF and

3NF, conversions

Plot of number of attributes and time required to bring relation in 2NF and 3NF using RDBNorma

are shown in Fig.12 and Fig.13 We have also observed that the time required to convert a given relation

into 2NF and 3NF is depend not only on the number attributes of a relation but also on number of

functional dependencies holds on that relation.

Table 3. Timing analysis of Micro.

2NF Time

2NF

Total

Time

3NF Time

3NF

 Total

Time

Sr
no.

Relation
name Normalization

Table
Implementation Normalization

Table
Implementation

1 Beer 147 571 718 198 377

2 GH 175 309 481 190 295 485

3 Client 160 478 638 132 244 276

4 AB 207 232 439 117 322 439

5 Invoice 132 367 499 176 226 402

6 EMP 141 289 430 142 288 430

7 Project 129 305 434 193 245 438

8 WMHospital 205 243 448 116 230 346

9 SPInspction 165 377 542 132 309 441

10 Report 139 503 642 106 356 462

Average 160 367.4 527.1 150.2 289.2 429.4

Table 4. Timing analysis of RDBNorma.

.

2NF Time

2NF

Total

Time

3NF Time

3NF

Total

Time

Sr
no.

Relation
name Normalization

Table
Implementation Normalization

Table
Implementation

1 Beer 567 698 1265 419 425 844

2 GH 311 314 625 196 320 516

3 Client 253 579 626 233 298 531

4 AB 339 380 719 215 456 671

5 Invoice 203 421 624 223 355 578

6 EMP 241 384 625 186 392 578

7 Project 217 377 594 293 301 594

8 WMHospital 324 254 578 179 259 438

9 SPInspction 257 398 655 388 315 703

10 Report 466 581 1047 249 362 611

 Average 317.8 438.6 735.8 258.1 348.3 606.4

International Journal of Database Management Systems (IJDMS), Vol.3, No.1, February 2011

152

From table 3 and 4, by comparing average time required for converting a relation in 2NF, one can conclude

that, Micro needs around double time for conversion to 2NF than RDBNorma. Again, average time

required to normalize and create a table in 2NF by Micro, is around 1.4 times than the RDBNorma. Time

required to convert a relation from 2NF to 3NF by Micro is 1.72 times the time required by RDBNORMA.

Total time needed for converting a relation from 2NF to 3NF and creating a table from them, by Micro is

also 1.4 times the time required by RDBNorma. Thus, we can conclude that RDBNorma is faster than

Micro.

 We have also compared RDBNorma and Micro in terms of memory space required to store a

relation in terms of number of bytes. For this purpose the above mentioned standard relations are used and

the memory requirement is shown in Table 5. From Table 5 we can conclude that the memory requirement

of Micro is around 2.17 times the memory requirement of RDBNorm

Sr

No

Relation Name No of

Attri

butes

No of

FD’s

Memory

required by

Micro in

bytes

Memory

required by

RDBNorma

in bytes

1 Beer_Relation 7 5 14544 3184

2 GH_Relation 12 13 14752 7160

3 ClientRental 9 17 14832 10480

4 AB_Relation 8 16 14624 6200

5 Invoice Relation 10 10 14792 6496

6 Emp Relation 10 8 14776 9600

7 Project Relation 9 8 14736 2256

8 WellmeadowsHospital 13 10 14824 5800

9 StaffProperyInspection 8 16 14744 9520

10 Report 8 6 14576 7000

Avg 14720 6769.6

Table 5. Memory requirement of Micro and RDBNORMA.

13. CONCLUSION

It is concluded that a relation can be represented with only one singly linked list along with its set

of FD’s. Thus we can save considerable space as compared with representing a relation using two linked

list one for attributes and other for FD’s. Since understanding linked list is easy, the representation will be

easy to understand. The definitions of 2NF and 3 NF algorithms on such a representation will be efficient

since linked list structure can be manipulated/accessed efficiently.

From the performance comparison of RDBNorma and Micro we can conclude that the time on

average required to convert a given relation in 2NF by Micro is around 3.9 times the time required by

RDBNorma and the time required to convert a given relation into 3NF by Micro is 2.89 times the time

required by RDBNorma. Thus RDBNorma is at least 2.89 times faster than the Micro. When they are

compared in terms of momory space, we can conclude that the memory requirement of Micro on average is

around 2.17 times the memory requirement of RDBNorma.
Thus RDBNorma is better than Micro in terms of both the speed and memory space requirement.

ACKNOWLEDGEMENT
We are thankful to management Vishwakarma Institutes, Pune for their encouragement and whole hearted

cooperation during this work. We are equally thankful to the director, Board of university and college

development (BCUD), university of Pune for their motivation and guidance. First and Third authors are

thankful to Prof. G.V Garje, the chairman, Board of Study – Computer Engineering, University of Pune.

International Journal of Database Management Systems (IJDMS), Vol.3, No.1, February 2011

153

REFERENCES
[1] Codd E. F. (1970), “A relational model of data for large shared data banks”, Communications of the ACM. vol. 13, No.6,

 pp. 377–387.

[2] Codd E. F. (1971), “Further normalization of the data base relational model", IBM Research Report, San Jose, California,

 vol. RJ909.

[3] Kent W.(1983), “A Simple Guide to Five Normal Forms in Relational Database Theory”, Communications of the ACM. vol.26

 No.2. pp.120-125.

[4] Date C. J. (1986), “An introduction to database system”, fourth edition, Addison Wesley.

[5] Silberschatz, Korth and S. Sudarshan (2006), “Database system Concepts”, McGraw Hill international edition, Fifth edition.

[6] Elmasri and Navathe (1994), “Fundamentals of Database systems”, Addison Wesley, second edition.

[7] Ramakrishnan and Gehrke, (2003), “Database management systems”, McGraw- Hill, international edition, third edition.

[8] Rob and Coronel (2001), “Database systems, design, implementation and management”, Course technology, Thomson learning,

 fourth edition.

[9] Jui-Hsiang and Thomas C (2004), “Traditional and alternate database normalization techniques: their impact on IS/IT student’s

 perception and performance”, International Journal of information technology education, vol 1, No. 1, pp.53-76.

[10] Salzberg B (1986), “Third normal form made easy”, SIGMOD record, Vol.15, No.4, pp. 2-18.

[11] Ling T, Tompa F. W. and Kameda T (1981), “An improved 3NF”, ACM Transactions on Database Systems, Vol.6,

 No.2, pp.329-346.

[12] Beeri C and Bernstein P. A.(1979), “Computational problems related to the design of normal form relational schemas”, ACM

 Transactions on Database Systems, Vol.4, No.1, pp.30-59.

[13] Fagin R (1977), “Multivalued dependencies and a new normal form for relational databases”, ACM Transactions on Database

 Systems, Vol.2, No.3, pp.262-278.

[14] Fagin R (1979), “Normal forms and relational database operators”, ACM SIGMOD International Conference on Management

 of Data, Boston, Mass., pp. 153-160.

[15] Fagin R (1981), “A normal form for relational databases that is based on domains and keys”, ACM Transactions on Database

 Systems, Vol.6, No.3, pp.387- 415.

[16] Zaniolo C (1982), “A new normal form for the design of relational database schemata”, ACM Transactions on Database

 Systems, Vol.7, No.3, pp.489- 499.

[17] Diederich J and Milton J (1988), “New methods and fast algorithms of database normalization”, ACM transactions on database

 System, Vol.13, No.3, pp. 339-365.

[18] Hetch and Stephen C (1998), US Patent 5778375 - Database normalizing system.

[19] Du H and Wery L (1999), “ Micro: A normalization tool for relational database designers”, journal of network and computer

 application, Vol.22, pp.215-232.

[20] Yazici A, Ziya K (2007), “JMathNorm: A database normalization tool using mathematica”, In proc. international. conference on

 computational science, pp.186-193.

[21] Bahmani A, Naghibzadeh M and Bahmani B (2008) , “Automatic database normalization and primary key generation”, Niagara

 Falls Canada IEEE.

[22] Maier D (1988), “The Theory of relational databases”, Computer science press: Rockville, MD.

[23] Antony S. R. and Batra D (2002), “CODASYS: A consulting tool for novice database designers”, ACM SIGMIS, vol.33, issue 3,

 pp.54-68.

[241 Georgiev Nikolay (2008), “A web based environment for learning normalization of relational database schemata”, masters thesis,

 Umea university, Sweden.

[25] Kung Hsiang-Jui and Tung Hui-Lien (2006), “A web based tool to enhance teaching/Learning database normalization”, in

 Proceeding of international conference of southern association for information system.

[26] http://www.cs.man.ac.uk/horrocks/Teaching/cs2312/Lectures/PPT/NFexamples.ppt

[27] Thomas C and Carolyn B (2005), “Database Systems", Pearson, third edition.

[28] http://www.cs.gmu.edu/ aobaidi/spring-02/Normalization.ppt

[29] https://sta_.ti.bfh.ch/erj1/Datenbank1/slides/db05Normalizationnew2.pdf

[30] O’nell P and O’nell E (2001), “Database Principles Programming and Performance", Harcourt, second edition.

[31] Teorey T. J.(2002), Database Modeling and Design", Harcourt, third edition.

International Journal of Database Management Systems (IJDMS), Vol.3, No.1, February 2011

154

Authors
 Y. V. Dongare (yashwant_dongre@yahoo.com), has completed ME

(computer science and engineering.) in year 2009 from Vishwakarma

Institute of Technology, Pune and BE (computer science and

engineering.) in year 2003 from Shree Guru Govind Singhji College of

engineering and Technology, Nanded, Maharashtra, India He is

presently working as assistant professor in the department of computer

engineering at Vishwakarma Institute of Information Technology, Pune,

Maharashtra state, India. His area of interest includes database

normalization, software engineering and development technologies

(J2se/J2ee).

P. S. Dhabe (dhabeps@gmail.com), has completed ME in computer

technology from S.G.G.S college of engineering and technology,

Nanded, Maharashtra, India in year 2002. He is presently perusing his

Ph.D. in systems and control engineering, IIT Mumbai. He is presently

working as assistant professor in computer engineering at Vishwakarma

Institute of technology, Pune from 2005. He is principal investigator of

research project funded by university of pune, Maharashtra, India, titled

“Database normalization tool”. His areas of interest are database

normalization, fuzzy neural networks and pattern recognition.

S. V. Deshmukh (supriya_vd2005@yahoo.com), has completed BE

(computer engineering) in year 2008 from Vishwakarma Institute of

Information Technology, Pune. She is presently working as Lecturer in

the department of computer engineering at Pune Vidhyarthi Griha’s

College of Engineering & Technology , Pune, Maharashtra state, India.

Her area of interest includes DBMS, Software Testing Quality

Assurance and OOP Methodologies.

