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ABSTRACT 

Sequential pattern mining is an important data mining problem with broad applications, including the 

analysis of customer purchase patterns, Web access patterns, DNA analysis, and so on. We show on 

dense databases, a typical algorithm like Spade algorithm tends to lose its efficiency. Spade is based on 

the used of lists containing the localization of the occurrences of pattern in the sequences and these lists 

are not appropriated in the case of dense databases. In this paper we present an adaptation of the well-

known diffset data representation [12] with Spade algorithm. The new version is called dSpade. Since 

diffset shows high performance for mining frequent itemsets in dense transactional databases, 

experimental evaluation shows that dSpade is suitable for mining dense sequence databases.   
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1. INTRODUCTION 

The sequential pattern mining problem is an important problem in the data-mining field with 

numerous practical applications, including consumer shopping transaction analysis, mining web 

logs, mining DNA sequences, and so on. For example, consider the sales database of a 

bookstore, where the objects represent customers and the attributes represent authors or books. 

Let's say that the database records the books bought by each customer over a period of time. 

The discovered patterns are the sequences of books most frequently bought by the customers. 

An example could be that, " 70%  of the people who buy introduction to visual Basic and 

introduction to C++ also buy introduction to Perl within a month." Stores can use these patterns 

for promotions, shelf placement, etc. 

  The sequential pattern mining problem was first introduced by Agrawal and Srikant in [2]: 

Given a set of sequences, where each sequence consists of a list of elements and each element 

consists of set of items, and given a user-specified min_support threshold, sequential pattern 

mining is to find all of the frequent subsequences. i.e., the subsequences whose occurrence 

frequency in the set of sequences in no less than min_support. 

 

  In this paper, we consider the problem of sequential patterns in dense databases. We show on 

dense databases, a typical sequential pattern mining algorithm like Spade algorithm [10] tends 

to lose its efficiency. Spade is based on the use of lists containing the localization of the 

occurrences of pattern in the sequences and these lists are not appropriated in the case of dense 

databases and lead to increase extraction operation. For example, Figure 1 shows the behaviour 

of the Spade algorithm on dense datasets. The results of the experiments presented in Figure 1 

correspond to extractions on two datasets: data1 and data2. data1 contain the same sequences in 

data2 but we increase only the average item per element in each sequence. This convert data1 to 

be dense dataset. The curves of Figure 1 represent the costs (in term of execution time) for the  
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extraction of different amounts of frequent patterns on each dataset, i.e, for different support 

thresholds. From Figure 1, Spade execution time is much more importantly on data1 (dense 

dataset).   

 
Figure 1. Evolution of SPADE execution time on dense dataset 

 

The main contribution of this paper is to show that this extra extraction cost can be reduced 

drastically using a more compact information representation. We propose such a representation 

and represent an extension of Spade, called dSpade, that operates directly on it. dSpade uses 

diffseqs lists to find all frequent sequences. We show that in practice it can be used to mine 

efficiently the complete set of frequent sequences in dense databases. The rest of this paper is 

organized as follows. In section 2 we present the problem definition of mining sequential 

patterns and in section 3 we discuss the related work. Section 4 presents in a synthetic way the 

Spade-based algorithm before to introduce in section 5 our contribution which is a novel data 

representation called diffseq . Section 6 presents experimental results that illustrate how dSpade 

gains in efficiency compared to Spade in the case of dense database. We conclude in section 7 

by a summary and directions for future work.  

 

2. PROBLEM DEFINITION  

 Let },,{= 1 miiI K  be a set of items. We call a subset IX ⊆  an  itemset or  transaction and 

we call || X  the  size of X . A sequence is an ordered list of transactions. A  sequence S  is 

denoted by S = < ntttt ,,,, 321 K > , where it  is a transaction and it is also called an element of 

the sequence. An item can occur at most once in an element of a sequence, but it can occur 

multiple times in different elements of a sequence. The size, n , of a sequence S  is the number 

of transactions in S , i.e. || S . The length l  of a sequence S  is defined as ||=
1= i

n

i
tl ∑ . A 

sequence with length l  is called an l -sequence (or l -pattern). A sequence 

α = <
naaaa ,,,, 321 K >  is called a subsequence of another sequence 

β = <
mbbbb ,,,, 321 K >  and β  a supersequence of α , denoted as βα ⊂ , if there exist 

integers mjjj n ≤≤ <<<1 21 K  such that 11 jba ⊆ , 22 jba ⊆ , 33 jba ⊆ ,..., jnn ba ⊆ . A 

sequence database D  is a set of tuples < SSid , > , where Sid  is a sequence_id and S  is a  
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sequence. A tuple < SSid , >  is said to contain a sequence α , if α  is a subsequence of S , 

i.e., S⊂α . 

  The support of a sequence S , denoted by )(Ssup  is the total number of tuples in database 

that contain this sequence. This support is called the  absolute support of this pattern and we use 

it throughout this paper while the  relative support is defined as the percentage of tuples in 

database that contain S . we will only use the relative support in experimental results. 

 

 Problem statement Given a user-specified support threshold min_sup, the sequence S  is 

called  frequent if supminSsup _)( ≥ , the problem of mining sequential patterns is to find the 

complete set of frequent patterns in a database D  with respect to a given support threshold 

min_sup. 

 Example 2.1 Given sequence database D  in Table 1 and min_support = 3. The set of   

items in the database is },,,,{= edcbaI .  

       

                              Table  1. A sequence database, D  

   

 Sequence_ id   Sequence 

  10 < aeabdabcabc ,,, >  

  20  < acdabcabc ,, >  

  30  < abeabceabe ,, >  

  40  < ababc, >  

  

sequence < aeabdabcabc ,,, >  has four elements: )(),(),( abdabcabc  and )(ae , where 

items a , b  and c  appear more than once respectively in different elements. It is also a 11-

sequence since there are 11 instances appearing in that sequence. Item a  happens four times in 

this sequence, so it contributes 4 to the length of the sequence. However, the whole sequence 

contributes only one to the support of < a > .  Also, sequence < ababc, >  is a subsequence 

of < aeabdabcabc ,,, > . Since sequences 10, 20, 30 and 40 contain subsequence 

S = < ababc, > , i.e. supminSsupD _=3>4=)(  then S is a sequential pattern (frequent 

sequence) of size 2 and length 5.  

 

3. RELATED WORK  

In data mining community the computation of the sequential patterns has been studied since 

1995, e.g.[2, 9, 6, 10, 8, 3]. It has lead to several algorithms that can process huge sets of 

sequences. These algorithms use three different types of algorithms approaches according to the 

way they evaluate the support of sequential pattern candidates.   

 

Horizontal Approach: These are exemplified by GSP (Generalized Sequential Pattern) 

algorithm [9]. GSP is a bottom-up, breadth first search. The structure of the GSP algorithm for 

finding sequential patterns is very similar to the Apriori Algorithm [1], that is, it is Apriori-

based algorithm for sequential pattern mining. The algorithm makes multiple passes over the 

data. In the first pass it determines the support of each item. Frequent items (items with support 

greater than or equal to min_sup) compose a 1-element frequent sequences. Each subsequent 

pass starts with a seed set "the frequent sequences found in the previous pass". The seed set is  
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used to generate new potentially frequent sequences, called candidate sequences. The support 

for these candidate sequences is found during the pass over the data. At the end of the pass, the 

algorithm determines which of the candidate sequences are actually frequent. These frequent 

sequences become the seed for the next pass. The algorithm terminates when there are no 

frequent sequences at the end of a pass, or when there are no candidate sequences generated. 

The algoritms in [2, 6] also follow a horizontal approach. 

 

Vertical Approach: Zaki proposed another approach for mining frequent sequential patterns, 

called Spade (Sequential PAttern Discovery using Equivalence Classes) [10]. The main idea in 

this approach is a clustering of the frequent sequences based on their common prefixes and the 

enumeration of the candidate sequences, thanks to a rewriting of the database (loaded in main 

memory). Spade needs only three database scans in order to extract the sequential patterns. The 

first scan aims at finding the frequent items, the second at finding the frequent sequences of 

length two and the last one associate to frequent sequences of length two, a table of the 

corresponding sequence_id  and itemset_id (or transaction_id) in the database (called id-lists). 

Based on this representation in main memory, the support of the candidate of length k is the 

result of join operations on the tables related to the frequent sequences of length k-1 to generate 

this candidate (so, every operation after the discovery of frequent sequences having length two 

is done in memory). The detail of spade will descried in Section 4. Spam (Sequential PAttern 

Mining) [3] is also a vertical approach uses bit-vectors to represent the id-lists. 

 

Projection Approach: PrefixSpan (PREFIX-project Sequential PAtterN Mining) [8] follows a 

database projection approach, which is a hybrid between the horizontal and vertical approachs. 

Given any prefix sequence P, the main idea is to project the horizontal database, so that the 

projected (or conditional) database contains only those sequences that have prefix P. The 

frequency of extensions of P can be directly counted in the projected database. Via recursive 

projections all frequent sequences can be enumerated. PrefixSpan is a hybrid method, since the 

projected database is equivalent to a horizontal representation of the id-lists of sequences that 

share a given prefix P.  

 

4. THE SPADE ALGORITHM [10] 
 
In this section, we recall the principle of the Spade algorithm. Spade is an algorithm proposed to 

find frequent sequences using efficient lattice search techniques and simple joins. All the 

sequences are discovered with only three passes over the database, it also decomposes the 

mining problem into smaller subproblems, which can be fitted in main memory. In this 

approach, the sequence database is transformed into a vertical id-list database format, in which 

each item is associated with a list of all sequence identifer ( Sid ) and transaction identifer 

(Tid ). The vertical database of Table 1 is shown in Table 2.  From Table 2, the support count of 

item e  is 2 since it occured in sequences 10 and 30. By scanning the vertical database, frequent 

1-sequences can be generated with the minimum support. For 2-sequence, the original database 

is scanned again and the new vertical to horizontal database is created by grouping those items 

with Sid  and in increase order of Tid  [10]. By scanning the vertical to horizontal database, 2-

sequences are generated. All the 2-sequence found are used to construct the lattice, which is 

quite large to fitted in main memory. However the lattice can be decomposed to different 

classes, sequences that have the same prefix items belong to the same class. By decomposing, 

the lattice is partitioned into small parts that can be fitted in main memory. During the third 

scanning of the database all those longer sequences are enumerated by using joining over 

relevant id-lists. 
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Table  2. Id-lists for 1-sequences 

   

  id-list( a ) id-list( b ) id-list( c ) id-list( d ) id-list( e ) 

 Sid    Tid Sid    Tid Sid    Tid Sid    Tid Sid    Tid 

     10       1 10       1 10       1 10       3 10      4 

10       2 10       2 10       2 20       3 30      1 

10       3 10       3 20       1 --- 30      2 

10       4 20       1 20      2 --- 30      3 

20       1 20       2 20      3 --- --- 

20       2 30       1 30      2 --- --- 

20       3 30       2 40      1 --- --- 

30       1 30       3 --- --- --- 

30       2 40       1 --- --- --- 

30       3 40       2 --- --- --- 

40       1 --- --- --- --- 

40       2 --- --- --- --- 

 
 

4.1  Frequency Counting 

Given prefix class or subclass, one performs joining of the id-lists of all pairs of class elements, 

and checks if minimum support is met . There are two major operations :  Merge and  Join 

operations. A k -pattern X  having ( 1−k )-pattern p  as prefix and item s  as suffix is called an  

event pattern, denoted < ps > , if s  occurs at the last itemset of p . On the other hand, if s  

stands alone as the last itemset in X , X  is called a  sequence pattern and is denoted < sp, > . 

For example, pattern < bdfcab ,, >  having pattern < bdcab ,, >  as prefix and item f  as 

suffix is an event pattern. Pattern < cab, >  whose prefix is ab  and suffix c  is a sequence 

pattern.   Let iA  and jA  be two patterns having the same prefix p  with respective suffix 1s  

and 2s . The merge operation used to generate a new pattern R  depends on the form of iA  and 

jA  (i.e., an event pattern or a sequence pattern). The form of R  determines the kind of join 

performed to compute id-list( R ) from id-list( iA ) and id-list( jA ). If R  is an event pattern 

(resp. a sequence pattern) the join is made using a procedure called Equality Join (resp. 

Temporal Join). We first present the generation cases (merge operations) and then describe the 

join operations. 

  • Case I: When iA  and jA  are event patterns. That is, they are of the form   =<iA 1ps >  and 

=<jA 2ps > . The pattern generated by merge is =<R 21sps >  and its id-list( R )=Equality-

Join(id-list( iA ), id-list( jA )). 

  • Case II: When iA  is an event pattern and jA  a sequence pattern. That is, they are of the 

form =<iA 1ps >  and =<jA 2, sp > . The pattern generated by merge is =<R 21, sps >  and 

we have id-list( R )=Temporal-Join(id-list( iA ), id-list( jA )). 

  • Case III: When iA  and jA  are sequence patterns. That is, they are of the form 

=<iA 1, sp >  and =<jA 2, sp > . If 21 ss ≠ , three patterns are generated: 
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     1-Merge produces =<R 21, ssp >  and id-list( R )=Equality-Join(id-list(
iA ), id-list( jA )). 

   2-Merge produces =<R 21,, ssp >  and id-list( R )=Temporal-Join(id-list( iA ), id-list( jA )).        

3-Merge produces =<R 12 ,, ssp >  and id-list( R )=Temporal-Join(id-list( jA ), id-list(
iA )). 

On the other hand, if 21 = ss , only one pattern is generated:   

     1- Merge produces =<R 21,, ssp >  and id-list( R )=Temporal-Join(id-list(
iA ), id-list( jA )).  

 

Note that in all cases where temporal joining is required, R  is a sequence pattern, that is, it is 

constructed in a sequence-extension step: The suffix of jA  (or iA ) stand as a new itemset in R . 

Also, in all cases where equality joining is required, R  is an event pattern, that is, it is 

constructed in an itemset-extension step: The suffix of jA  is added to the last itemset of 
iA  to 

produce R .  Before going on and explain both Equality and Temporal Join, please note that, id-

list(
iA ) and id-list( jA ) store the positions where the patterns 

iA  and jA  occur in every 

database sequence. Then by joining these two id-lists, we have to determine where R  occurs. 

That is, id-list( R ) should only maintain the information needed to compute the support of R  

and the id-lists of the patterns that will be generated using R . 

 

Here we explain each of the joining functions.   

   

  •Temporal-Join(id-list( iA ), id-list( jA )): To compute id-list( R ), we need to check for a 

follow relationship. That is, for a given pair ),( ''
ts  in id-list( iA ), we check whether there exists 

a pair ),( ''''
ts  in id-list( jA ) with the same 

'''
ss = , but with 

'''
tt >  . If this is true, it means that 

the suffix item of jA  follows the suffix item of iA  in sequence R . In other words, the sequence 

'
s  contains the pattern R , and the pair ),( ''''

ts  is added to its id-list. 

 

  • Equality-Join(id-list( iA ), id-list( jA )): To compute id-list( R ), we simply need to check for 

equality of ),( TidSid  pairs in id-list(
iA ) and id-list( jA ).  

 

Example 4.1 Let us consider the Id-list of items a  and b  represented in Table 2, the Id-list of 

patterns < ab >  (Equality-Join) and < ba, >  (Temporal-Join) is represented in Table 3. The 

support of a sequence is the cardinality of sequences in its id-list then we have 

(<sup ab (<=>) sup ba, 4=>) .  
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                               Table  3: Id-lists for < ab >  and < ba, >  

   

  id-list( < ab > ) id-list( < ba, > ) 

 Sid    Tid Sid    Tid 

 10       1 10       2 

 10       2 10       3 

 10       3 20       2 

 20       1 30       2 

 20       2 30       3 

 30       1 40       2 

 30       2 --- 

 30       3 --- 

 40       1 --- 

 40       2 --- 

 

5.  DIFFSEQ DATA REPRESENTATION 
In this section, we present an adaptation of the well-known diffset data representation [12] to be 

used in sequence mining. To the best of our knowledge, this is the first time one adjusts diffset 

data structure to be used in mining sequential patterns. Our new structure is referred to as 

diffseq .  

 
5.1  Introducing Diffseq 
To explain the idea we first consider the database as consisting of only one database sequence 

S . Let P  be a sequential pattern, define a diffseq vertical data representation associated with 

P  with respect to S  as follows:  

                                       )(}{=)(
0

PdPPdiffseq s

s

fs ∪  

where 
s

fP
0

 is an integer represents the first occurrence of the last itemset of P  in the given 

database sequence s  and )(Pd s  is the set of itemset ids which are greater than 
s

fP
0

 and do not 

contain the last itemset of P , i.e., the diffset of P . As an example consider the database 

sequence =<s eabcdbdab ,,, > , the diffseq of the sequential pattern < a >  with respect to 

s  is given as follows: (<sdiffseq a {<=>) a (<}>
0

s

s

f d∪ a {1,2,4}={2,4}{1}=>) ∪  

where (< a 1=>)
0

s

f  is the id of first transaction in s  containing a , the last itemset of the 

pattern < a > , and (<sd a {2,4}=>)  is the set of transaction ids which are greater than 

< a
s

f
0

>  and do not contain a . Likewise (<sdiffseq b {1,4}=>)  and 

(<sdiffseq c {3,4}=>) . 

  

5.2.  Joining Diffseqs 

 

Now we discuss how to get the diffseqs of longer patterns that constructed in sequence-

extension or Itemset extension steps. 
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5.2.1.  The diffseqs of longer patterns that constructed using Sequence-extension step: 

Suppose that the sequence =<A px >  is extended in a sequence step to get the pattern 

=<C ypx, > , where p  stands for the prefix, 0|| ≥p , and x  and y  are database items. 

There are two methods by which we can construct )(Cdiffseqs . The first one is by joining 

)(Adiffseqs  with (<sdiffseq y >) , where y  is the item used in extending A . The second 

method is by joining )(Adiffseqs  with )(Bdiffseqs , where =<B yp, > , as in the 

equivalence class approach [10]. From the diffseq definition, the diffseq of a given pattern P  is 

completely determined by defining the two terms: 
s

fP
0

 and )(Pd s . Thus in the two methods we 

have to provide definitions to both terms. 

 

Method I: The following equations define the two terms: 

 

 

 

                   

 

Example 5.1 Given database sequence =<s eabcdbdab ,,, > . The diffseq of < ca, > , 

(<sdiffseq ca, >) , can be constructed using (<sdiffseq a >)  and (<sdiffseq c >)  by a 

sequence-extension step. Since (< c
s

f
0

>) > (< a
s

f
0

>) , then (< ca, 3=>=<>)
00

s

f

s

f c . 

(<sd ca, (<:{=>) sduu ∈ c u>), > (< ca, uuu
s

f {4},:{=}>)
0

∈ > {4}=3} .Then, 

(<sdiffseq ca, {(<=>) ca, (<}>)
0

s

s

f d∪ ca, {3,4}=>) .  

 

Method II: The following equations define the two terms:  

 

 

                                }>),(:{=)(
0

s

fss CuBduuCd ∈  

 

Example 5.2 Given database sequence s =< eabdcdbdab ,,, > . The diffseq of < cab, > , 

(<sdiffseq cab, >) , can be constructed using (<sdiffseq ab >)  and (<sdiffseq ca, >)  by a 

sequence-extension step. Since (< ca, 3=>)
0

s

f  >  
s

fab
0

>)(<=1 , then 

(< cab, (<=>)
0

s

f ca, 3=>)
0

s

f . 

 (<sd cab, =>) (<:{ sduu ∈ ca, >),  (<>u cab, })>
0

s

f = {4}=3}>{4},:{ uuu ∈ . 

(<sdiffseq cab, {(<=>) cab, {3,4}={4}{3}=>),(<}>)
0

∪∪ cabd s

s

f . 

 

 
5.2.2  The diffseqs of longer patterns that constructed using Itemset-Extension: 

Suppose that the sequence =<A px >  is extended in an itemset-extension step to get the 

pattern =<C pxy > , where p  stands for the prefix, 0|| ≥p , and x  and y  are database 
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items. There are two methods by which we can construct )(Cdiffseqs
. The first one is by 

joining )(Adiffseqs
 with (<sdiffseq y >) , where y  is the item used for extending A . The 

second method is by joining )(Adiffseqs
 with )(Bdiffseqs

, where =<B py >  as in the 

equivalence class approach [10].  

 

 Method I: The following equations define the two terms:  

 

 

 

              

 

Example 5.3 Given database sequence s = < eabcdbdab ,,, > . The diffseq of < ab > , 

(<sdiffseq ab >) , can be constructed using (<sdiffseq a >)  and (<sdiffseq b >)  by an 

itemset-extension step. Since (< a (<=>)
0

s

f b
s

f
0

>) , then (< ab 1=>)(<=>)
00

s

f

s

f a .  

(<sd ab (<(:{=>) sduu ∈ a (<>) sd∪ b (<>>)),u })
0

s

fab >           

(<sd ab >)= {2,4}=1}>{4}),({2,4}:{ uuu ∪∈ . 

(<sdiffseq ab {(<=>) ab (<}>)
0

s

s

f d∪ ab {1,2,4}={2,4}{1}=>) ∪ . By the same way 

(<sdiffseq ac {3,4}=>) .  

 

 Method II: The following equations define the two terms:  

 

 

 

                            

 

 

Example 5.4 Given database sequence s = < eabcdbcdabc ,,, > . The diffseq of < abc > , 

(<sdiffseq abc >) , can be constructed using the (<sdiffseq ab >)  and (<sdiffseq ac >)  by 

itemset-extension step. 

 Since < ab <>
0
≠s

f ac s

f
0

> , then (< abc (<=>)
0

max
s

f ab <,>
0

s

f ac ∉3=)>
0

s

f  

(<( sd ab (<>) sd∪ ac >))  and |=|43 s≤ . Also (<sd abc {4}=>)  since 4 is the only 

element in the union ( (<sd ab (<>) sd∪ ac >) ) greater than (< abc
0

>) f . Thus we have 

(<sdiffseq abc {3,4}={4}{3}=>) ∪ .  

 

 Consider the database D  that consists of more than one sequence. Define diffseq of the pattern 

P  as:                      

)}(}{{=)(
||

1=

PdiffseqsidPdiffseq sid

D

sid

D ∪−U  
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Where we use here negative numbers ( sid− ) instead of sid . The negative sign here works as 

separator between sequence blocks in )(PdiffseqD . That frees memory that used previously for 

maintaining sid  with tid  in elements of each sequence block (as in id-lists). In order to locate 

sequence blocks in )(PdiffseqD  to be intersected we have to check for equality of sid−  and 

intersect diffseqs that have the same sid− . 

 

 

Example 5.5 The database D  in Table 1 is updated in vertical diffseq representation as follows 

in Table 4. Also let us consider the diffseq of items a  and b  represented in Table 4, the diffseq 

of patterns < ab >  (Equality-Join) and < ba, >  (Temporal-Join) is represented in Table 5  

  

         

        

                    Table  4.  The Diffseqs of Database Items of D  in Table 1 

   

  diffseq( a ) diffseq( b ) diffseq( c ) diffseq( d ) diffseq( e ) 

 -10 -10 -10 -10 -10 

1 1 1 3 4 

--- 4 3 --- --- 

--- --- 4 --- --- 

 -20 -20 -20 -20 --- 

1 1 1 3 --- 

--- 3 --- --- --- 

--- 4 --- --- --- 

 -30 -30 -30 --- -30 

1 1 2 --- 1 

--- --- 3 --- --- 

 -40 -40 -40 --- --- 

1 1 1 --- --- 

  

 

                             Table  5.  diffseqs for < ab >  and < ba, >  

   

diffseq( < ab > ) diffseq( < ba, > ) 

 -10 -10 

1 2 

4 4 

 -20 -20 

1 2 

3 3 

 -30 -30 

1 2 

 -40 -40 

1 2 

  

     

The support of any sequence A  is given by the number of different ( sids− ) in )(Adiffseq . 

We have, (<sup ab >)  =  (<sup ba, 4=>) . Note that Tables 4 and 5 contain 58 entries in  
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total. Compare this number with the 102 entries if the id-list reprsentation is used (see Tables 2 

and 3). This example shows that diffseq reprsentation is 2 times better in space than the id-list 

reprsentation. The less space of diffseq reprsentation will lead to faster joning also.  

   

Theorem 5.1 (correctness) For all patterns in a sequence database D , the support that 

determined by diffseqs is the same support that determined by id-lists. 

 

5.3  dSpade Algorithm 

To illustrate the power of diffseqs-based mining, we have integrated diffseqs with the vertical 

mining algorithm Spade [10], which mines frequent sequences. Our enhancement is called 

dSpade. In dSpade frequent sequences are generated by computing diffseqs for all distinct pairs 

of sequences in a given equivalence class and checking the support of the resulting sequences. 

The dSpade algorithm is presented as follows: 

 

 

dSpade: Find Sequential Patterns using Counting Method Based on Diffseq.  

Input: Sequence Database D  and supmin_ . 

Output: Frequent Subsequences in D . 

Method: Figures 52 −  in Section 8 (Appendix).  

 

6  EXPERIMENTAL EVALUATION 
 

In this section, we present the results of our experiments on the performance of dSpade and 

Spade [10]. The source code of Spade is avariable (http://www.cs.rpi.edu/zaki/software/). All 

the experiments were performed on a 2.4GHz Intel Celern Pentium 4 PC machine with 512MB 

of RAM and running RetHat Linux 8.0 operating system. The algorithms were coded in C++. 

Furthermore, the times for all the vertical methods involved in the experiments include all costs, 

including the conversion of the original database from a horizontal to a vertical format required 

for the vertical algorithms. The peak memory usage was measured with the memusage  

program. The output of the algorithms was turned off to make the comparison fare. Also to 

make the time measurements more reliable, no other applications were running on the machine 

while doing the experiments. 

 

  All the experiments were performed on a sysnthetic dataset generated with the IBM AssocGen 

program [2].The synthetic datasets were widely used in the domains of frequent sequence and 

item mining [2, 10, 3]. Therefore they became suitable for algorithms comparison. The 

parameters used to generat the dataset are summarized in Table 6.  

 

Table  6. Parameters of Sequence Data Sets 

   

  Symbol Meaning Value 

 D    Number of sequences in 000's   100k 

 C    Average number of transactions per sequences   10 

 T    Average number of items per Transaction   2.5 

 S    Average length of maximal frequent sequences   4 

 I    Average size of Itemsets in maximal frequent sequences   1.25 

 N    Number of items in 000's   10k 
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Figure 6 (in Section 8 (Appendix)) reports the total execution time obtained by running dSpade 

and Spade on one sparse dataset, C10T10S4I4N0.1kD1k, and on three dense datasets, 

C10T30S4I4N0.1kD1k, C10T50S4I4N0.1kD1k, and C10T60S4I4N0.1kD1k as a function of 

the support threshold. The figure shows that dSpade outperforms Spade on the three dense 

datasets by more than 2 factors. The reason of this behavior is that the diffset (the origin of 

diffseq) is proved to be suitable for mining dense data sets in previous research. Thus on dense 

datasets, the size of diffseqs is small compared with the size of id-lists and this will lead to 

faster joning. while Spade outperforms dSpade on sparse dataset, C10T10S4I4N0.1kD1k. 

    

    In terms of memory usage we compared the memory consumption between dSpade and 

Spade on the above four datasets as shown in Figure 7 in Section 8 (Appendix). This figure 

shows that dSapde is efficient in memory usage compared with Spade on both sparse and dense 

datasets by more than 3 factors. Since for dense datasets, the size of diffseqs is small compared 

with the size of id-lists and for sparse dataset, as we mentioned before, we use negative numbers 

( sid− ) instead of sid . The negative sign works as separator between sequence blocks in 

)(PdiffseqD  for any for any sequence P . That frees memory that used previously for 

maintaining sid  with tid  in elements of each sequence block (as in id-lists). 

 

7.  CONCLUSION 
 In this paper we have presented an adaptation of the well-known diffset data representation [12] 

with Spade algorithm called diffseqs. To illustrate the power of diffseqs-based mining, we have 

integrated diffseqs with the vertical mining algorithm Spade [10], which mines frequent 

sequences. Our enhancement is called dSpade. Since diffset shows high performance for mining 

frequent itemsets in dense transactional databases, experimental evaluation shows that dSpade is 

suitable for mining dense sequence databases in terms of time and memory. 

    In real life applications, one needs to extract sequential patterns under specific time 

constraints like Time-windows, minimum and maximum gap between consecutive transactions 

of a sequence. Such constraints have been introuced in [11], but very little work has been done 

in this field [9, 6, 11, 5, 7]. We are currently investigating on incorporating time constraints into 

dSpade. 
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8  APPENDIX 

In this section, we provide pseudo code of the dSpade algorithm, see Figures (2-5) and 

Comparison between dSpade and Spade (Time at Figure 6 and Memory Usage at Figure 7). 

 

 

dSpade( supmin_,D )  

1.  1F  = { frequent items or 1-sequences }  

2.  2F  = { frequent 2-sequences } 

3.  ξ  = { equivalence classes 
1

][ θX  } 

4. for all ξ∈][X  do Enumerate-Frequent-Seq( ][X ) 

 
Figure  2: dSpade Algorithm 

 

 

Enumerate-Frequent-Seq( S ) 

1.  for all atoms SAi ∈  do  

2.     ∅=iT  

3.     for all atoms SAj ∈ , with ij >  do 

4.         ),(= ji AAMergeR   

5.          if (Prune(R) == FALSE) then 

6.              if (itemset-extension) then 

7.                  )(Rdiffseq =Equality-Join ))(),(( ji AdiffseqAdiffseq  

8.              if (sequence-extension) then 

9.                  )(Rdiffseq =Temporal-Join ))(),(( ji AdiffseqAdiffseq  

10.            if supminR _)( ≥σ  then 

11.                }{= RTT ii ∪ ; }{= |||| RFF RR ∪  

12.    if DFS then Enumerate-Frequent-Seq( iT )  

13. if BFS then for all φ≠iT  Enumerate-Frequent-Seq( iT ) 

 

Figure  3: Enumerate Frequent Sequences Function 
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Equality-Join ))(),(( YdiffseqXdiffseq   

1. ∅=)(Rdiffseq ; 0=sup  

2. for each sequence s  that supports X  and Y  do 

3.     0=
0

s

fR   

4.      if 
s

f

s

f YX
00

=  then 
s

f

s

f XR
00

=  

5.      else if there exist integer k , ),(||
00

s

f

s

f YXmaxks ≥≥ , 

6.                 and ))()(( YdXdk ss ∪∉  then kR
s

f =
0

 

7.       if 0>
0

s

fR  then 

8.           ∅=)(Rd s  

9.            for each ))()(( YdXdm ss ∪∈ , 
s

fRm
0

>  do 

10.              }{)(=)( mRdRd ss ∪  

11.          )(}{}{=)(
0

RdRsidRdiffseq s

s

fs ∪∪−  

12.           )()(=)( RdiffseqRdiffseqRdiffseq s∪  

13.           ++sup  

14. return )(Rdiffseq , sup   

 

Figure  4: Equality Join Function 

 

 

Temporal-Join ))(),(( YdiffseqXdiffseq  

1. ∅=)(Rdiffseq ; 0=sup  

2. for each sequence s  that supports X  and Y  do 

3.       0=
0

s

fR   

4.        if 
s

f

s

f YX
00

<  then 
s

f

s

f YR
00

=  

5.        else if there exist integer k , 
s

fXk
0

>  and )(Ydk s∉  then kR
s

f =
0

 

6.        if 0>
0

s

fR  then 

7.             ∅=)(Rd s  

8.             for each )(Ydm s∈ , 
s

fRm
0

>  do 

9.                   }{)(=)( mRdRd ss ∪  

10.           )(}{}{=)(
0

RdRsidRdiffseq s

s

fs ∪∪−  

11.           )()(=)( RdiffseqRdiffseqRdiffseq s∪  

12.           ++sup  

13. return )(Rdiffseq , sup  

 

Figure  5: Temporal Join Function 
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                            Figure  6: Comparison between dSpade and Spade (Time) 
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Figure  7: Comparison between dSpade and Spade (Memory Usage) 


