
International Journal of Database Management Systems (IJDMS), Vol.3, No.2, May 2011

DOI: 10.5121/ijdms.2011.3203 41

Performance of Short-Commit in Extreme

Database Environment

Muhammad Tayyab Shahzad
shahzadonline@gmail.com

School of Computing and Mathematical Sciences

Liverpool John Morres University.

Muhammad Rizwan
Muhammad.rizwan@uettaxila.edu.pk

Department of Computer Engineering

University of Engineering and Technology Taxila, Pakistan

Abstract:

Atomic commit protocols are used where data integrity is more important than data availability. Two-

Phase commit (2PC) is a standard commit protocol for commercial database management systems. To

reduce certain drawbacks in 2PC protocol people have suggested different variance of this protocol. Short-

Commit protocol is developed with an objective to achieve low cost transaction commitment cost with non-

blocking capability. In this paper we have briefly explained short-commit protocol executing pattern.

Experimental analysis and results are presented to support the claim that short-commit can work

efficiently in extreme database environment.

1. Introduction:

Commit Protocol ensures the transaction atomicity. To understand the role of commit

protocols we consider an example of funds transfer from one account to another. We

consider a transaction that transfers funds from account A to account B. This transaction

consists of two sub transactions, one sub transaction debit sum A and second sub

transaction credit sum B. In the process first transaction checks the availability of

required funds in account A then debits it with desired amount. Then second transaction

credits the account B with the amount which is debited from the account A.

Consider the situation if the second transaction fails before crediting the account B. This

failure can occur due to any issue such as: site failure, communication failure etc. In this

situation account A is debited without crediting the account B, this failure gives rise to

errors. Hence, commit protocol are designed to ensure that account A is debited if and

only if account B is credited. In case of failure of transaction before crediting account,

then previous state of account A is restored to make the database consistent.

Global transactions may consist of multiple sub transactions that may execute on different remote

sites. Commit protocol forces sub transaction to agree on a single outcome which means that a

global transaction will commit if an only if all the sub transactions commit. In case if any of the

sub transaction fails, the global transaction aborts and forces successfully executed (not

committed) to abort and the previous state of the system is restored. Two-phase commit protocol

(2PC) is considered standard and consists of two phases [2]. Many attempts are made to minimize

International Journal of Database Management Systems (IJDMS), Vol.3, No.2, May 2011

42

the protocol execution cost by reducing the node communication or the disk write logging activity

[2] [3]. In some cases blocking issue is addressed but it results in much higher execution cost of

the protocol [9] [12].

.

Related Work:

The protocols in which emphasis is on reducing the commit cost are presumed commit protocol

[3], presumed abort protocol [2], single phase commit protocol [12] and coordinator log [11] etc.

In these protocols committing cost (in 2PC) reduced by minimizing the log writes or

communication between the nodes or in some cases removing the entire phase. Reduction in

committing cost on the other hand increases the blocking factor of the committing protocol.

In the database environment where site failure and communication failure is high , above

mentioned protocols results in actually higher committing time period as compared to two phase

committing protocol. This is due to the extra recovering procedures that each site has to undergo

in order to preserve the status of the database.

In Three phase commit protocol [16] and optimistic commit protocol [17] the blocking issue is

focused but these protocols produce much higher execution cost while providing some sort of non

blocking capability. Backup site is employed in [9] in order to minimize the delay caused by the

coordinator failure but this is not fully non blocking commit protocol. Extra communication

between the backup site coordinator actually results in increase of committing cost of the

transaction even in the absence of coordinator failure.

In new commit protocol (short commit) Non-Blocking capability is achieved having low

committing cost. Extra site is employed called mediator. Mediator works parallel with

coordinator. In case of coordinator failure, mediator takes the role of coordinator. This shift of

responsibility is carried out without extra delay. Furthermore this protocol works equally well in

the reliable environment where site and communication failures are exceptions.

2. Two Phase Commit Protocol:

Two phase protocol consists of two phase as name indicates. First phase is called prepared phase

in which coordinator asks sites to send commit or abort vote for the transaction which has been

executed (not committed). Participants log their votes before sending to the coordinator [1].

Decision phase is the second phase of the commit protocol. In decision phase if coordinator

receives the commit vote or yes vote from all the participants sites then it logs the commit

decision and then sends decision to all the participants. In case if it receives Abort vote or No

vote from any of the participants then it sends abort decision to all the participating sites.

Prepared participant after getting decision form the coordinator logs it and release the data

resources pertaining to the transaction [5].

3. Variances of Two-phase commit protocol:

In two phase commit protocol information about committed or aborted transaction is explicitly

recorded and missing information has no meaning. Presumption gives the meaning of the missing

information [10] [15]. In presumed commit, information about committed transaction is not

logged in to disk space which saves log writes for committed transactions. In presumed commit it

is cheaper to commit a transaction than to abort [15]. Early prepare protocol gives low

committing cost on the assumption that every site goes to the prepared state after acknowledging

the last executed operation [13]. So there is not need for coordinator to send explicit prepared

request to all participants. In Coordinator Log, logging of all participants is central on the

International Journal of Database Management Systems (IJDMS), Vol.3, No.2, May 2011

43

coordinator which eliminates the need for each site to log. Central logging makes participants

fully dependent on the coordinator for the recovery [11]. Further more there are very strong

assumptions associated with these protocols [14] [8].

Protocols discussed up till now are the blocking protocols, it means that on the coordinator

failure, prepared participant has no choice but to wait for the coordinator to recover and send

decision back to prepared participant. Failure could be long and can force prepared participant to

be in wait state holding the data resources, it creates the blocking state. Three phase commit

protocol is the first atomic commit protocol in which blocking issue is addressed where non-

blocking is achieved by adding an extra phase called pre-commit phase [16]. Optimistic commit

protocol reduces blocking time period on the assumption that every transaction will commit

eventually [17]. By this assumption it lets waiting transaction to access the uncommitted data of

the executing transaction which contradicts the isolation property of the transaction. Backup site

is used to prevent the blocking situation in one of the method but is not effective in every

blocking situation. Further more commit protocol execution cost increases due to the extra

communication to the backup site [9]. Mobile Commit protocols are used in many applications

such as mobile banking, traffic status, and Weather information as well as many ecommerce

applications [20]. These are specifically designed to accommodate in the mobile wireless

environment where failure rate is high as compared to fixed line network [6] [7]. Some adopt the

optimistic concurrent control strategy which does not require the locking mechanism for

concurrency control [18] [19].

4. Short-Commit Protocol:

The main hurdle in the implementation of non-blocking commit protocol is the increased

“Transaction commitment cost” which is the logging and communication cost in absence

of failure. The non-blocking protocols are developed to handle a blocking situation or the

coordinator failure within a certain time period but with much high transaction

commitment cost. There is a need to develop a non- blocking commit protocol in which

not only transaction commitment cost remains same or ideally less than the Two Phase

Commit (2PC) protocol which also provides the non-blocking capability.

New site called the mediator is employed for non-blocking purpose. Mediator works as a

coordinator in the background and in case if the coordinator fails in the decision phase,

the mediator takes the responsibilities of the coordinator and resumes the commit process

from where the coordinator failed. When the coordinator recovers from failure it only

inquires one of the participants about the status of the transaction before the failure.

International Journal of Database Management Systems (IJDMS), Vol.3, No.2, May 2011

44

Figure 1:Short-Commit Execution Model

Due to the mediator involvement in the commit process participants carry out their

normal operations without any extra waiting time period, even with a failed coordinator.

It helps in a faster release of resources, which are held during transaction execution. This

reduces the waiting time period for transactions waiting in queue to get access of

resources in use. As a result the numbers of transactions per unit time increase. This

feature not only makes this protocol favourable in a blocking situation but also in a

reliable environment in which the data resources are shared by many processes. The

Protocol is designed in a manner such that there is no need of synchronization between

coordinator and the mediator which eliminates the unnecessary communication which is

a basic draw back of a backup commit protocol [9].

5. Protocol execution:

In the following section detail algorithm of the execution of the short-commit protocol is

given. Remote node communication, disk log write activity and process of recording

different activity is described in detail.

5.1 Algorithm at Coordinator:

In STEP C1 coordinator forces a write transaction initiation record in its stable storage

space and then it sends prepare message to the mediator and to all participants. At this

stage coordinator waits for prepared votes from all participants after sending the prepare

request to all participants. In case of any missing vote from any of the participants

coordinator sends still-waiting message or second prepare request to all participants and

goes to the wait state again.

International Journal of Database Management Systems (IJDMS), Vol.3, No.2, May 2011

45

STEP C1 Prepare Request

 {

 Write Transaction initiation record in Stable storage space

 Send Prepare message to mediator and all Participants

 Step C1a Do while Votes not received from all participants

 Wait

 On Timeout

 Send Still-waiting message to all participants

 Go To Step C1a

 End Do

Go To STEP C2 Decision }

Figure 2: Prepare Request at Coordinator

After getting commit votes from all participants or abort decision from any of the

participants then the algorithm proceeds to STEP C2.

STEP C2 Decision

{

If All votes = commit vote

Then

 Write Commit log record by removing protocol database from disk

 Send Commit Decision to all Participants and waits for ACK

 NonForced Write Writes Commit Record after getting all ACKs

Forget about transaction by releasing resources

Else

 Go To STEP C3 Termination

End if}

Figure 3: Decision at Coordinator

International Journal of Database Management Systems (IJDMS), Vol.3, No.2, May 2011

46

STEP C3 Termination {

 Update Protocol Database with Abort Decision

 C3a Do while Acknowledgement not received form all participants

 Wait

 On Timeout

 Send request to participant to get missing ACK

 Go To C3a

 End Do

 Write Abort record and removes protocol database form memory

 Release Resources held by transaction}

Figure 4: Termination at Coordinator

If the coordinator receives a commit vote from each of the participants then it forces a

write commit log record into the stable storage space. This logically removes the entry

from protocol database and sends commit decision to all participants. In case of any of

abort decision from any of the participants STEP C3 of termination starts.

STEP C3 starts when coordinator gets abort decision from any of the participants as reply

of prepare request. On getting abort decision the coordinator force writes abort log record

and waits for the acknowledgement from other prepared participants. After getting all the

acknowledgements from prepared participants, coordinator releases the resources

pertaining to the transaction.

5.2 Algorithm at Mediator

Begin (After getting Prepare message from Coordinator)

STEP M1 Building protocol database {

 Build protocol database in main memory

 Step M1a Do while Votes not received from all participants

 Wait On Timeout

 Send Still-waiting message to all participants

 Go To Step M1a

 End Do

 Go To STEP M2 Decision}

Figure 5: Building Protocol Database at Mediator

International Journal of Database Management Systems (IJDMS), Vol.3, No.2, May 2011

47

STEP M2 Decision

{

If All votes = commit vote

Then

 Send Commit Decision to all Participants and waits for ACKs

 Forget about transaction after getting ACKs from all participants

Else

 Go To STEP C3 Termination

End if

}

Figure 6: Decision at Mediator

The mediator builds its protocol database in its main memory after it gets the prepared

message from the coordinator. Mediator waits for votes from all participants. After it gets

commit votes from all of the participants or abort decision from any of the participant it

goes to STEP M2 Decision.

On receiving commit votes from all participants, Mediator sends commit decision to all

prepared participants and waits for the acknowledgment of the decision. In case of abort

decision from any of the participant mediator writes abort decision in its protocol

database.

6. Simulation:

In this section we evaluate the protocol performance by conducting simulation study for

three atomic commit protocols. By changing the different performance factors we have

compared the 2PC protocol Presumed Commit and Short-commit protocol. Simulation is

developed in JAVA programming language. There are 15 sites are used as cohorts from

which 5 sites are chosen randomly for transaction execution including coordinator and

mediator. There are 2500 memory locations or data pages on each site. 5 data pages are

accessed by each transaction which is randomly chosen. Delays are introduced to

simulate the delay associated with the forced log write activity and communication delay.

In simulation we have checked the performance differences of different protocols in

diverse database environments. Multiprogramming level (MPL) of each site and Failure

probability has strong impact on the performance of the commit protocol. Performance of

protocol increases by increasing the MPL level of the transaction. MPL level of the

particular site is the number of transactions which can execute simultaneously. By

increasing MPL of the site, performance of protocol increases to a certain level, after

increase of certain level higher values can produce data resource contentions and there

would be more dead locks and blocking situations in which a transaction has to wait to

International Journal of Database Management Systems (IJDMS), Vol.3, No.2, May 2011

48

executing transaction to complete. Level where data contentions start depends on the

availability of resources.

Site failures also have strong impact on the performance of the protocol. Site failures

results in many transactions to abort or could create blocking situations if the failed site is

coordinator. As result of site failures, not only probability that a transaction will abort

eventually increases but it also increases the protocol execution time period.

6.1 Base line Experiment Values:

In our simulation we have defined some base line values for some parameters. By using specific

values, this ensures considerable difference between the protocols in terms of performance.

Table 1: Base Line Experiment Values

NumSites: Are the total number of sites chosen randomly.

DBSize: Is the number of database pages. Locks are placed on page level.

TransType: On each site the transaction executes in a sequential fashion.

DistDegree: Randomly chosen sites for transaction execution.

CohortSize: Number of Data pages accessed by transaction.

NumDataDisk: There are 2 disks to store actual data in the database.

NumLogDisk: Disk used to record the log for the execution of commit protocol.

NumPagDisk: Time needed for each write operation on to the disk space.

PageCPU: Time consumed by CPU for each write operation, is 5 milliseconds.

MsgDelay: Is the propagation delay on the network.

NumSites 15 DBSize 2500 pages

TransType Sequential DistDegree 4

CohortSize 5 pages MPL 4 – 8

NumCPUs 1 NumDataDisks 2

NumLogDisk 1 PageCPU 5ms

PageDisk 15ms MsgDelay 50ms

International Journal of Database Management Systems (IJDMS), Vol.3, No.2, May 2011

49

6.2 Experiments and Results:

In this section we have described two different simulation studies. In first we have varied

the MPL level of the site and analyzed its impact on the performance of different commit

protocols. Increasing the MPL level can increases system throughput in terms of increase

in the number of executing transaction per unit time. In second section we have analysed

the impact of different failure frequency on the commit protocols. Failure of sites could

result in increase of number of aborted transactions.

6.2.1 Multiprogramming level (MPL):

Each site has its specific multiprogramming level; any transaction which violates the

MPL limit is aborted. The MPL limit restricts the number of executing transactions at one

time on each site. The particular value of the MPL limit is chosen on each site to maintain

resources and keep data contentions at a low level. In this experiment we have executed

20,000 transactions with failure probability of 0.005. The MPL value at each site is

changed from 4 to 8 to analyze the behaviour of each protocol.

Page Conflicts

0

100

200

300

400

500

600

4 5 6 7 8

MPL Values

P
a

g
e

 C
o

n
fl

ic
ts

Tw oPC

PrCommit

New Commit

Figure 7: Page Conflicts Chart

Page conflict occurs when executing transaction tries to access the page which is already

in use of the other transaction. Transaction aborts after discovering the page conflict.

In Fig.8 all protocols have same values of page conflicts initially because not many

transactions enter in to the system. When MPL level of each site increases then

comparatively more transaction enters in to the system. Probability that a page conflicts

occur will increase with the increase in the MPL level. The protocol has shorter execution

time causes the transaction finish sooner. As a result time to hold the data resources

decreases causing the page conflicts to decrease. Short-Commit protocol has lower page

conflicts due to its short executing time period as compared to 2PC and presumed

Commit protocol.

International Journal of Database Management Systems (IJDMS), Vol.3, No.2, May 2011

50

MPL Conflicts

0

200

400

600

800

1000

1200

1400

1600

4 5 6 7 8

MPL Values

M
P

L
 C

o
n

fl
ic

ts

Tw oPC

PrCommit

New Commit

Figure 8: MPL Conflicts Chart

MPL conflicts occur when amount of transaction exceeds than the MPL level of the site.

It is obvious that by increasing the MPL level the MPL level conflicts will increase.

Transaction in short-commit protocol leaves the system early because of its short

executing time period as compared to 2PC and presumed commit. With MPL value set at

4 there is significant difference in protocol MPL conflicts values. 2PC has the highest

ratio and New Commit has the lowest ratio of Page conflicts. As MPL level for each site

increase, causes MPL conflicts for all for protocols to decrease rapidly as shown in

Figure 8. At MPL value 7 and 8 all protocols have very low MPL conflicts ratio.

However increase in MPL values from here causes an increase in the page conflicts

because the amount of transactions executing in the system increases and chance of

accessing the same data resources which results in increase in values of data contentions.

No of Committed Transaction

15000 15500 16000 16500 17000 17500 18000 18500 19000 19500 20000

4

5

6

7

8

M
P

L
 V

a
lu

e
s

No of Transactions Executed

New Commit

PrCommit

Tw oPC

Figure 9: No. of Committed Transaction

Resource contentions of all three commit protocols are affected by changing MPL levels

of sites. Average commit time, average abort time and MPL level have impact on the

performance of the protocol. This performance difference becomes prominent when we

analyze the number of committed and the number of aborted transactions for high MPL

value as shown in Figure.9

International Journal of Database Management Systems (IJDMS), Vol.3, No.2, May 2011

51

6.2.2 Impact of Failures:

Blocking is one of the main drawback of many cost effective protocol. Blocking occurs

when coordinator fails before sending the decision to the prepared participants. In

blocking state prepared participant has to wait holding the data resources locks until

coordinator recovers from failure and sends decision to the waiting site. One of the main

features of the New Commit protocol is that it is resilient to site failures as compared to

other protocols.

Blockage Frequency

0

200

400

600

800

1000

1200

0.01 0.02 0.03 0.04 0.05

Failure Probability

B
lo

c
k
a
g
e
 F

re
q
u
e
c
n
y

Tw oPC

PrCommit

New Commit

Figure 10: Blockage Frequencies

2PC and presumed commit has same failure handling procedures as shown in Fig.10.

they have almost same blocking frequency. Short-commit performs much better having

very low blocking frequency because of its strong failure handling procedures. There are

different types of failures.

• If coordinator fails before sending decision: in 2PC and presumed commit protocol

participant has to wait until coordinator recovers and sends decision to the prepared

participants. In short-commit the prepared participant issues the abort decision if it time

stamp expires in waiting of the commit decision from the coordinator. As shown Fig.10

short-commit has very low blocking frequency because in short-commit blocking will

only credit if and only if both coordinator and mediator fails.

• If coordinator fails after sending situation decision: this situation does not create any

impact on the blocking situation as decision has already been issued. Prepared

participant will release the resources after getting decision.

• Participant failure: In 2PC and presumed commit, coordinator waits participant to

recover and send vote until its time stamp expires. In the absence of vote from any of the

participants coordinator sends abort decision to every prepared participant. In short

commit protocol failed participants only delays the commit decision from coordinator

and mediator because coordinator sends second prepare message instead of sending

abort decision. Due to this delay any prepared participant may decide to abort in case if

its time stamp expires. Aborting participant will sends abort decision directly to every

prepared participant as well as to the coordinator and mediator. This helps to reduce the

protocol execution time period for the aborting transaction.

International Journal of Database Management Systems (IJDMS), Vol.3, No.2, May 2011

52

Figure 11, shows the number of aborted transactions for different failure values. New

Commit has the lowest aborted percentage among these protocols due to the factors

explained above. For 2PC and Presumed Commit, the number of aborted transactions

increases as we increase the failure probability because of missing prepared votes due to

the failure of cohorts. In the new commit protocol the aborted transactions are due to the

page conflicts and MPL conflicts.

Figure 11: No. of Aborted Transactions

7. Conclusion:

Protocol having shorter commit time as compared to other commit protocols performs better in

the environment where there is huge transaction load. Short-Commit protocol works

comparatively well in the environment where numbers of transaction are huge because of low

execution time. High failure rates and blocking factor increases the probability of transactions to

get aborted. It also increases the protocol execution time period. Short-Commit protocol is non

blocking protocol have much better failure handling procedures as compared to other commit

protocols which helps in achieving high system throughput.

By changing multiprogramming level of the site affects the performance of the protocol. Initially

system throughput increases because more transaction enters in to the system. After certain level

of multiprogramming value performance starts to decrease because of resource and data

contentions. By increasing value of MPL, page Conflicts increases however number of page

conflicts in New Commit is low as compared to Two Phase Commit and Presumed Commit.

Multiprogramming Conflicts values at specific MPL level is less in New Commit Protocol as

compared to other protocols. Due to better performance in MPL conflicts and Page Conflicts,

number of committed transaction in Short Commit protocol is higher than other mentioned

protocols.

International Journal of Database Management Systems (IJDMS), Vol.3, No.2, May 2011

53

8. Appendix A: Simulation Results:

In this section we have presented the statistical data which is gathered during the

execution of different experiments. Multiprogramming Level of each site is varied and

their effect on other characteristics of the protocol is observed. Value of MPL varies from

4 to 8 for each site as shown in Table 2.

Table 2: Multiprogramming Level

PROTOCOL 2PC PrCom NewCom 2PC PrCom NewCom

MPLValues 4 4 4 5 5 5

CommittedTransactions 16797.5 17015.5 18939.7 17543.7 17588.5 19339.5

AvgCommitTime 306.2 259 238 308.5 259.2 237.7

UncertainCommitTime 159.5 162.5 141.5 160.5 162.7 141

AbortedTransactions 3201.2 2983.2 1058 2455 2410.5 655.7

AvgAbortTime 334.2 343 167 344.5 345 176.5

UncertainAbortTime 185.7 170 67 195 174.2 76.2

BlockingFrequency 608 593 15 607.7 593.2 12.7

CoordinatorFailure 608 593 480.7 607.7 593.5 521.2

MediatorFailure 0 0 481.7 0 0 532.2

NullTransactionRestarts 1723.5 1740.5 1711 1753.5 1713.7 1785.7

NullCommit 0 0 1629.7 0 0 1698.5

NullAbort 1723.5 1740.5 81 1753.5 1713.7 96.7

PageConflicts 380 380 394 428.2 420.2 400.5

MPLConflicts 1384.5 1068.5 728 355 319 228

CommitPercentage 83.98 85.07 94.69 87.71 87.94 96.69

AbortPercentage 16.0 14.91 5.29 12.27 12.05 3.27

TotalTransactions=20000 2PC PrCom NewCom 2PC PrCom NewCom

MPLValues 6 6 6 7 7 7

CommittedTransactions 17757.7 17813.7 19472.2 17874.5 18024.2 19501.2

AvgCommitTime 310.2 259.2 238 311.7 258.5 235.7

UncertainCommitTime 162 163 141.7 162 162.2 140.2

AbortedTransactions 2242.2 2185.7 525.7 2125 1988.7 494.2

AvgAbortTime 351.5 353 181.5 354.7 351.5 179.2

UncertainAbortTime 200.5 180 81.2 203.2 179 80.2

BlockingFrequency 603.7 613.7 14.5 600.7 593.2 16.7

CoordinatorFailure 603.7 613.7 517.2 600.7 593.2 539

MediatorFailure 0 0 531.5 0 0 506

NullTransactionRestarts 1762.7 1711.7 1775.2 1725 1762 1753

NullCommit 0 0 1680.7 0 0 1666

NullAbort 1762.7 1711.7 94.2 1737 1762 87

PageConflicts 476.7 457.2 421.7 501 483 436

MPLConflicts 86 67.2 42 14.2 21.2 13.2

CommitPercentage 88.78 89.06 97.36 89.37 90.12 97.50

AbortPercentage 11.21 10.92 2.62 10.62 9.94 2.47

International Journal of Database Management Systems (IJDMS), Vol.3, No.2, May 2011

54

In Table 3 data about different parameters of protocols is collected and presented at

different failure rates. In this experiment 20,000 transactions have been executed with the

failure probability range from 0 to 0.005.

Table 3: Failure Probability

PROTOCOL 2PC PrCom NewCom 2PC PrCom NewCom

FailureProbability 0 0 0 0.01 0.01 0.01

CommittedTransactions 19201.5 19257.7 19271.7 18623.5 18730.7 19274

AvgCommitTime 299.7 249.2 218.2 302.2 252 223.5

UncertainCommitTime 150.7 152.7 123.7 153.5 156 129

AbortedTransactions 798.5 742.2 737.2 1376.5 1269.2 723

AvgAbortTime 299.2 303.7 151.2 324.7 326.7 157.5

UncertainAbortTime 150 127 52.7 175.5 153.5 59.25

BlockingFrequency 0 0 0 203.2 199.2 1.5

CoordinatorFailure 0 0 0 203.2 199.2 190.5

MediatorFailure 0 0 0 0 0 182

NullTransactionRestarts 0 0 0 588.5 590.2 588.7

NullCommit 0 0 0 0 0 557.7

NullAbort 0 0 0 588.5 590.2 31

PageConflicts 484.2 509.5 388.5 479.7 481.2 406.2

MPLConflicts 370 248.7 395 371.5 253 342

CommitPercentage 96.00 96.28 96.35 93.11 93.65 96.37

AbortPercentage 3.99 3.71 3.68 6.88 6.34 3.61

PROTOCOL 2PC PrCom NewCom

MPLValues 8 8 8

CommittedTransactions 17872.5 18013.2 19492.7

AvgCommitTime 304 259.7 236.7

UncertainCommitTime 157.7 163 140.7

AbortedTransactions 2126.7 1986.2 504.2

AvgAbortTime 345 352.5 182.5

UncertainAbortTime 197 179.5 82.5

BlockingFrequency 593.7 623.2 15.75

CoordinatorFailure 593.7 623.2 522.2

MediatorFailure 0 0 519.5

NullTransactionRestarts 1705 1750.7 870

NullCommit 0 0 1642.2

NullAbort 1705 1750.7 95.5

PageConflicts 536.5 502.2 453.7

MPLConflicts 6 2.5 14.5

CommitPercentage 89.36 90.06 97.46

AbortPercentage 10.63 9.93 2.52

International Journal of Database Management Systems (IJDMS), Vol.3, No.2, May 2011

55

PROTOCOL 2PC PrCom NewCom 2PC PrCom NewCom

FailureProbability 0.02 0.02 0.02 0.03 0.03 0.03

CommittedTransactions 16981.7 18228 19313.7 17550.2 17587.5 19301

AvgCommitTime 304.5 257 229.5 309.2 260 234.2

UncertainCommitTime 156.5 159.5 134.7 160.5 163.2 138

AbortedTransactions 1767.5 1772 679.5 2449.5 2412.5 698.7

AvgAbortTime 336.7 343 164.5 345.2 348.75 172

UncertainAbortTime 187.5 169 65.5 194.7 175.75 72.5

BlockingFrequency 396.7 401.7 4.7 607.2 621.5 7

CoordinatorFailure 362 401.7 336.2 599.5 621.5 423

MediatorFailure 0 0 358.5 0 0 446.2

NullTransactionRestarts 1093 1131.7 1197.5 1712 1742.7 1472.2

NullCommit 0 0 1142 0 0 1389.2

NullAbort 1093 1131.7 55.25 1712 1742.75 83

PageConflicts 423 455.5 407.7 441.7 455.5 397

MPLConflicts 361.5 242.7 283 385.2 285.5 249.2

CommitPercentage 84.90 91.14 96.56 87.75 87.93 96.50

AbortPercentage 8.83 8.86 3.39 12.24 12.062 3.49

PROTOCOL 2PC PrCom NewCom 2PC PrCom NewCom

FailureProbability 0.04 0.04 0.04 0.05 0.05 0.05

CommittedTransactions 17047.7 17060.2 19283.2 16511.2 16694 19300

AvgCommitTime 314.7 262.5 241.7 318.5 266 247.2

UncertainCommitTime 165.2 166.2 145.5 169.2 170 151

AbortedTransactions 2950.7 2939.7 716.25 3488.7 3306 699.7

AvgAbortTime 356.2 379.2 178.5 361.2 359.7 182.7

UncertainAbortTime 205.7 182.2 78.5 210.2 187.7 82.7

BlockingFrequency 808.7 804.5 25.75 1014.5 1012 39.5

CoordinatorFailure 808.7 807 656.5 1014.5 1012 797.5

MediatorFailure 0 0 644.25 0 0 819.7

NullTransactionRestarts 2275.5 2255.2 2288.5 2851.7 2874.5 901.5

NullCommit 0 0 2172.2 0 0 2688.7

NullAbort 2275.5 2255.5 114.75 2851.7 2874.7 129.5

PageConflicts 440 447.25 445.25 436.7 432 433.5

MPLConflicts 344.5 324 243 282.5 360.2 214.2

CommitPercentage 85.23 85.30 96.41 82.55 83.47 96.5

AbortPercentage 14.75 14.69 3.58 17.44 16.53 3.49

International Journal of Database Management Systems (IJDMS), Vol.3, No.2, May 2011

56

References

[1] Alkhatiab, G., “Transaction Management in Distributed Database Systems:the Case of Oracle,s

Two-Phase Commit.” Journal of Inforamtion Systems Education, 2002, 13(2)

[2] G. K. Attaluri and K. Salem, "The Presumed-Either Two-Phase Commit Protocol " IEEE

Transactions on Knowledge and Data Engineering vol. 14, pp. 1190-1196 2002.

[3] B. W. Lampson and D. B. Lomet, "A New Presumed Commit Optimization for Two Phase Commit

" in Proceedings of the 19th International Conference on Very Large Data Bases Morgan Kaufmann

Publishers Inc.

 1993 pp. 630-640

[4] Y. J. Al-Houmaily and P. K. Chrysanthis, "The Implicit-Yes Vote Commit Protocol with Delegation

of Commitment," in Proceedings of 9th International Conference on Parallel and Distributed

Computing Systems, 1996, pp. 804-810

[5] C. Mohan, B. Lindsay, and R. Obermarck, "Transaction management in the R* distributed database

management system " ACM Trans. Database Syst., vol. 11, pp. 378-396 1986.

[6] J.-H. Bose, S. Bottcher, L. Gruenwald, S. Obermeier, H. Schweppe, and T. Steenweg, "An

Integrated Commit Protocol for Mobile Network Databases," in Proceedings of the 9th International

Database Engineering \& Application Symposium (IDEAS'05). vol. 00: IEEE Computer Society,

2005, pp. 244-250

[7] N. Nouali, A. Doucet, and H. Drias, "A two-phase commit protocol for mobile wireless environment

" in Proceedings of the 16th Australasian database conference. vol. 39 Newcastle, Australia

Australian Computer Society, Inc, 2005, pp. 135-143.

[8] Y. J. Al-Houmaily and P. K. Chrysanthis, "Dealing with incompatible presumptions of commit

protocols in multidatabase systems," in Proceedings of the 1996 ACM symposium on Applied

Computing Philadelphia, Pennsylvania, United States 1996, pp. 186-195

.

 [9] P. K. Reddy and M. Kitsuregawa, "Reducing the Blocking in Two-Phase Commit Protocol

Employing Backup Sites " in Proceedings of the 3rd IFCIS International Conference on

Cooperative Information Systems Washington, DC: IEEE Computer Society, 1998, pp. 406-416

 [10] B. W. Lampson and D. B. Lomet, "A New Presumed Commit Optimization for Two Phase Commit

" in Proceedings of the 19th International Conference on Very Large Data Bases Morgan Kaufmann

Publishers Inc., 1993 pp. 630-640

[11] J. W. Stamos and F. Cristian, "Coordinator Log Transaction Execution Protocol," Distributed and

Parallel Databases, vol. 1, pp. 383-408, 1993.

[12] M. Abdallah and P. Pucheral, "A Single-Phase Non-Blocking Atomic Commitment Protocol," in

Proceedings of the 9th International Conference on Database and Expert Systems Applications,

1998, pp. 584-595

[13] J.W. Stamos and F. Cristian, “A low-cost atomic commit protocol”. Proceedings of Ninth

Symposium on Reliable Distributed Systems, 1990. 9(12): p. 66-75.

[14] Y. J. Al-Houmaily and P. K. Chrysanthis, "Atomicity with incompatible presumptions" in

Proceedings of the eighteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of

database Philadelphia, Pennsylvania, United States, 1999, pp. 306-315.

International Journal of Database Management Systems (IJDMS), Vol.3, No.2, May 2011

57

[15] P. K. Chrysanthis, Y. J. Al-Houmaily, and S. P. Levitan, "An Argument in Favour of Presumed

Commit Protocol " in Proceedings of the Thirteenth International Conference on Data Engineering

1997, pp. 255-265 X

[16] D. Skeen, "Nonblocking commit protocols " in Proceedings of the 1981 ACM SIGMOD

international conference on Management of data Ann Arbor, Michigan 1981, pp. 133-142

[17] J. R. Haritsa, K. Ramamritham, and A. R. Gupta, "The PROMPT Real-Time Commit Protocol”,

IEEE Trans. Parallel Distrib. Syst., vol. 11, pp. 160-181 2000.

[18] S.A. Moiz, L. Rajamani, S. N. Pal, “Commit Protocols in Mobile Environments: Design &

Implementation” International Journal of Database Management Systems(IJDMS), Vol 2, No3,

Aug,2010.

[19] A. Ahmed, P.D.D Dominic, A. Abdullah and H. Ibrahim, “A New Optimistic Replication Strategy of

Large-Scale Mobile Distributed Database Systems”, International Journal of Database Management

Systems(IJDMS), Vol 2, No4, Aug,2010.

[20] S.A. Moiz, Dr. L.Rajamani, and S.N. Pal, “Design and Implementation of Pessimistic Commit

Protocols in Mobile Environment”, The First International Workshop on Database Systems (DMS-

2010), Springer Verlag Berlin Hiedelberg, CNSA 2010, CCIS 89,pp. 603-612, 2010.

