
International Journal of Database Management Systems (IJDMS), Vol.3, No.2, May 2011

DOI: 10.5121/ijdms.2011.3206 89

STATISTICAL DATA ANALYSIS OF CONTINUOUS

STREAMS USING STREAM DSMS

Nadeem Akhtar

Department of Computer Engineering, Aligarh Muslim University, Aligarh, India
nadeemalakhtar@gmail.com

ABSTRACT

Several applications involve a transient stream of data which has to be modeled and analyzed continuously.

Their continuous arrival in multiple, rapid, time-varying and possibly unpredictable and unbounded way

make the analysis difficult and opens fundamentally new research problems. Examples of such data

intensive applications include stock market, road traffic analysis, whether forecasting systems etc. In this

study, we have used a Data Stream Management System tool- Stanford STREAM to model and analyze data

from two different application domains- Road Traffic analysis and Habitat Monitoring analysis. Based on

the results we discuss advantages and disadvantages of STREAM.

KEYWORDS

Continuous Stream, DSMS, Stanford STREAM

1. INTRODUCTION

The number of tools for analyzing continuous stream data is continuously increasing,

because there is an increasing need in many different application domains. Several

application domains require analysis of continuous data stream like stock market, security,

telecommunications data management, web applications, manufacturing, sensor networks

and others.

One example of such application is Road Traffic Analysis. Several countries have been

using RFIDs to collect real time vehicular information [1]. RFID readers read information

from RFID tags attached to vehicles and sent to a centralized server. For a large city,

number of vehicles passed through a particular point may go into millions. Moreover,

vehicular traffic is intrinsically unpredictable and time-varying. Another example is

Network Packet Analysis. Network operators and service providers need to monitor data

traffic to analyze the provided service level, to identify bottlenecks, and initiate appropriate

counter measures, if possible [2][3]. This is especially important in the Internet, because

the amount of data traffic continuously increases and the behavior and requirements of end-

users are changing over time, like accepted response time from web servers.

Data stream management systems have been developed to monitor the continuously arriving data.

They are different from traditional Database Management Systems in that they work on transient

tables rather than persistent tables. Database Management Systems (DBMSs) may be used for

analyzing continuous stream data. Traditional DBMSs, however suffer from some serious

bottlenecks which limit their functionality from such real time complex applications requiring

continuous monitoring of ever-changing data-streams. First, the DBMS is a passive repository

storing a large collection of data elements and that humans initiate queries and transactions on

International Journal of Database Management Systems (IJDMS), Vol.3, No.2, May 2011

90

this repository. This is called Human-Active, DBMS-Passive (HADP) model. Second, it is

assumed that the current state of the data is the only thing that is important. Hence, current values

of data elements are easy to obtain, while previous values can only be found torturously by

decoding the DBMS log. The third assumption is that triggers and alerter are second-class

citizens. These constructs have been added as an after-thought to current systems, and none have

an implementation that scales to a large number of triggers. Fourth, DBMSs assume that data

elements are synchronized and that queries have exact answers. In many stream-oriented

applications, data arrives asynchronously and answers must be computed with incomplete

information. Lastly, DBMSs assume that applications require no real-time services [4].

Data Stream Management Systems are specifically designed for handling continuous data

streams. They can handle multiple, time-varying, unpredictable and unbounded streams which

cannot be handled using traditional tools. In this paper, we have used a Data Stream Management

System- Stanford STREAM in two different application domain namely Road Traffic analysis

and Habitat Monitoring analysis. Section 2 presents the related work. The features of a general

DSMS and Stanford STREAM are discussed in section 3 and 4 respectively. Section 5 describes

the results obtained using Stanford STREAM DSMS to analyze the stream from abovementioned

domains.

2. RELATED WORKS

Data stream management systems have been used in several application domains for mining

continuous streams. Hebrail [5] provides a good survey of various data stream management

systems and their applications. Following are the works which are similar to the work presented

in this paper.

In [6][7], a TelegraphCQ prototype is studied and evaluated for network packet monitoring task.

Some restrictions in the design of TelegraphCQ prototype are identified that makes it not suitable

as a general tool for traffic analysis. Abdessalem [8] have compared STREAM and TelegraphCQ

prototypes to analyze electric power consumption data. According to their experiments, it appears

that TelegraphCQ is better adapted to the needs of their experiment than STREAM. In [9], a

flexible network monitoring tool is described, called PaQueT, designed to meet a wide range of

monitoring needs. PaQueT has been developed as an extension of Borealis Data Stream

Management System and it can be easily extended to consider several types of network protocols.

Chen [10] provide an overview on a DSMS prototype called T2 which inherits some of the

concepts of an early prototype, Tribeca, but with complete new design and implementation in

Java with an SQL-like query language. In [11], a data stream management system designed to be

applied in medical monitoring systems is presented. In this paper, developed theory and query

language is adapted to specific requirements of the signal processing in biophysical monitoring

systems

3. DATA STREAM MANAGEMENT SYSTEMS

The DSMSs focus on querying streams of data instead of the database. As mentioned in the

preceding sections, this causes some changes in the DSMSs’ architecture compared to the

previously mentioned list. Following, we compare the two systems’ design to show the

differences between them.

1. Instead of persistent relations, the DSMS aims to handle transient streams. This implies that

disk storage is not an issue; the data enters and leaves the system at possibly high rates. Though,

as this poses an architectural opposite to the DBMS, some DSMSs have integrated a DBMS as a

part of it. This opens for the possibility of joining between streams and tables, for instance.

Examples may be TelegraphCQ [12] and Stanford STREAM [13].

International Journal of Database Management Systems (IJDMS), Vol.3, No.2, May 2011

91

2. When the DBMSs access the data once for each query, the DSMS uses continuous queries,

which are queries that continuously obtain tuples from the streams.

3. Sequential access. Since the data arrives as a stream, the DSMS reviews the tuples as a linear

sequence, and does not have access to the data before or after the access interval. The DBMS data

is stored in a database, and the data can be randomly accessed by specifying which blocks to read.

In operations like aggregations and joins, this means that the DBMS blocks while performing

these operations. This is not possible over a linear stream of data. When operating over streams,

the DSMSs have to support windowing for blocking operators, which means that even though the

stream is infinite, calculations are performed on small partitions of the stream.

4. Since the DSMS does not generally aim to store tuples as they arrive in the system, it is bound

by the size of the available memory. This is also an issue with regard to disk I/O. As the streams

may arrive at high rates, expensive and time consuming disk I/O can not be allowed. This means,

as deducted in the description of the n-pass algorithms, that only one-pass algorithms can be used.

5. Due to optimizing, the DBMS has a set of rules that are introduced in the query rewriting

process. An example of an optimizing rule is to push projections as far as possible down to the

source, i.e., the database or the data stream. By doing this, less attributes are sent to the next

operators, hence reducing the load. These rules also play a role in the DSMS, but the DSMS

needs to adapt to the stream as well, by optimizing the query tree on the fly, or re-allocating

queue sizes.

6. The DSMS is pledged to compute data and deliver results within a deadline, i.e., a time-limit.

As data streams may arrive at high transfer rates, this may force the DSMS to throw away tuples

that it can not compute, because of factors such as too complex queries. Generally, this means

that not all the tuples may be computed, and that the DSMS has to support a set of approximation

algorithms that deliver results that e.g. give a sample of the discarded tuples. DBMSs can not

guarantee that the results - since they are required to be correct - will be displayed within a

deadline. Complex queries using relations of several Gigabytes may take hours to terminate in a

DBMS. The update rate also plays an important role in real-time processing. Compared to main

memory processing, the disk-based update rate is limited due to the relatively slow hard disk.

This means that the DSMS only gets the data from the network, performs computations on them,

and then deletes them, to make room for new tuples. One or more streams enter the system and

are processed by the query processor. State information might be sent between the input monitor

and the query processor to inform about e.g. stream characteristics, such that optimizing and

adaption may be performed. When the query operators are finished processing the tuples, the

result is sent to the output buffer.

Since data stream management has been a hot topic the last few years, several systems have been

developed. Some important ones are TelegraphCQ [12], Stanford STREAM [13], Aurora [14] and

Niagra [15].

4. STANFORD STREAM

STREAM is developed at the Stanford University, and is a general purpose DSMS that aims to

investigate resource sharing and adaptivity when for example several queries have common sub-

expressions. STREAM supports declarative continuous queries over two types of inputs: streams

and relations. A continuous query is simply a long-running query, which produces output in a

continuous fashion as the input arrives. The queries are expressed in a language called CQL [16].

The input types-streams and relations are defined using some ordered time domain, which may or

may not be related to wall-clock time.

International Journal of Database Management Systems (IJDMS), Vol.3, No.2, May 2011

92

Definition (Stream): A stream is a sequence of time stamped tuples. There could be more than

one tuple with the same timestamp. The tuples of an input stream are required to arrive at the

system in the order of increasing timestamps. A stream has an associated schema consisting of a

set of named attributes, and all tuples of the stream conform to the schema.

Definition (Relation): A relation is time-varying bag of tuples. Here “time" refers to an instant in

the time domain. Input relations are presented to the system as a sequence of timestamped updates

which capture how the relation changes over time. An update is either a tuple insertion or a tuple

deletion. The updates are required to arrive at the system in the order of increasing timestamps.

Like streams, relations have a fixed schema to which all tuples conform. The output of a CQL

query is a stream or relation depending on the query. The output is produced in a continuous

fashion as described below:

• If the output is a stream, the tuples of the stream are produced in the order of increasing

timestamps. The tuples with timestamp τ are produced once all the input stream tuples and

relation updates with timestamps ≤ τ have arrived.

• If the output is a relation, the relation is represented as a sequence of timestamped updates (just

like the input relations). The updates are produced in the order of increasing timestamps, and

updates with timestamp τ are produced once all input stream tuples and relation updates with

timestamps ≤ τ have arrived.

The STREAM architecture is made up of two broad components [17]:

1. Planning subsystem, which stores metadata and generates query plans, and

2. Execution engine, which executes the continuous queries.

STREAM currently does not support all the features of CQL. In this section, we mention the

important features omitted in the current implementation of STREAM that we found based on our

experiences with STREAM. The important omissions are:

1. Sub-queries are not allowed in the Where clause. For example the following query is not

supported:

Select * From S Where S.A in (Select R.A From R)

2. The Having clause is not supported, but Group By clause is supported. For example, the

following query is not supported:

Select A, SUM(B) From S Group By A Having MAX(B) > 50

3. Expressions in the Project clause involving aggregations are not supported. For example, the

query:

Select A, (MAX(B) + MIN(B))/2 From S Group By A is not supported. However, non-aggregated

attributes can participate in arbitrary arithmetic expressions in the project clause and the where

clause. For example, the following query is supported: Select (A + B)/2 From S Where (A - B) *

(A - B) > 25

4. Attributes can have one of four types: Integer, Float, Char(n), and Byte. Variable length strings

(Varchar(n)) are not supported.

5. Windows with the slide parameter are not supported.

International Journal of Database Management Systems (IJDMS), Vol.3, No.2, May 2011

93

6. The binary operations Union and Except is supported, but Intersect is not.

5. STATISTICAL ANALYSIS OF CONTINUOUS STREAMS

We have used Stanford STREAM Data Stream Management System to monitor and analyze data

streams from two application domains. In this section, we show and discuss results obtained.

5.1 Linear Road Benchmark Analysis

This section explains about the Linear Road Benchmark Analysis. We have taken a random data

(approximated to real-life scenario) & performed a trivial road-network analysis & information

retrieval on it. This domain is considered with the aim of providing useful information to the

Road Traffic Department such as issues pertaining to fluidity of the road, average speed on

segments of the road, tolling information & toll generation (based on traffic volume). The domain

was successfully implemented and we were able to extract useful information from a single

stream of incoming data. The input to the benchmark contains a "live" stream. We have

considered nine expressways, each divided into eight horizontal segments as shown in Figure 1.

The input stream is described below.

CarLocStr: Stream of car location reports. This forms primary input to the system.

 CarLocStr(car_id, /* unique car identifier */

 speed, /* speed of the car */

 exp_way, /* expressway: 0..8 */

 lane, /* lane: 0,1,2,3 */

 dir, /* direction: 0(east), 1(west) */

 x-pos /* coordinate (segment) in express way */)

Table 1 summarizes output of queries executed and the purpose for which they can be used by the

road traffic department. Figure 2 shows the STREAM’s GUI interface executing a query. Since

the data we have taken is not accurate so the results. But it serves our purpose to show the

STREAM’s ability to be used in this domain.

Table 1. Results and Conclusion of queries executed over CarLocStr Stream

Figure Information

Retrieved

Conclusion

Derived

Incoming and

Outgoing

Road Traffic

Help

determine

the number

of vehicles

on road

International Journal of Database Management Systems (IJDMS), Vol.3, No.2, May 2011

94

Number of

distinct cars

simultaneously

active during

the range

window of 30

seconds

Determines

the number

of different

vehicles on

road & helps

in

monitoring

the total

traffic

Number of

cars in

different

segments of

each

expressway

Helps in GPS

applications

like Tomtom

[18] that

helps in

determining

the best

possible

route for

travelling

Average speed

in different

segments

Helps in GPS

application

like

Jamdroid

[19] that

equate speed

with the

traffic on

segment

Figure 1. Each Expressway Divided into

Eight Segments

Figure 2. Hypothytical Layout

International Journal of Database Management Systems (IJDMS), Vol.3, No.2, May 2011

95

5.2 Habitat Monitoring Analysis

Researchers are deploying sensors in and around the nesting holes of birds on Great Duck Island

in order to collect detailed data for studying the nesting habits of these birds. The temperature,

humidity, barometric pressure, and infrared sensors that have been deployed relay readings to a

computer base station. The base station feeds the stream into a satellite link enabling researchers

to access the data in real-time over the Internet [20]. We have considered a random data set of a

forest area approximated to real life scenario. Entire forest area is divided into 15 locations, where

one sensor is installed per location. Figure 3 shows the hypothetical layout of the forest area. For

simplicity, we have assumed the sensor data to consist of only light intensity and temperature

recordings.

Sensors (Stream): Sensor motes measure light, temperature and produce a data stream with the

following schema.

Sensors (id /* unique identifier of the sensor */,

 location /* the location of the sensor */,

 light /* the current light reading */,

 temperature /* the current temperature reading */,

 timestamp /* time of measurement */);

Table 2 summarizes output of queries executed over the Sensors Stream and the purpose for

which they can be used by the forest department.

Table 2. Results and Conclusion of queries executed over Sensors Stream

Figure Information

retrieved

Conclusion

derived

Average

temperature of

the habitat

monitored

over 24 hrs

Helps us in

inferring

whether the area

is suitable for

particular

species

Average light

intensity for

different

locations

Helps us in

inferring

whether the area

is suitable for

particular

species

International Journal of Database Management Systems (IJDMS), Vol.3, No.2, May 2011

96

Average

temperature

for different

locations

Helps us in

finding the most

suited of all the

location for a

particular

species

Flow (in &

out) of animals

in the intervals

of 10 second

Monitoring the

habitat area in

terms of total

animals coming

in & going out

 Average

temperature at

which animals

are found

Useful for

biologist

researchers in

determining the

ideal breeding &

living

temperatures for

different

animals

6. CONCLUSION AND FUTURE WORK

The Stanford STRAM DSMS, which is appropriate for an envirnment with vast amount of

continouous stream data, is discussed and used in Road Traffic analysis and Habitat Monitoring

analysis. Based on our experiences with STREAM, we can easily say that it easily covered and

exceeded our expectations. Below is the list of advantages that we think make STREAM a

suitable applications in real life streaming applications:

• Not a single tuple was dropped (Tested till 20000 t/s): The fact that STREAM displays such

levels of robustness, easily makes it one of the best DSMS tools around. It also makes STREAM

highly suitable for extreme precision applications like Stock exchange streams, weather forecasts,

etc.

• Extremely accurate on aggregation operations: The error percentage in our working

environment varied from 0.125% to 0.025% thereby again portraying STREAM as an accurate

DSMS tool giving reliable output.

International Journal of Database Management Systems (IJDMS), Vol.3, No.2, May 2011

97

• Supports a sub-set of SQL queries that are easy to understand: As against ad-hoc development

& deployment of conventional stream handling tools, STREAM offers its user CQL which is easy

to use with users with previous SQL experience.

• GUI environment: Only DSMS tool identified by us which had GUI environment. This makes

STREAM user friendly & coupled with the fact that it is easier to install & deploy, certainly

makes it one of the better DSMS around.

• Generates query plans: This makes STREAM more user interactive & shows graphically the

relational model of the project.

• Based on client-server architecture: Many clients can simultaneously access the server

resources.

In spite of being quite useful for continuous stream management tasks, STREAM shows some

loopholes during our experiments. These are listed below:

• Robustness level drops severely when number of simultaneous queries increases to about 8 &

above: The system hangs frequently at registries with relations that are strongly dependent on

each other

• System crashes frequently on some aggregation operations like min, max. The support for these

aggregation operators is extremely limited.

• Requires conversion of data stream to text file before operation could be performed: Instant

operation on live streams is still not supported & hence real-time analysis could not be performed

on streaming data.

• System crashes on complex queries at high speed: System robustness drops severely at high

speed coupled with relations that are complex & related

• Tuple duplicity because of tuple redundancy: STREAM inputs the results at first and then exits

it at next interval. This fact introduces tuple redundancy as tuple accumulation occurs at time

when the tuple is not meant to be in the system.

• Supports only a small subset of SQL queries as discussed before.

Following improvements could be made in the STREAM DSMS:

1. STREAM could be made real time by taking streams as input rather than text files. Inputs

should be enabled to be taken from sensors

2. STREAM should support a wider range of SQL queries

3. Robustness levels should be increased & redundancy should be minimized. Tumbling window

support should be enabled.

4. Relations should be allowed to be formed at real time.

REFERENCES

[1] Chattaraj, Saumya Bansal, and AnirudhhaChandra. An intelligent traffic control system using rfid.

IEEE Potentials, 28(3):40–43, 2009

[2] Mohammed Qadeer, Nadeem Akhtar, Faraz Khan and Farid Haque, “Monitoring and Analysis of

Data Packets using Data Stream Management System”, ICCEE 2008, 20 - 22, December 2008,

Phuket Thailand

International Journal of Database Management Systems (IJDMS), Vol.3, No.2, May 2011

98

[3] Thomas Plagemann, Vera Goebel, Andrea Bergamini, Giacomo Tolu, Guillaume Urvoy-Keller and

Ernst W. Biersack, “Using Data Stream Management Systems for Traffic Analysis – A Case

Study”, Lecture Notes in Computer Science, 2004, Volume 3015/2004, 215-226

[4] Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S.,Seidman, G., Stonebraker, M.,

Tatbul, N., Zdonik, S.,:Monitiring Streams- A New Class of Data Management Applications

[5] G Hebrail, “Data Stream Management and Mining”, Book Chapter, Mining massive data sets for

security: advances in data mining, search, Social Networks and Text Mining, and their Applications

to Security, Volume 19, 2008, ISBN 978-1-60750-362-0

[6] T Plagemann, V Goebel, A Bergamini, G Tolu, G Urvoy-Keller, E W. Biersack, “Using Data

Stream Management Systems for Traffic Analysis- A Case Study –” Passive and Active Network

Measurement , Lecture Notes in Computer Science, 2004, Volume 3015/2004, 215-226, DOI:

10.1007/978-3-540-24668-8_22

[7] Nadeem Akhtar, Mohammed A Qadeer, Faraz Khan, Faridul Haque, “Data Stream Management

System: Tools for Live Stream Handling & their application on trivial Network Analysis

Problems”, International Conference on Innovations in Information Technology, 2008. IIT '08, 16-

18 Dec. 2008.

[8] Talel Abdessalem, Raja Chiky, Georges H´ebrail, Jean Louis Vitti, “Using Data Stream

Management Systems to analyze Electric Power Consumption Data”, Workshop on Data Stream

Analysis – San Leucio, Italy - March, 15-16, 2007

[9] Ligocki, N.P.; Hara, C.S.; Lyra, C., “A flexible network monitoring tool based on a data stream

management system”, IEEE symposium on computers and communications, 6-9 July 2008 (ISCC

2008)

[10] Chung-Min Chen, Hira Agrawal, Munir Cochinwala, David Rosenbluth, "Stream Query Processing

for Healthcare Bio-sensor Applications," icde, pp.791, 20th International Conference on Data

Engineering (ICDE'04), 2004

[11] Widera, M.; Wrobel, J.; Owczarek, A.; Matonia, A.; Jezewski, M.; “Data Management System

for Computer Aided Biophysical Monitoring ”, 27th Annual International Conference of the IEEE,

Engineering in Medicine and Biology Society (EMBC), 2005

[12] TelegraphCQ: http://telegraph.cs.berkeley.edu/, 2008

[13] Stanford STREAM website: http://wwwdb.stanford.edu/stream

[14] www.cs.brown.edu/research/aurora/

[15] http://datalab.cs.pdx.edu/niagara/

[16] Arasu, S. Babu and J. Widom. The CQL Continuous Query Language: Semantic Foundations and

Query Execution, VLDB Journal, 2005

[17] STREAM: The Stanford Stream Data Manager -User Guide and Design Document,

www.infolab.stanford.edu/stream/code/user.pdf

[18] www.tomtom.com

[19] Mohammed A Qadeer, Nadeem Akhtar, Faraz Khan, Etienne Baratte, “Improving Real-Time GPS

by incorporating TelegraphCQ in Jamdroid Architecture”, ISWPC 2009, 11-13 Feb 2009,

Melbourne, Australia

[20] http://infolab.stanford.edu/stream/sqr/birdmon.html#queryspecseng

International Journal of Database Management Systems (IJDMS), Vol.3, No.2, May 2011

99

Author

Nadeem Akhtar received his B. Tech and M.Tech degree in Computer Science

from Aligarh Muslim University, Aligarh, India. He is currently working as

Assistant Professor in the department of Computer Engineering, Aligarh Muslim

University. His research interests include Data Mining, Database Management

System and Operating Systems.

