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Abstract 

The major tasks in multiple query processing in multi database system are common operation or expression 

identification and global execution plan construction. Each query can have several alternative evaluation 

plans, each with a different set of tasks. Therefore the goal of multiple query processing is to choose the 

right set of plans for queries which minimizes the total execution time by performing common tasks only 

once. The objectives in the multiple query processing are to increase system throughput and decrease 

single query response time. I have   retrieved the alternate plans and the tasks, estimated cost of plans and 

heuristic function of alternate plans in multi database system by applying the genetic algorithm technique.  

 

Index Terms :  Plan , genes, query optimizer, query execution plan, dynamic programming 

 

1. Introduction 

Database users may not need only their own data, but also data in other databases to solve a 

specific problem. Data may reside in different databases for many reasons such as ownership, 

security classification, performance or size. Data may be stored redundantly in different 

computers for reliability or survivability. In addition , hardware or software upgrades may create 

a need for integrated access to both old and new databases or for a tool to aid data migration from 

old to a new system. The multiple query processing is generally considered based on the 

functional dependency among the fragment attribute, the aggregate attribute, and the group by 

attribute.  The main problem of multiple queries processing is the query redundancies produced 

by the different queries. The method of multiple queries processing realizes multiple queries 

optimization through identifying and eliminating the query redundancies among multiple queries. 

Before query processing can be undertaken, the query processor must translate the query into a 

suitable internal representation. In a relational database all information can be found in a series of 

tables. The most common queries are select-project-join queries . 
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A query optimizer selects among the many alternative query execution plans (QEPs), the one 

with the least estimated execution cost, according to a given cost function. The objective 

functions of query optimization may take many different forms. One may try to find a query 

evaluation plan that optimizes the most relevant performance measures, such as the response 

time, CPU, I/O, and network time and efforts, memory or storage costs, resources usage (e.g. 

energy consumption for battery-powered mobile systems), a combination of the above, or some 

other performance measures.  

 

Traditional query optimizers expect to deal with queries involving only a small number of 

relations, usually requiring less than 10 join operations and therefore have relied on the use of 

enumerative optimization strategies (e.g. dynamic programming) that consider most of the 

alternatives if not all. Dynamic programming (as well as other enumerative optimization 

techniques) finds an optimal plan.  

 

2.Review of Literature 

V Raman, V Markl, D. Simmen et.al[1] have discussed in their paper that  the optimizer adjusts 

the plan based on feedback from runtime environment. This technique adds CHECK-points in the 

query plans. While executing the plan, when the checkpoint is reached, the estimated cardinalities 

are checked against the actual run-time cardinalities. If the check fails, the plan is re-optimized 

based on actual cardinalities .  

Markl, Raman, Simmen et.al[2] have discussed in their paper that queries are optimized at 

compilation time. By the time the program is invoked and the plan is used the database state may 

change. This change in state may render the plan infeasible when some tables or indices 

referenced in the plan are deleted or there were bulk-loads which changes the data distributions.  

 T.Sellis et.al [4] have used  a heuristic algorithm which performs a search over some state space 

defined over access plans. The search space is constructed by defining one state for each possible 

combination of plans among the queries. 

 S.Babu et.al[5] have elaborated in their paper that   multi database systems use a query optimizer 

to identify the most efficient strategy called plan to execute declarative queries. Query optimizers 

often make poor decisions because their compile time cost models use inaccurate estimates of 

various parameters. 

Mishra Sambit Kumar et.al[7] have discussed in their paper that  the first step to represent this 

problem as a genetic algorithm problem is determining the chromosome , genetic algorithm 

operators and fitness function. For the crossover, one point in the selected chromosome would be 

selected along with a corresponding point in another chromosome and then the tails would be 

exchanged. Mutation process causes some bits to invert and produces some new information. The 

only problem of mutation is that it may cause some useful information to be corrupted. Therefore 

the best individual is used to proceed forward to the next generation without undergoing any 

change to keep the best information. Defining fitness function is one of the most important steps 
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in designing a genetic algorithm based method, which can guide the search toward the best 

solution. 

Falout C.Barber et.al [6] have evaluated the cost function in task allocation which is the  sum of 

inter processor communication and processing cost and found that they  are actually different in 

measurement unit.  

 

Lynda Tamine et.al [8] have discussed in their paper that the  idea of combining multiple 

representations of either queries or texts using different retrieval techniques is in order to improve 

the retrieval performance. The whole process of query evaluation is based on both general genetic 

optimization methodology and relevance feedback technique. 

 

L Amsaleg et.al[3]have discussed in their paper that  in large-scale systems, many queries can run 

for a very long time. As a result, there is interest in allowing users to control properties of queries 

while execution.With the advent of internet and distributed systems there is heterogeneity in the 

types of data sources that a DBMS is supposed to handle e.g. locally stored tables, data streams, 

sensor networks etc. This poses various challenges like different data rates, unknown statistics 

about data, and variation in the distribution of data leading to change in the selectivities of 

operators, delayed data sources. 

 

3.Query Optimization challenges  
 
The key constituents of the query evaluation component of an SQL database system are the query 

optimizer and the query execution engine. One aspect of optimization is where the system 

attempts to find an expression equivalent to the given expression, but more efficient to execute. 

 

Another aspect is selecting a detailed strategy for processing the query. The task of an optimizer 

is computationally challenging since, for a given SQL query there can be a large number of 

possible execution plans – specifically, for a query with n base relations, the number of plans in 

the strategy space is at least O(n!). When queries are optimized at the time they are submitted by 

the user, the selection process can add a substantial overhead to the execution time of the query. 

 

4.Efficient selection strategies 

For the cost-based optimizers,  the use of dynamic programming to efficiently find a good plan 

was proposed. The dynamic programming approach is based on the assumption of the principle of 

optimality , which states that the optimal solution to a problem is a combination of optimal 

solutions to its sub problems. While dynamic programming (DP) works very well for moderately 

complex queries with up to around a dozen base relations, it usually fails to scale beyond this 

stage in current systems due to its inherent exponential space and time complexity. Therefore, DP 

becomes practically infeasible for complex queries with a large number of base relations. 

 

The goal here is to a priori identify the parametric optimal set of plans for the entire parameter 

space at compile time , and subsequently to use at run time the actual parameter settings to 

identify the best plan – the expectation is that this would be much faster than optimizing the 

query from scratch.  
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5.Runtime refinement of plan choices  

Query optimizers often make poor decisions because their compile-time cost models use 

inaccurate estimates of various parameters. There have been several efforts in the past to address 

this issue, which can be categorized as – strategies that make decisions at the start of query 

execution and strategies that make decisions during query execution. 

The following strategies are essential during query execution. 

 

1. Perform query optimization just before query execution. This method is not very efficient,  

especially if the query is executed repeatedly. 

2. Find the best execution plan for all possible values of the parameters and lookup the best plan 

for the current parameter values at runtime . 

3. Perform part of the optimization at compile time and defer any decisions that are affected by 

the parameter values to execution time 

6.Genetic Algorithm Procedure 

The genetic algorithm starts with an initial population which is usually chosen at random and 

contains a wide variety of numbers. Each solution is evaluated according to an evaluation 

function. The population evolves from one generation to the next through the application of 

genetic operators, i.e. selection , crossover, and mutation. During selection operation, members of 

the population are selected in pairs to produce new possible solutions. The fitter a member of the 

population , the more likely it is to produce offspring. Crossover operator is then used to result in 

offspring inheriting properties from both parents. The offspring is evaluated and placed in the 

next population, possibly replacing weaker members of the last generation. Crossover operator is 

applied with a certain probability , crossover rate. Mutation operator is used to allow further 

variation of offspring. Mutation operator is also applied with a certain probability  , mutation rate. 

The length of chromosome is equal to the number of operations in the query tree. Each integer at 

the particular position in chromosome represents the position selected for a particular operation. 

The initial population is generated by using a random number between one and the number of 

sites from the uniform distribution . The fitness of each individual member in the population is 

the parameter to query execution cost. Genetic algorithm keeps track of the best fitness 

chromosome in the population. 

 

7.Problem Formulation 

 
Individual plan is represented as chromosome and individual task in a plan is represented as gene. 

Since a gene in a chromosome represents the plan selected for the query corresponding to the 

gene position, in the mutation operation the plan number is only replaced with randomly selected 

valid plan’s number for that query. Therefore a mutation operation always generates valid 

solutions. 
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8.Function Evaluation & Algorithm 

total_generation=50 

relation=50 

querysize=20 

plan_chrom=7 

crossover_pc=0.07 

mutation_pm=0.001 

sum_plan=0; 

sum_plan1=0; 

fitness_plan=0; 

for i=1: querysize 

planselect(i)=plan(i)/querysize*plan_chrom; 

real_cost(i)=planselect(i)/querysize+cputime; 

est_cost(i)=real_cost(i)/querysize; 

sum_plan1=sum_plan1+real_cost(i); 

weight(i)=(plan(i)*querysize)/querysize-plan(i)); 

fitness(i)=1+((querysize*weight(i))/((weight(i)^2)+querysize^2)); 

fitness_plan=fitness_plan+fitness(i); 

selection_plan(i)=fitness(i)/fitness_plan; 

sum_plan=sum_plan+planselect(i); 

end 

average_association_ degree_coefficient between plans= sum_plan/(relation*querysize); 

averagesum=sum_plan/querysize; 

heuristic function, fsk_est=  

sum_plan1+min_est_cost; 
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for i=1 : querysize 

if(averagesum > est_cost(i)) 

genevalue(i)=( averagesum-(real_cost(i))+(est_cost(i)); 

else 

genevalue(i)=(real_cost(i)-averagesum)+ est_cost(i)); 

end 

end 

 

Table –I 

Plan Est_cost Real_cost Gene_val Fitness 

10 0.018219 0.36438 0.020669 1.5 

18 0.018419 0.36838 0.016869 1.1098 

26 0.018619 0.37238 0.013069 0.7809 

25 0.018594 0.37188 0.013544 0.80769 

15 0.018344 0.36688 0.018294 1.3 

3 0.018044 0.36088 0.023994 1.1711 

5 0.018094 0.36188 0.023044 1.3 

24 0.018569 0.37138 0.014019 0.83784 

7 0.018144 0.36288 0.022094 1.4174 

28 0.018669 0.37338 0.012119 0.73585 

17 0.018394 0.36788 0.017344 1.1711 

19 0.018444 0.36888 0.016394 1.0525 

4 0.018069 0.36138 0.023519 1.2353 

 

Average association degree coefficient=0.07397 

Heuristic function of alternate plan, fsk_est=7.3545 
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Figures : 

Figure-1 : Est_cost 

 

 
Plan 

Figure-2 : Fitness 
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Figure-3 : Genevalue 
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Figure-4 : Real_cost 
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9.Conclusion 

Clearly original multi query processing  problem in multi database will be NP-hard if the above 

decision problem is NP-Complete. It is easy to see that multiple query processing belongs to NP 

since a nondeterministic algorithm needs only guess one plan for each query and check whether 

the cost of the global access plan obtained by merging the guessed local access plans is less than 

or equal to combining the access plans can be easily done in polynomial time and therefore the 

checking steps takes only polynomial time. 

 
Each query  has  a number of possible solution plans , and each plan of a query contains a set of 

tasks, which when executed in a certain order and produce the answer for the query. Each task 

also has an associated cost , and for convenience the cost value is represented by a positive 

integer number. Alternative plans of a query , and other queries in the query set  , may contain the 
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same task. Therefore it is required  to determine a set of tasks,  with minimal total cost  that 

contains all the tasks of at least one plan of each query. 
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