
International Journal of Database Management Systems (IJDMS), Vol.3, No.3, August 2011

DOI: 10.5121/ijdms.2011.3307 78

Evaluation of gene value and heuristic function of
alternate plans in multi database system using

Genetic Algorithm

1
Sambit Kumar Mishra and

2
Prof.(Dr) Srikanta Pattnaik

1
Associate Professor, Dept. of CS & ENGG, Ajay Binay Institute of Technology, Cuttack

2
Professor, Dept. of CS & ENGG, S.O.A. University, Bhubaneswar

Abstract

The major tasks in multiple query processing in multi database system are common operation or expression

identification and global execution plan construction. Each query can have several alternative evaluation

plans, each with a different set of tasks. Therefore the goal of multiple query processing is to choose the

right set of plans for queries which minimizes the total execution time by performing common tasks only

once. The objectives in the multiple query processing are to increase system throughput and decrease

single query response time. I have retrieved the alternate plans and the tasks, estimated cost of plans and

heuristic function of alternate plans in multi database system by applying the genetic algorithm technique.

Index Terms : Plan , genes, query optimizer, query execution plan, dynamic programming

1. Introduction

Database users may not need only their own data, but also data in other databases to solve a

specific problem. Data may reside in different databases for many reasons such as ownership,

security classification, performance or size. Data may be stored redundantly in different

computers for reliability or survivability. In addition , hardware or software upgrades may create

a need for integrated access to both old and new databases or for a tool to aid data migration from

old to a new system. The multiple query processing is generally considered based on the

functional dependency among the fragment attribute, the aggregate attribute, and the group by

attribute. The main problem of multiple queries processing is the query redundancies produced

by the different queries. The method of multiple queries processing realizes multiple queries

optimization through identifying and eliminating the query redundancies among multiple queries.

Before query processing can be undertaken, the query processor must translate the query into a

suitable internal representation. In a relational database all information can be found in a series of

tables. The most common queries are select-project-join queries .

International Journal of Database Management Systems (IJDMS), Vol.3, No.3, August 2011

79

A query optimizer selects among the many alternative query execution plans (QEPs), the one

with the least estimated execution cost, according to a given cost function. The objective

functions of query optimization may take many different forms. One may try to find a query

evaluation plan that optimizes the most relevant performance measures, such as the response

time, CPU, I/O, and network time and efforts, memory or storage costs, resources usage (e.g.

energy consumption for battery-powered mobile systems), a combination of the above, or some

other performance measures.

Traditional query optimizers expect to deal with queries involving only a small number of

relations, usually requiring less than 10 join operations and therefore have relied on the use of

enumerative optimization strategies (e.g. dynamic programming) that consider most of the

alternatives if not all. Dynamic programming (as well as other enumerative optimization

techniques) finds an optimal plan.

2.Review of Literature

V Raman, V Markl, D. Simmen et.al[1] have discussed in their paper that the optimizer adjusts

the plan based on feedback from runtime environment. This technique adds CHECK-points in the

query plans. While executing the plan, when the checkpoint is reached, the estimated cardinalities

are checked against the actual run-time cardinalities. If the check fails, the plan is re-optimized

based on actual cardinalities .

Markl, Raman, Simmen et.al[2] have discussed in their paper that queries are optimized at

compilation time. By the time the program is invoked and the plan is used the database state may

change. This change in state may render the plan infeasible when some tables or indices

referenced in the plan are deleted or there were bulk-loads which changes the data distributions.

 T.Sellis et.al [4] have used a heuristic algorithm which performs a search over some state space

defined over access plans. The search space is constructed by defining one state for each possible

combination of plans among the queries.

 S.Babu et.al[5] have elaborated in their paper that multi database systems use a query optimizer

to identify the most efficient strategy called plan to execute declarative queries. Query optimizers

often make poor decisions because their compile time cost models use inaccurate estimates of

various parameters.

Mishra Sambit Kumar et.al[7] have discussed in their paper that the first step to represent this

problem as a genetic algorithm problem is determining the chromosome , genetic algorithm

operators and fitness function. For the crossover, one point in the selected chromosome would be

selected along with a corresponding point in another chromosome and then the tails would be

exchanged. Mutation process causes some bits to invert and produces some new information. The

only problem of mutation is that it may cause some useful information to be corrupted. Therefore

the best individual is used to proceed forward to the next generation without undergoing any

change to keep the best information. Defining fitness function is one of the most important steps

International Journal of Database Management Systems (IJDMS), Vol.3, No.3, August 2011

80

in designing a genetic algorithm based method, which can guide the search toward the best

solution.

Falout C.Barber et.al [6] have evaluated the cost function in task allocation which is the sum of

inter processor communication and processing cost and found that they are actually different in

measurement unit.

Lynda Tamine et.al [8] have discussed in their paper that the idea of combining multiple

representations of either queries or texts using different retrieval techniques is in order to improve

the retrieval performance. The whole process of query evaluation is based on both general genetic

optimization methodology and relevance feedback technique.

L Amsaleg et.al[3]have discussed in their paper that in large-scale systems, many queries can run

for a very long time. As a result, there is interest in allowing users to control properties of queries

while execution.With the advent of internet and distributed systems there is heterogeneity in the

types of data sources that a DBMS is supposed to handle e.g. locally stored tables, data streams,

sensor networks etc. This poses various challenges like different data rates, unknown statistics

about data, and variation in the distribution of data leading to change in the selectivities of

operators, delayed data sources.

3.Query Optimization challenges

The key constituents of the query evaluation component of an SQL database system are the query

optimizer and the query execution engine. One aspect of optimization is where the system

attempts to find an expression equivalent to the given expression, but more efficient to execute.

Another aspect is selecting a detailed strategy for processing the query. The task of an optimizer

is computationally challenging since, for a given SQL query there can be a large number of

possible execution plans – specifically, for a query with n base relations, the number of plans in

the strategy space is at least O(n!). When queries are optimized at the time they are submitted by

the user, the selection process can add a substantial overhead to the execution time of the query.

4.Efficient selection strategies

For the cost-based optimizers, the use of dynamic programming to efficiently find a good plan

was proposed. The dynamic programming approach is based on the assumption of the principle of

optimality , which states that the optimal solution to a problem is a combination of optimal

solutions to its sub problems. While dynamic programming (DP) works very well for moderately

complex queries with up to around a dozen base relations, it usually fails to scale beyond this

stage in current systems due to its inherent exponential space and time complexity. Therefore, DP

becomes practically infeasible for complex queries with a large number of base relations.

The goal here is to a priori identify the parametric optimal set of plans for the entire parameter

space at compile time , and subsequently to use at run time the actual parameter settings to

identify the best plan – the expectation is that this would be much faster than optimizing the

query from scratch.

International Journal of Database Management Systems (IJDMS), Vol.3, No.3, August 2011

81

5.Runtime refinement of plan choices

Query optimizers often make poor decisions because their compile-time cost models use

inaccurate estimates of various parameters. There have been several efforts in the past to address

this issue, which can be categorized as – strategies that make decisions at the start of query

execution and strategies that make decisions during query execution.

The following strategies are essential during query execution.

1. Perform query optimization just before query execution. This method is not very efficient,

especially if the query is executed repeatedly.

2. Find the best execution plan for all possible values of the parameters and lookup the best plan

for the current parameter values at runtime .

3. Perform part of the optimization at compile time and defer any decisions that are affected by

the parameter values to execution time

6.Genetic Algorithm Procedure

The genetic algorithm starts with an initial population which is usually chosen at random and

contains a wide variety of numbers. Each solution is evaluated according to an evaluation

function. The population evolves from one generation to the next through the application of

genetic operators, i.e. selection , crossover, and mutation. During selection operation, members of

the population are selected in pairs to produce new possible solutions. The fitter a member of the

population , the more likely it is to produce offspring. Crossover operator is then used to result in

offspring inheriting properties from both parents. The offspring is evaluated and placed in the

next population, possibly replacing weaker members of the last generation. Crossover operator is

applied with a certain probability , crossover rate. Mutation operator is used to allow further

variation of offspring. Mutation operator is also applied with a certain probability , mutation rate.

The length of chromosome is equal to the number of operations in the query tree. Each integer at

the particular position in chromosome represents the position selected for a particular operation.

The initial population is generated by using a random number between one and the number of

sites from the uniform distribution . The fitness of each individual member in the population is

the parameter to query execution cost. Genetic algorithm keeps track of the best fitness

chromosome in the population.

7.Problem Formulation

Individual plan is represented as chromosome and individual task in a plan is represented as gene.

Since a gene in a chromosome represents the plan selected for the query corresponding to the

gene position, in the mutation operation the plan number is only replaced with randomly selected

valid plan’s number for that query. Therefore a mutation operation always generates valid

solutions.

International Journal of Database Management Systems (IJDMS), Vol.3, No.3, August 2011

82

8.Function Evaluation & Algorithm

total_generation=50

relation=50

querysize=20

plan_chrom=7

crossover_pc=0.07

mutation_pm=0.001

sum_plan=0;

sum_plan1=0;

fitness_plan=0;

for i=1: querysize

planselect(i)=plan(i)/querysize*plan_chrom;

real_cost(i)=planselect(i)/querysize+cputime;

est_cost(i)=real_cost(i)/querysize;

sum_plan1=sum_plan1+real_cost(i);

weight(i)=(plan(i)*querysize)/querysize-plan(i));

fitness(i)=1+((querysize*weight(i))/((weight(i)^2)+querysize^2));

fitness_plan=fitness_plan+fitness(i);

selection_plan(i)=fitness(i)/fitness_plan;

sum_plan=sum_plan+planselect(i);

end

average_association_ degree_coefficient between plans= sum_plan/(relation*querysize);

averagesum=sum_plan/querysize;

heuristic function, fsk_est=

sum_plan1+min_est_cost;

International Journal of Database Management Systems (IJDMS), Vol.3, No.3, August 2011

83

for i=1 : querysize

if(averagesum > est_cost(i))

genevalue(i)=(averagesum-(real_cost(i))+(est_cost(i));

else

genevalue(i)=(real_cost(i)-averagesum)+ est_cost(i));

end

end

Table –I

Plan Est_cost Real_cost Gene_val Fitness

10 0.018219 0.36438 0.020669 1.5

18 0.018419 0.36838 0.016869 1.1098

26 0.018619 0.37238 0.013069 0.7809

25 0.018594 0.37188 0.013544 0.80769

15 0.018344 0.36688 0.018294 1.3

3 0.018044 0.36088 0.023994 1.1711

5 0.018094 0.36188 0.023044 1.3

24 0.018569 0.37138 0.014019 0.83784

7 0.018144 0.36288 0.022094 1.4174

28 0.018669 0.37338 0.012119 0.73585

17 0.018394 0.36788 0.017344 1.1711

19 0.018444 0.36888 0.016394 1.0525

4 0.018069 0.36138 0.023519 1.2353

Average association degree coefficient=0.07397

Heuristic function of alternate plan, fsk_est=7.3545

International Journal of Database Management Systems (IJDMS), Vol.3, No.3, August 2011

84

Figures :

Figure-1 : Est_cost

Plan

Figure-2 : Fitness

Plan

0 5 10 15 20 25 30
0.018

0.019

0.02

0.021

0.022

0.023

0.024

0.025

0 5 10 15 20 25 30 35

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

International Journal of Database Management Systems (IJDMS), Vol.3, No.3, August 2011

85

Figure-3 : Genevalue

Plan

Figure-4 : Real_cost

Plan

9.Conclusion

Clearly original multi query processing problem in multi database will be NP-hard if the above

decision problem is NP-Complete. It is easy to see that multiple query processing belongs to NP

since a nondeterministic algorithm needs only guess one plan for each query and check whether

the cost of the global access plan obtained by merging the guessed local access plans is less than

or equal to combining the access plans can be easily done in polynomial time and therefore the

checking steps takes only polynomial time.

Each query has a number of possible solution plans , and each plan of a query contains a set of

tasks, which when executed in a certain order and produce the answer for the query. Each task

also has an associated cost , and for convenience the cost value is represented by a positive

integer number. Alternative plans of a query , and other queries in the query set , may contain the

0 5 10 15 20 25 30 35
0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0 5 10 15 20 25 30
0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

International Journal of Database Management Systems (IJDMS), Vol.3, No.3, August 2011

86

same task. Therefore it is required to determine a set of tasks, with minimal total cost that

contains all the tasks of at least one plan of each query.

Reference :

[1] V Raman, V Markl, D. Simmen, G. Lohman, Demo,Progressive Optimization in Action, VLDB-

2004

[2] Markl, Raman, Simmen, Lohman ,Robust Query Processing through Progressive Optimization,

SIGMOD-04

[3] L Amsaleg, M Franklin, A Tomasic, T Urhan, Scrambling Query Plans to CopeWith Unexpected

Delays, 4th International Conference on Parallel and Distributed Information Systems (PDIS-1996).

[4] Sellis, ”Multiplequery optimization”,IEEE transactions on knowledge and data Engineering , Vol-2,

June-1990.

[5] Shivnath Babu , Pedro Bizarro , David DeWitt, proactive re-optimization with Rio, SIGMOD-2005.

[6] Falout C, Barber, R.Flicker.M, Journal of intelligent Information Systems 2000.

[7] Mishra Sambit Kumar , Pattnaik Srikanta(Dr.),retrieval of average sum of plans and degree

coefficient between genes in distributed query processing November -2010,IJCSI –Vol-7, Issue-6 ,

pp -337-342.

 [8] Lynda Tamine , Claude Chrisment , Mohand Boughanem , University of Toulouse, France , IPM-

2003.

[9] Alfons Kemper , Christian Wiesner ,Dynamic Distributed query processing “Proceedings VLDB

Conference ,Rome,Italy2003.

[10] Murat Ali Bayir, Ismail H.Toroslu , and Ahmet Cosar , “Genetic algorithm for the multiple query

optimization problem”, IEEE transactions on Systems , Vol-37, No.1, January 2007.

[11] Zehai Zhou , Department of FACIS, University of Houston , USA, Journal of Information of

Computing science vol-2, No.4, 2007.

[12] Bindu M.Hima , Department of Computer Sc., JIIT , Chennai , International Journal of Computer

Science Issues , Vol-2, Issue-5, June-2007.

