
International Journal of Database Management Systems (IJDMS) Vol.3, No.4, November 2011

DOI: 10.5121/ijdms.2011.3411 147

CONCURRENCY CONTROL IN MOBILE

ENVIRONMENTS: ISSUES & CHALLENGES

Salman Abdul Moiz
1
, Supriya N.Pal

2
, Jitendra Kumar3, Lavanya P

4
, Deepak

Chandra Joshi
5
, Venkataswamy G

6

1
Research Scientist, Centre for Development of Advanced Computing, Bangalore

Salman.abdul.moiz@ieee.org
2
Associate Director, Centre for Development of Advanced Computing, Bangalore

supriya@cdac.in
3
Senior Staff Scientist, Centre for Development of Advanced Computing, Bangalore

jitendra@cdac.in
4, 5, 6

 Staff Scientist, Centre for Development of Advanced Computing, Bangalore
(lavanya, deepak, venkataswamy)@cdac.in

ABSTRACT

The use of data services from handheld devices has increased exponentially resulting in several challenges.

Transactions requiring the same shared data item may simultaneously perform a write operation leading to

inconsistency of data items. The generic characteristics of mobile environments like variable bandwidth,

disconnections, mobility etc makes transaction management more difficult thereby the traditional Isolation

property may not be guaranteed. This paper analyzes and compares various concurrency control strategies

in mobile environments proposed in literature. The design requirement for preserving isolation property in

mobile environments is also presented.

KEYWORDS

Concurrency Control, Pessimistic Strategy, Optimistic Strategy, Mobile Host, Fixed Host, ACID.

1. INTRODUCTION

Transactions are key to structuring distributed applications. Concurrency control is one of the

important building blocks of transaction management. The requirement of concurrency control

arose to ensure correctness when shared data item is updated by multiple transactions at the same

time. The traditional two phase locking protocol is not suitable in mobile database environment

due to frequent mobility and disconnections.

Further to manage the data correctly, the support of ACID (Atomicity, Consistency, Isolation &

Durability) properties of transaction should be revisited with respect to the characteristics of

mobile database environment. Atomicity is guaranteed by the commit protocols, Consistency is

assured by DBMS or application programs if it can ensure certain specified constraints, Isolation

is guaranteed by concurrency control manager and Durability is ensured by logging.

 Transaction management is characterized by the environment in which transaction gets executed.

In the first group the transaction are completely or partially executed at mobile host. In this group

the focus is on support of ACID properties. In the second group, transactions initiated at mobile

International Journal of Database Management Systems (IJDMS) Vol.3, No.4, November 2011

148

hosts are executed at fixed host. In this group ACID properties are not compromised and the

focus is on support of executing transactions successfully in presence of mobility and

disconnections [1].

The remaining part of this paper is organized as follows: Section -2 describes the architecture of

mobile database system, execution modes in mobile environments and the need of mobile

middleware and its architecture. Section -3 presents the concurrent access anomalies and the lists

the challenges in achieving Isolation property in mobile environments. Section-4 presents the

pessimistic strategies for concurrency control in mobile environments and along with issues and

challenges. Section -5 describes the optimistic strategies in mobile environments followed by

issues and challenges and Section -6 concludes the paper.

2. MOBILE DATABASE ENVIRONMENT

The following figure describes the reference architecture of Mobile Database System. It

resembles C&C (Component & Connector) view style architecture.

Figure 1. Reference architecture of Mobile Database System

The Mobile database system consists of two major components and two major connectors. The

two components are Mobile Host and Fixed Host respectively and the two connectors are

Wireless and Wired Networks.

Terminals, desktops, servers are the Fixed Host which are interconnected by means of a fixed

network. Large databases can run on servers that guarantee efficient processing and reliable

storage of database [1].

 Mobile Hosts (MH) like Palmtops, Laptops, PDA’s or Cellular phones is not always connected

to the fixed network [1]. They may be disconnected for different reasons. Mobile host may differ

with respect to the computing power and storage space; however MH can perform database

transactions. The disconnections may be soft or hard. Hence disconnections are handled as

normal situations and not as failures.

International Journal of Database Management Systems (IJDMS) Vol.3, No.4, November 2011

149

Advances in wireless technology and ubiquitous computing have created a new domain called

mobile computing, where the users access the data irrespective of their physical location and

movement behavior. The wireless technology provides users to logically retain the network

connection even when there is a handoff i.e. when the mobile host is moving from one location to

another. The geographical area covered by a base station is called a cell. Every time the mobile

host communicates with the base station of the cell it belongs to. The process of entering new cell

is said to be a handoff or handover.

2.1. Execution Modes

The transactions are initiated at mobile host but may be executed on mobile host or fixed host or

the execution may be distributed between mobile host & fixed host [1] respectively.

• Complete Execution on the Fixed Network

In this execution mode, the transaction is initiated at mobile host but is completed executed at

fixed network. In this model, the mobile host acts as a thin client.

• Complete Execution on a MH

In this mode, transactions are initiated at mobile host and are executed on mobile host. This

approach requires mobile hosts to have processing & storage capabilities as well as managing

data. However reconciliation is needed with the fixed host at some point in time.

• Distributed Execution on a MH and the Wired Network

In this mode, transactions are initiated at mobile hosts and the execution is distributed among

mobile host and fixed host. A sub-transaction is executed at mobile host and another one at

fixed host. This helps in minimizing the communication between the fixed host and mobile

hosts respectively.

• Distributed Execution among several MHs

In this mode, the transaction is distributed among several mobile hosts for execution. It

provides a peer-peer strategy. A mobile host acts as a server for other mobile hosts so that the

execution is distributed between them. The selection of a mobile host for execution of a

transaction is location based.

• Distributed Execution among MHs and FHs

This mode provides a fully distributed environment where a transaction execution is

distributed among several mobile hosts and fixed hosts respectively. In this transaction

execution, multiple parties may be involved. For example a customer who wishes to purchase

products may connect to the supermarket and as well as bank and finally the results are to be

reconciled successfully on individual fixed hosts.

2.2. Mobile Middleware

Mobile Middleware is software that acts as an interface between the Mobile host and wired fixed

host. The functions of Mobile Middleware are

• It must deliver the information precisely to the right place irrespective of mobility,

disconnections, interface constraints etc.,

• It has to enable deployment of a standardized mobile application on mobile devices

with varied operating systems, screen sizes etc.

• Need to secure data on devices rather than just securing data communications

Figure 2 depicts the typical mobile middleware architecture. It resembles three-tier architecture

and has to support cross platform characteristics. This is because the mobile devices works on

International Journal of Database Management Systems (IJDMS) Vol.3, No.4, November 2011

150

different platforms and operating systems and the applications need to be accessed from any of

the devices.

Mobile middleware communicates with the fixed host on behalf of the mobile hosts. The mobile

middleware also helps in providing location transparency thereby reducing the overhead of hard

coding the applications on mobile devices.

Figure 2. Mobile Middleware Architecture

The mobile middleware helps in managing transactions, providing middleware security and

support for cross platform implementation. The Cross platform middleware helps in supporting

wide range of mobile applications.

 It also provides Device flexibility & Application flexibility. The transaction management in

mobile environments can be implemented on the mobile middleware. The data synchronization

strategies can be realized by mobile middleware.

3. CONCURRENT ACCESS ANOMALIES IN MOBILE ENVIRONMENTS

When multiple mobile hosts request for same data items, it may lead to concurrent access

anomalies. To preserve Isolation property pessimistic and optimistic strategies are proposed in

literature.

In a pessimistic strategy, the traditional database uses locking protocol to overcome the problems

of concurrent access. These protocols are not suitable for preserving consistency in presence of

concurrent access of mobile hosts. A transaction initiated at a mobile host locks the required data

items. If another mobile host requires the same data item it needs to wait till the mobile that

requested the resource first unlocks the data item. If the mobile host doesn’t commit the

transaction, the second mobile host waiting in a queue has to wait for invariant time. This leads to

starvation. Further as the disconnections are treated as normal behaviour in mobile environments,

developing an efficient concurrency control strategy is a challenging problem.

In an optimistic strategy, whenever multiple sites request for same data items, they are allowed to

read the data item thus tolerating conflicts to occur. However at the time of global commit,

conflict resolution strategy is applied to get back the system into consistent state. In mobile

International Journal of Database Management Systems (IJDMS) Vol.3, No.4, November 2011

151

database environment, the global commit operation may increase the uplink bandwidth as the

mobile host has to initiate the transactions again and again.

4. PESSIMISTIC STRATEGIES IN MOBILE ENVIRONMENT

Pessimistic strategy works on the following principle

“Don’t allow any transaction to use the same shared data item, unless it is completed”.

In Pessimistic strategy, the data items needed for executing a transaction are locked. Once the

transaction is successfully completed, it is unlocked then the data items can be used by the

transaction waiting in queue.

Since disconnections are normal in mobile environments, a mobile host may lock the data item

and may not release the locks invariantly. To overcome the problem of starvation, each

transaction is associated with a timer. If the results of the offline transactions are not reconciled

within a stipulated timer period, the transaction may be aborted and the data items are acquired by

waiting transaction.

Pessimistic strategies such as Two Phase Locking (2PL) require frequent message exchanges with

fixed hosts [2]. This reduces the throughput of the system. Further unpredictable disconnections

may also lead to undefined locking time.

4.1 Distributed High Priority Two Phase Locking (DHP-2L) Protocol

DHP-2L [3] is a distributed real time locking protocol based on high priority two phase locking

(HP-2PL) to achieve concurrency control in mobile environments. Conventional concurrency

protocols schedule transactions on equal basis. However, the HP-2PL [4] restarts a lower priority

transaction if a higher priority transaction wants to set a lock which is held by higher priority

transaction.

A transaction is said to be local if it access data items available at only one base station.

Otherwise it is a global transaction. DHP-2PL is a blocking protocol that resolves lock conflicts

based on the priority of the transactions. Let Tr represents the lock requesting transaction and Th

the lock holding transaction, the following table specified the process of resolving lock conflicts

in DHP-2PL.

Table 1. Lock Conflict resolution in DHP-2PL [3]

 Lock Conflict (Tr, Th)

 Begin

 If Priority(Tr) > Priority(Th)

 If Th is not committing

 If Th is a local transaction

 Restart Th locally

Else

 Restart Th globally

 End if

 Else

 Block Tr until Th releases the lock

 Priority(Th):= Priority(Tr) + fixed priority level

International Journal of Database Management Systems (IJDMS) Vol.3, No.4, November 2011

152

 Endif

Else

 Block Tr until Th releases the lock

 End if

End

However DHP-2PL uses transaction restart mechanism to resolve lock conflicts between non-

committing transactions. Further Global restarts takes more time than the local restart operations.

4.2 Timeout based Mobile Transaction Commit Protocol (TCOT)

TCOT [20] works on timeout based principle to reach the final state of the transaction execution

by avoiding starvation of the shared data items. It works in an offline mode where the fragment

needed for executing a transaction is read onto the mobile client and later the results are

integrated with the server

.

If the transaction can’t be executed within the time period “t”, the timer value can be increased by

sending the request again to the fixed host. This increases the uplink bandwidth. Further at the

time of request of change in timer value, the mobile host may face the connectivity issues and it

faces the issue of time lag between local and global commit operation.

4.3 Other pessimistic strategies

In [21] Mobile speculative locking protocol is introduced to reduce the blocking of transaction if

two phase locking is employed. This approach requires extra resources at the mobile host to carry

out speculative execution. In [22], a concurrency control scheme is proposed which in which the

priority based scheme is used to serialize the transaction. Whenever a conflict occurs the priority

is given to the older transaction. This is similar to the traditional locking and if the priority is

given to the mobile host which cant execute the transaction for a long time, it not only suffers

from starvation but the throughput decreases considerably. In [23], a concurrency control strategy

is presented which sets the validity of data items based on the number of data items required. As

the data items needed to execute a transaction might be distributed over several database servers,

there is a need for a middleware which could handle such situations.

4.4 Issues & Challenges

Pessimistic protocols implemented in traditional environments are not suitable to mobile

environments due to the inherent characteristics like mobility and Disconnections.

Timeout based commit protocols are needed in mobile environments to avoid starvation problems

as a result of indefinite locking of data items by a particular mobile host.

The timer value may vary from one transaction to another. However if the transaction is aborted

after expiry of timer, the transaction is to be requested again. This increases uplink bandwidth. To

overcome this drawback if the transaction is not executed within specified time period it may be

rolled back and may be executed again if no other transaction is waiting for same data items in

the queue. Otherwise round-robin approach is followed. The qualitative analysis of the

pessimistic strategies for guaranteeing concurrency control in mobile environments is presented

in table 2.

International Journal of Database Management Systems (IJDMS) Vol.3, No.4, November 2011

153

Table 2. Qualitative analysis of Pessimistic Strategies for Concurrency Control

Pessimistic

Strategy

Transaction

Type

Waiting

Time

Transaction

throughput

Transaction

Aborts

Transaction

restarts

DHP-2L Flat

Depends

on

transaction

priority

Depends on

priority of

inheritance

Depends on

firm deadline

More

local/global

restarts

TCOT Nested

Depends

on max

time of

execution

Decreases

when there

are frequent

request for

increase in

timer value

Depends on

threshold

value

Transaction

restarts if the

execution is

not

completed in

threshold

limit

Mobile

Speculative

Locking

Nested

Depends

on time

taken by

nested

transaction

Less as more

memory &

computation

capability is

needed

Comparatively

high as for

every abort of

nested

transaction, an

abort occurs

The intra and

inter

transaction

parallelism

may lead to

high restarts

due to

disconnection

s

Prioritized

Concurrency

Control

scheme

Flat

Depends

on time

taken by

high

priority

transaction

May decrease

when the

disconnection

time is higher

Depends on

current access

time and data

validity period

May reduce

but execution

time

increases

Data count

driven

concurrency

control

scheme

Flat

Based on

number of

required

data items

May reduce if

transaction

requires more

data items

and sever is

heavily

loaded

Depends on

validity period

and number of

data items

needed

May reduce

but time taken

for lookup of

data items and

counting them

will be high

5. OPTIMISTIC STRATEGIES IN MOBILE ENVIRONMENT

Optimistic strategy works on the following principle:

“First perform operations, check for conflicts later”.

 In Optimistic Commit Protocols, conflict is tolerated in read phase. However to get back the

system into a consistent state conflict resolution technique is applied at validation phase.

International Journal of Database Management Systems (IJDMS) Vol.3, No.4, November 2011

154

In this protocol multiple users are allowed to read the same shared data item simultaneously.

When the transaction commits, the data items read by other users have to be invalidated. To

implement this caching techniques are presented in literature which uses broadcasting i.e.

whenever a commit is done locally, an invalidation report is broadcasted to all clients to

invalidate the data items.

5.1 The Concurrency Control Mechanism (CCM)

In CCM [5], a modified form of two tier replication scheme is proposed to reduce the no of

transaction rejections and transaction commit time at the mobile hosts. In this approach the

number of replicas allowed for shared data items are finite. If the possible number of replicas is

set to “n”, only “n” mobile hosts can locally store a copy of data item for execution. The validity

of a data item is control by timeout parameter. If the data item is not updated or the results are not

returned within specified period of time, it can’t commit the transaction. The timeout values are

assumed to be multiple of broadcast cycle time. If the transaction is not committed within

specified time, it is blocked and has to wait till a new value of timer is assigned to the mobile

host.

It assumes that the value of timeout should be sufficiently large so that the updates can be

propagated to the fixed host. However this may reduce the throughput of the system. Further in

CCM if the transaction is committed within the specified time period it can update the data on

fixed host without waiting for the result of base station. This increases the load on mobile host as

it has to broadcast the status of data item to other mobile hosts which holds the same replica.

Further in this approach after the expiry of timer value, DBS always has to send the new values of

number of replicas and time for validity of data. Further if the number of applications deployed

on a mobile increases, then the cache should also increase to maintain the data item information.

5.2 Sequential Order with Dynamic Adjustment (SODA) Strategy

SODA [6] guarantees consistency of concurrent transactions in mobile P2P databases. It reduces

response time by applying the concept of sequential order and reduces the abort rate by

dynamically adjusting the sequential order.

SODA is a three phase commit protocol. In Read & Compute phase, transaction T reads the set of

data items assigns a timestamp and stores them locally. T also computes the new values (write

set) and maintains it locally. In Validation Phase, the read and write set are validated against set

of committed transactions. If the transaction T passes the validation phase a new time stamp is

assigned which is used as the commit time of transaction T. In Commit and Write Phase, if the

transaction succeeds the validation phase, it can write values of write set into database. Otherwise

it may be aborted.

In a peer-peer strategy the transaction execution is distributed among mobile hosts. In these

situations, every mobile host must possess the capability of managing transaction execution and

integrated successfully with the fixed hosts. Further in mobile peer-peer systems, each host has to

carry its own local database which is a challenge.

5.3 Concurrency control to support update transactions (CCUD)

 In mobile commerce, browsing or querying database is not sufficient as some of the applications

allow users to update the database. Local validation helps in achieving shorter response time,

early detection of conflicts and reduced validation load on the fixed host [7]. However the

broadcast errors might lead to ambiguity in making the commit decision. If a mobile host doesn’t

International Journal of Database Management Systems (IJDMS) Vol.3, No.4, November 2011

155

receive commit information correctly, it couldn’t determine whether the local transactions must

be committed or not. These broadcast errors can be reduced using reliable transmission protocol

like a typical re-transmission and acknowledgement technique.

Two types of broadcasts are used in this strategy viz. Notification broadcast for delivering the

validation results of the transactions and Certification broadcast for broadcasting the invalidation

information. In addition a confirmation protocol is used by mobile clients to receive the reliable

results over a broadcast channel.

The throughput of this strategy is less as it has to go through one additional level in making a

final commit decision. This also increases the number of certification broadcast when many

mobile hosts are requesting for the same shared data item as a result the uplink bandwidth

increases.

5.4 Other optimistic strategies

In a mobile environment if the transaction validation is done on the server, it may lead to delayed

response causing overhead at the server [8]. An Optimistic Concurrency Control with Dynamic

Time stamp Adjustment Protocol requires client side write operations. However because of the

delay in execution of a transaction, it may never be executed [14]. In [10,19], the conventional

optimistic concurrency control algorithm in enhanced with an early termination mechanism on

conflicting transactions. But because of early termination a transaction need to be initiated again

and again.

Optimistic concurrency control protocols (OCC) [13, 15, 17] are non-blocking and deadlock-free,

which make them efficient to use in mobile computing and have been adopted in the

Disconnected Operation [11] and Kangaroo Transaction model [16]. But, without locks to data

items, transactions might access conflicting data items under an optimistic concurrency control

protocol (OCC). Two concurrent transactions conflict if one of them performs a write on similar

data items. Therefore, approaches to terminate conflicting transactions are proposed [18, 19]. In

these approaches if the conflict rate increases, more and more transactions get aborted. In [14],

author proposes A Timestamp-Based Optimistic Concurrency Control for Handling Mobile

Transactions. However it [9,12,14] needs broadcasting of messages to send the invalidation

reports which might unnecessary flood the network thereby reducing the transaction throughput.

The approach followed in [14] uses broadcasting which is not suitable for some of the

applications because of the rise in abort rates and unnecessary flooding of invalidation reports.

For example in [1], the author proposes a scheme, to provide non-blocking protocol with

restrained communication. But it faces the problem of time lag between the local and global

commit. In [10] concept of non-conflicting transactions is introduced such that if a conflicting

transaction is detected, it may be aborted.

5.5 Issues & challenges

Optimistic commit protocol can be implemented for transaction processing in mobile

environments. However the traditional optimistic protocol doesn’t give good performance if it is

implemented in mobile environments

The invalidate report is sent to all the participants involved in some transaction execution. (The

invalidation report may be sent only to the participants using the same shared data item and the

data item is invalidated). Further in the traditional approach, once the data item becomes

invalidated, a new request is to be initiated for execution of a transaction. In mobile environments

this increases the uplink bandwidth.

International Journal of Database Management Systems (IJDMS) Vol.3, No.4, November 2011

156

The qualitative analysis of the optimistic strategies for guaranteeing concurrency control in

mobile environments is presented in table 3.

Table 3. Qualitative analysis of Optimistic Strategies for Concurrency Control

Optimistic

Strategy

Trans

Type

Data Validity Conflict

resolution

Uplink Bandwidth

CCM Nested

Till the timer expires (can

be utmost for limited no

of concurrent request)

Through

broadcasting of

new values

Low, but less

transaction

throughput

SODA Nested

Till the time of writing

the write set onto fixed

host

Through

broadcasting done

by mobile hosts

(peers)

High, if the

transaction fails in

third phase, it has to

be requested again.

CCUD Flat

Data Item becomes valid

when certification

broadcast is invoked

Through

broadcasting after

local validation

Increases

exponentially when

access to shared

data items increases

because of the

additional

confirmation

protocol

Time

stamp

based OCC

Flat
Till the invalidation

report is received

Through

broadcasting of

invalidation reports

Since data items are

read only on

demand uplink

bandwidth is

sufficiently low

Improving

CC in

Mobile

Databases

 Flat
Till the invalidation

reports are received

Conflicting

transactions are

terminated before

reaching the

validation phase

High as the

transaction has to

be started again

once it receives

invalidation report

6. CONCLUSION

Concurrency control forms a basic building block for transaction management in any database

environments. However as disconnections are treated as normal situations in mobile

environments, there is a need for relaxation of ACID properties in mobile environments. In this

paper several concurrency control strategies to achieve the Isolation is discussed. In pessimistic

strategy the transaction may be blocked due to locking. However the time based strategies made

an attempt to resolve the starvation issues in presence of disconnections and mobility. To

overcome the problem of blocking, optimistic strategies are presented in literature. However there

is a need for good conflict resolution strategies which satisfies Serializability property.

International Journal of Database Management Systems (IJDMS) Vol.3, No.4, November 2011

157

7. REFERENCES

[1] Patrical Serran-Alvarado et.Al, “A Survey of Mobile Transactions”, Distributed & Parallel Databases,

Kluwer Publishers, 16, pp.193-230, 2004

[2] K.P. Eswarn, J. Gray, R.A. Lorie, and I.L. Triger, “The notions of consistency and predicate locks in

a database system,” Communications of the ACM (CACM), vol. 19, no. 11, 1976.

[3] Kam-Yiu Lam, Tei-Wei Kuo et.Al, “Concurrency Control in Mobile Distributed Real-Time Database

Systems”, Elseiver Sciences, Information Systems Vol. 25, No.4, pp. 261-286, 2000.

[4] R.J. Abbott and H. Garcia-Molina. “Scheduling real-time transactions: a performance evaluation.

ACM Transactions on Database Systems”, Vol. 17, No. 3, pp. 513-560, 1992.

[5] Nitin Prabhu, Vijay Kumar et. Al, “Concurrency Control in Mobile Database System”, Proceedings

of 18th IEEE International Conference on Advanced Information Networking and Application

(AINA),pp. 83-86, 2004.

[6] Zhaowen Xing, Le Gruenweld, K.K Phang, “SODA: An Algorithm to Guarantee Correctness of

Concurrent Transaction Execution in Mobile P2P Databases”, 19th IEEE International Conference on

Database and Expert Systems Applications” pp.337-341, 2008.

[7] Zakil Koo, Songchum Moon, “Effects of broadcast errors on concurrency control in wireless

broadcasting environments”, pp. 13-21, 2002.

[8] Victor C.S., Kwok wa Lam and Son, S.H., “Concurrency Control Using Time-stamp Ordering in

Broadcast Environments”, the Computer Journal,Vol.45, No.4 PP.410-422, 2002

[9] Victor C.S.Lee, Kwok Wa Lam, Tei-wei Kuo,”Efficient Validation of Mobile Transactions in

Wireless Environments”, The Journal of Systems and Software 69(2004), 183-193.

[10] Minsoo Lee, Sumi Helal, “HiCoMo: High Commit Mobile Transactions”, Distributed and Parallel

Databases, 11, 73-92, 2002, Kluwer Academic Publishers

[11] J. Kisler, and M. Satyanarayanan, “Disconnected Operation in the Coda File System”, ACM

Transactions on Computer Systems, 10(1), 1992

[12] Khalil M. Ahmed, Mohammed A Ismail, Navava M. El. Makky, Khaled M. Nagi, “A New

Transaction Management Scheme for MobileComputing Environments”, 2003.

[13] H. T. Kung and J. T. Robinson, "On Optimistic Methods for Concurrency Control", ACM TODS,

Vol.6, No. 2, June 1981.

[14] Ho Chin Choi, Byeong-Soo Jeong, “A Timestamp-Based Optimistic Concurrency Control for

Handling Mobile Transactions”, Springer Verlag, LNCS 3981, PP. 796-805, 2006.

[15] T. Härder. “Observations on optimistic concurrency control schemes”. Information Systems,

9(2):111–120, 1984.

[16] K. Eswaran, J. Gray, R. Lorie, I. Traiger, “The Notion of Consistency and Predicate locks in a

database system”, Communication of the ACM, 19 (11): 624-633, 1976.

International Journal of Database Management Systems (IJDMS) Vol.3, No.4, November 2011

158

[17] Bernstein, P.A, Hadzilacos, V. and Goodman, N, "Concurrency Control and Recovery in Database

System", Addison-Wesley 1987

[18] Barbara D. and T. Imielinski. "Sleepers and Workaholics: Strategies in Mobile Environments", Proc.

ACM pp. 1-12, May 1994.

[19] Anand Yendluri, Wen-Chi Hou, and Chih-Fang Wang, “Improving Concurrency Control in Mobile

Databases”,Springer Verlag LNCS 2973, PP. 642-655, 2004.

[20] Vijay Kumar, Nitin Prabhu, Maggie Dunham, Ayse Yasemin Seydim, “TCOT - A Timeout based

Mobile Transaction Commitment Protocol”, IIS 9979453, 2004.

[21] P. Krishna Reddy, Masaru Kitsuregawa, “Speculative Lock Management to Increase Concurrency in

Mobile Environments”, MDA’99, LNCS 1748, pp, 82-96, 1996.

[22] Mohammed Khaja Nizamuddin, Dr. Syed Abdul Sattar, “An Improved, Prioritized

ConcurrencyControl Scheme with Performance Gain in Mobile Environments”, pp. 34-40, Vol.1,

No.1, ARPN Journal of Systems & Software, 2011.

[23] Mohammed Khaja Nizamuddin, Dr. Syed Abdul Sattar, “Data Count Driven Concurrency Control

Scheme With Performance Gain in Mobile Environments”, pp. 106-112, JETCIS, Vol,2. No. 2, 2011.

Authors

Dr. Salman Abdul Moiz is a Research Scientist at Centre for Development of

Advanced Computing Bangalore. He received his B.Sc (Electronics) from Osmania University,

MCA from Osmania University, M.Tech (cse) from Osmania University, M.Phil (CS) from

Madurai Kamaraj University and Ph.D (CSE) from Osmania University. His research interest

includes Mobile databases, Domain specific component design & Disaster recovery.

Supriya N. Pal holds a Master's degree in Computer Science from the University of

Mumbai. She is a Technical Lead in applied research projects of Software

Engineering division in C-DAC, Electronics City, Bangalore. Her research interests

include SW Re-engineering, SOA, Messaging middleware, and Mobile Computing

and its applications

Jitendra Kumar is working as Senior Staff Scientist at Centre for Development of

Advanced Computing, Bangalore. He holds Bachelors degree in Computer Science &

Engineering from Magadh University & PGDIM IGNOU, Delhi. His area of interests

includes Mobile computing & Applications, SOA, Web Security, Messaging

middleware, Enterprise Application Development and Distributed Computing.

International Journal of Database Management Systems (IJDMS) Vol.3, No.4, November 2011

159

Palani Lavanya is working as Staff Scientist at Centre for Development of

Advanced Computing, Bangalore. She received B.E (CSE) from Madras University.

Her research interests are in the areas of Mobile Computing, Network Security &

Embedded Networking.

Deepak Chandra Joshi is working as Staff Scientist at Centre for Development of

Advanced Computing, Bangalore. He received B.Sc from Kurukshetra University &

MCA from IGNOU. His research & development interest includes Mobile computing

Applications, Web technologies, Open source software and SOA applications.

G. Venkataswamy is working as Staff Scientist at Centre for Development of

Advanced Computing, Bangalore. He received his MCA from Osmania University.

His research interest includes Mobile computing, Web engineering, Distributed

Computing, Computer Networks, Databases and SOA.

