
International Journal of Database Management Systems (IJDMS) Vol.4, No.1, February 2012

DOI: 10.5121/ijdms.2012.4103 21

RoadRunner for Heterogeneous Web Pages Using

Extended MinHash

A Suresh Babu
1
, P. Premchand

2
 and A. Govardhan

3

1
Department of Computer Science and Engineering, JNTUACE Pulivendula, India

asureshjntu@gmail.com
2
Professor, Department of Computer Science Engineering, Osmania University,

Hyderabad, India
p.prechand@uceou.edu

3
Professor, Department of Computer Science Engineering, Director of evaluation

JNTUH, Kukatpalli, Hyderabad, India.
govardhan_cse@yahoo.co.in

ABSTRACT

The Internet presents large amount of useful information which is usually formatted for its users, which

makes it hard to extract relevant data from diverse sources. Therefore, there is a significant need of robust,

flexible Information Extraction (IE) systems that transform the web pages into program friendly structures

such as a relational database will become essential. IE produces structured data ready for post processing.

Roadrunner will be used to extract information from template web pages. In this paper, we present novel

algorithm for extracting templates from a large number of web documents which are generated from

heterogeneous templates. The proposed system focuses on information extraction from heterogeneous web

pages. We cluster the web documents based on the common template structures so that the template for

each cluster is extracted simultaneously. The resultant clusters will be given as input to the Roadrunner

system.

KEYWORDS

Information Extraction, Clustering, Minimum Description Length Principle, MinHash

1. INTRODUCTION

The sudden growth and popularity of World Wide Web has resulted in a huge amount of

information sources on the Internet. However, due to the heterogeneity and lack of structure of

Web information sources, access to this huge collection of information has been limited to

browsing and searching. To automate the translation of input web pages into structured data, a lot

of efforts have been devoted in the area of information extraction (IE). Unlike information

retrieval (IR), which concerns with how to identify relevant documents from a document

collection, IE produces structured data ready for post- processing, which is crucial to many

applications of Web mining and searching tools. Formally, an IE task is defined by its input and

its extraction target. The input pages can be unstructured documents like free text that are written

in natural language or the semi-structured documents such as tables or itemized and enumerated

lists.

Programs that perform the task of IE are referred to as extractors or wrappers. To give a simple

but fairly faithful abstraction of the semantics of such data intensive web pages, we can consider

the page-generation process as the result of two separated activities: (i) Execution of a number of

queries on the underlying database to generate a source dataset. (ii)Second, the serialization of the

International Journal of Database Management Systems (IJDMS) Vol.4, No.1, February 2012

22

source dataset into HTML code to produce the actual pages, possibly introducing URLs links, and

other material like images. Figure 1, refers to a fictional bookstore site. In that example, pages

listing all books by one author are generated by a script, the script first queries the database to

produce a nested dataset in which each tuple contains data about one author, her/his list of books,

and for each book the list of editions, then, the script serializes the resulting tuples into HTML

pages. When we run on these pages, our system will compare the HTML codes of the two pages,

infer a common structure and a wrapper, and use that to extract the source dataset. The dataset

extracted is produced in HTML format. As an alternative, it could be stored in a database. As it

can be seen from the figure, the system deduces a nested schema from the pages. Since the

database field names are generally not encoded in the pages and this schema is based purely on

the content of the HTML code, it has anonymous fields (labelled by A, B, C, D, etc. in our

example), which must be named manually after the dataset has been extracted.

Fig.1. Input HTML Pages

However, for systems the unknown templates are considered harmful because they degrade the

accuracy and performance due to the irrelevant terms in templates. The problem of extracting a

template from the web documents conforming to a common template has been Studied in [2][3].

In such systems we are assuming that web pages generated will have common template, the

solutions for this problems are applicable only when all the documents will have a common

structure. However in real applications, it is not trivial to classify many crawled documents into

homogeneous partitions in order to use these techniques.

To overcome the limitation of the techniques with the assumption that the web documents are

from a single template, the problem of extracting the templates from a collection of

heterogeneous web documents, which are generated from multiple templates. In this problem,

clustering of web documents such that the documents in the same group belong to the same

template is required, and thus, the correctness of extracted templates depends on the quality of

clustering.

2. RELATED WORK

The template extraction problem can be classified into two broad areas. The first one is the site-

level template detection where the template is decided based on number of pages from the same

site. Crescenzi et al. [1] studied initially the data extraction problem and Yossef and Rajagopalan

[2] introduced the template detection problem. Previously, only tags were considered to find

templates but Arasu and Garcia-Molina [3] observed that any word can be a part of the template

or contents. However, they detect elements of a template by the frequencies of words but we

consider the MDL principle as well as the frequencies to decide templates from heterogeneous

International Journal of Database Management Systems (IJDMS) Vol.4, No.1, February 2012

23

documents. Zhao et al. [4] concentrated on the problem of extracting result records from search

engines.

Garofalakis et al. [5] solved the problem of DTD extraction from multiple XML documents. The

solutions for XML documents fully utilize these properties. In the problem of the template

extraction from heterogeneous document, how to partition given documents into homogeneous

subsets is important. However, the tree edit distance is expensive and it is not easy to select good

training pages. Crescenzi et al. [7] focused on document clustering without template extraction.

Biclustering or co clustering is another clustering technique to deal with a matrix [8], [9], [10].

Since an HTML document can be represented with a Document Object Model (DOM) tree, web

documents are considered as trees and many existing similarity measures for trees have been

investigated for clustering [6]. However, clustering is very expensive with tree-related distance

measures. For instance, tree-edit distance has at least O (n1n2) time complexity [6], where n1 and

n2 are the sizes of two DOM trees and the sizes of the trees are usually more than a thousand.

Thus, clustering on sampled web documents is used to practically handle a large number of web

documents.

Reis et al. [6] presented a method in which a small number of sampled documents are clustered

first, and then, the other documents are classified to the closest clusters. In both clustering and

classifying, a restricted tree-edit distance is used to measure the similarity between documents.

In this paper, in order to overcome the limitations of the technologies, we investigate the problem

of detecting the templates from heterogeneous web documents and present novel algorithms

called Automatic Template Extraction. We represent a web page and a template as a set of paths

in a DOM tree. As validated by the most popular XML query language XPATH [11], paths are

sufficient to express tree structures and useful to be queried. By considering only paths, the

overhead to measure the similarity between documents becomes small without significant loss of

information.

For example, let us consider simple HTML documents and paths in Fig. 2 and Table 1. We will

formally define the paths later. Document d1 is represented as a set of paths {p1, p2, p3, p4, p6}

and the template of both d1 and d2 is another set of paths {p1, p2, p3, p4}.

Our goal is to manage an unknown number of templates and to improve the efficiency and

scalability of template detection and extraction algorithms. To deal with the unknown number of

templates and select good partitioning from all possible partitions of web documents, we employ

Rissanen’s Minimum Description Length (MDL) principle in [12], [13]. In our problem, after

clustering documents based on the MDL principle, the model of each cluster is the template itself

of the web documents belonging to the cluster. Thus, we do not need additional template

extraction process after clustering. In order to improve efficiency and scalability to handle a large

number of web documents for clustering, we extend MinHash [14].

Fig.2. Simple web documents. (a) Document d1. (b) Document d2.

 (c) Document d3. (d) Document d4.

International Journal of Database Management Systems (IJDMS) Vol.4, No.1, February 2012

24

TABLE 1

Paths of Tokens and Their Supports

While the traditional MinHash is used to estimate the Jaccard coefficient between sets, we

propose an extended MinHash to estimate MDL cost measure with partial information of

documents. In summary, our involvement is as follows:

� We apply the MDL principle to our problem to effectively manage an unknown number

of clusters.

� In our method, document clustering and template extraction are done together at once.

The MDL cost is the number of bits required to describe data with a model and the model

in our problem is the description of clusters represented by templates.

� Since a large number of web documents are massively crawled from the web, the

scalability of template extraction algorithms is very important to be used practically.

Thus, we extend MinHash technique to estimate the MDL cost quickly, so that a large

number of documents can be processed.

3. PRELIMINARIES

3.1 Essential Paths and Templates

Given a web document collection D= { d1, d2, . . . , dn}, we define a path set PD as the set of all

paths in D. Note that, since the document node is a virtual node shared by every document, we do

not consider the path of the document node in PD. The support of a path is defined as the number

of documents in D. For each document di, we provide a minimum support threshold tdi . Notice

that the thresholds tdi and tdj of two distinct documents di and dj, respectively, may be different. If

a path is contained by a document di and the support of the path is at least the given minimum

support threshold tdi , the path is called an essential path of di. We denote the set of essential paths

of an HTML document di by E(di). For a web document set D with its path set PD, we use a

|PD|×|D| matrix ME with 0/1 values to represent the documents with their essential paths. The

value at a cell (I, j) in the matrix ME is 1 if a path pi is an essential path of a document dj.

Otherwise, it is 0.

Example 1. Consider the HTML documents D={d1,d2, d3, d4} in Fig. 2. All the paths and their

frequencies in D are shown in Table 1. Assume that the minimum support thresholds td1 , td2 , td3 ,

and td4 are 3, 3, 3, and 4, respectively. The essential path sets are E(d1)={p1,p2, p3,p4},

E(d2)={p1, p2, p3, p4, p5}, E(d3)={p1, p2, p3, p4, p5}, and E(d4)={p1,p2}. We have the path set

PD={pi/1≤i≤ 8} and the matrix ME becomes as follows:

International Journal of Database Management Systems (IJDMS) Vol.4, No.1, February 2012

25

ME

Example 2: In Fig. 2 and Table 1, the paths appearing at the document d2 are p1, p2, p3, p4, p5,

and p7 whose supports are 4, 4, 3, 3, 3, and 1, respectively. Since 3 is the mode of them, we use 3

as the minimum support threshold value td2 . Then, p1, p2, p3, p4, and p5 are essential paths of

d2.

3.3 Matrix Representation of Clustering

We next illustrate the representation of a clustering of web documents. Let us assume that we

have m clusters such as C ={c1, c2, . . . cm} for a web document set D. A cluster ci is denoted by a

pair (Ti,Di), where Ti is a set of paths representing the template of ci and Di is a set of documents

belonging to ci. In our clustering model, we allow a document to be included in a single cluster

only. That is, we have Di∩Dj =null set, for all distinct clusters ci, cj, and 1≤i≤m Di=D. To

represent a clustering information C ={c1,c2. . cm} for D, we use a pair of matrices MT and MD,

where MT denotes the information of each cluster with its template paths and MD denotes the

information of each cluster with its member documents. If the value at a cell (I, j) in MT is 1, it

means that a path pi is a template path of a cluster cj. Otherwise, pi does not belong to the template

paths of cj. Similarly, the value at a cell (i,j) in MD is 1 if a document dj belongs to a cluster ci.

Regardless of the number of clusters, we fix the dimension of MT as |PD| ×|D| and that of MD as

|D|×|D|. Rows and columns in MT and MD exceeding the number of clusters are filled with zeros.

In other words, for a clustering with C ={c1,c2, . . . cm}, all values from (m+1)th to IDI th

columns in MT are zeros, and all values from (m + 1)th to IDI th rows in MD are zeros. We will

represent ME by the product of MT and MD. However, the product of MT and MD does not always

become ME. Thus, we reconstruct ME by adding a difference matrix M∆ with 0/1/-1 values to

MT.MD, i.e., ME = MT.MD+M∆.

 MT M∆ MD

Example 3. Consider the web documents in Fig. 3 and ME in Example 1 again. Assume that we

have a clustering C = {c1,c2}, where c1 = ({p1, p2, p3, p4, p5} {d1,d2,d3}) and c2 =

({p1,p2},{d4}). Then, MT , MD, and M∆ are as follows and we can see that ME=MT .MD+M∆

International Journal of Database Management Systems (IJDMS) Vol.4, No.1, February 2012

26

3.4 Minimum Description Length Principle (MDL)

In order to handle unknown number of clusters and to select good partitioning from all possible

partitions of HTML documents, we apply Rissanen’s MDL principle [12], [13]. The MDL

principle states that the best model inferred from a given set of data is the one which minimizes

the sum of 1) the length of the model, in bits, and 2) the length of encoding of the data, in bits.

We refer to the above sum for a model as the MDL cost of the model. In our setting, the model is

a clustering C, which is described by partitions of documents with their template paths (i.e., the

matrices MT and MD), and the encoding of data is the matrix M∆. The MDL costs of a clustering

model C and a matrix M are denoted as L(c) and L(M), respectively. Considering the values in a

matrix as a random variable X, Pr(1) and Pr(-1) are the probabilities of 1 s and -1 s in the matrix

and Pr(0) is the probability of zeros. Then, the entropy H(X) of the random variable X [18], [19]

is as follows:

()

2

1,0, 1

() log ()
x

pr X pr X
∈ −

−∑ and

 L(M)= IMI.H(X).

The MDL costs of MT and M∆ is L(MT) and L(M∆) respectively are calculated by the above

formula. For MD, we use another method to calculate its MDL cost. The reason is that the random

variable X in MD is not mutually independent, since we allow a document to be included in a

single cluster (i.e., each column has only a single value of 1). Thus, we encode MD by |D| number

of cluster IDs. Since the number of bits to represent a cluster ID is log2 |D|, the total number of

bits to encode MD (i.e., LMD) becomes |D|. log2 |D|. Then, the MDL cost of a clustering model C

is defined as the sum of the three matrices (i.e., L(C) = L(MT) + L(MD) + L(M∆)). According to

the MDL principle, for two clustering models C =(MT,MD) and C’=(M’T,M’D), we say that C is a

better clustering than C’ if L(C) is less than L(C’).

Example 4. Again consider the clustering C in Example 3. Then, with MT in Example 3, Pr(1) =

7/32 and Pr(0) = 25/32 and we have L(MT) =|MT|. H(X) = 32.(- 7/32 log27/32-25/32 log225/32) =

24.25. Similarly, L(MD)= 8, L(M∆)= 6.42, and thus, L(C) = 38.67. For another clustering C’, let

us assume that M’T , M’D, and M’∆ are as follows:

Then, L(MT)=17.39,L(MD)= 8, L(M∆)=21.39, and thus, L(C’)=46.78. Since L(C) < L(C’), we say

C is a better clustering than C’. It is natural to think that d1, d2, and d3 are generated by the same

template and d4 looks different from the others. Thus, the clustering C grouping d1, d2, and d3

together and isolating d4 is better than the other clustering C0 grouping d1, d2, d3, and d4

altogether. Thus, we can see that it is intuitively reasonable to prefer C to C’.

 M’T ME M’∆

International Journal of Database Management Systems (IJDMS) Vol.4, No.1, February 2012

27

3.5 RoadRunner

Matching Technique

This section is devoted to the presentation of algorithm match. It is based on a matching

technique called ACME, for Align, Collapse under Mismatch, and Extract. To avoid errors and

missing tags in the sources, the HTML code complies to the XHTML specification, a restrictive

variant of HTML in which tags are required to be properly closed and nested. The matching

algorithm works on two objects at a time: (i) a list of tokens, called the sample, and (ii) a wrapper,

i.e., one union-free regular expression. Given two HTML pages (called page 1 and page 2), to

start take one of the two, for example page 1, as an initial version of the wrapper, then, the

wrapper is progressively refined trying to find a common regular expression for the two pages.

This is done by solving mismatches between the wrapper and the sample. A mismatch happens

when some token in the sample does not comply to the grammar specified by the wrapper.

Mismatches are very important, since they help to discover essential information about the

wrapper. Whenever one mismatch is found, it tries to solve the mismatch by generalizing the

wrapper. The algorithm succeeds if a common wrapper can be generated by solving all

mismatches encountered during the parsing.

Mismatches There are essentially two kinds of mismatches that can be generated during the

parsing: (a) String mismatches, i.e., mismatches that happen when different strings occur in

corresponding positions of the wrapper and sample. (b) Tag mismatches, i.e., mismatches

between different tags on the wrapper and the sample, or between one tag and one string.

String Mismatches: Discovering Fields It can be seen that, if the two pages belong to the

same class, string mismatches may be due to different values of a database field. Therefore, these

mismatches are used to discover fields (i.e., #PCDATA).

Tag Mismatches: Discovering Optional Tag mismatches are used to discover iterators and

optionals. In the presence of such mismatches, our strategy consists in looking for repeated

patterns (i.e., patterns under an iterator) as a first step, and then, if this attempt fails, in trying to

identify an optional pattern.

Tag Mismatches: Discovering Iterators Repeated tags will be replaced by a iterator (+)

4. PROPOSED APPROACH

4.1 Clustering With MDL Cost

Our clustering algorithm TEXT-MDL is presented in Fig. 3. The input parameter is a set of

documents D = {d1, . . . , dn}, where di is the i th document. The output result is a set of clusters

C ={c1, . . . , cm} , where ci is a cluster represented by the template paths Ti and the member

documents Di (i.e., ci =(Ti,Di). A clustering model C is denoted by two matrices MT and MD and

the goodness measure of the clustering C is the MDL cost L(C) , which is the sum of L(MT),

L(MD), and L(M∆). TEXT-MDL is an agglomerative hierarchical clustering algorithm which

starts with each input document as an individual cluster (in line 1). When a pair of clusters is

merged, the MDL cost of the clustering model can be\ reduced or increased. The procedure

GetBestPair finds a pair of clusters whose reduction of the MDL cost is maximal in each step of

merging and the pair is repeatedly merged until any reduction is not possible. In order to calculate

the MDL cost when each possible pair of clusters is merged, the procedure GetMDLCost(ci, cj,

C), where ci and cj are a pair to be merged and C is the current clustering, is called in GetBestPair

and C is updated by merging the best pair of clusters. As we will discuss later in detail, because

International Journal of Database Management Systems (IJDMS) Vol.4, No.1, February 2012

28

the scale of the MDL cost reduction by merging a pair of clusters is affected by all the other

clusters, GetBestPair should recalculate the MDL cost reduction of every pair at each iteration of

while loop in line 7.

Fig.3. TEXT-MDL algorithm.

4.2 Extended minHash

To compute the MDL cost of each clustering quickly, we would like to estimate the probability

that a path appears in a certain number of documents in a cluster. However, the traditional

MinHash was proposed to estimate the Jaccard’s coefficient. Thus, given a collection of sets X =

{S1, . . . , Sk}, we extend MinHash to estimate the probabilities needed to compute the MDL

cost. Let us start from defining a probability that an rj is included by m number of

sets in X. We denote the probability as X,M), which is computed as follows:

 X,M) = |{rj/ rj is included in m number of sets in X}|

 |S1 U …U Sk|

Then, X,M) is defined for 1 m |X| and X,|X|)is the same as the Jaccard’s coefficient of

sets in X. Now we introduce an extended signature of a collection of k sets, X ={S1, . . . , Sk}, for

 { 1,…, } as follows

The extended signature sigX|i| for ∏i is a pair of the minimum sig si|i| for all si in X (i.e., minSjϵx

sigSj |½|) and the number of sets whose signature for ∏i is the same as the minimum (i.e.,

|argminSjϵxsigsj |i|). The former is denoted as r(sig x|i|) and the latter is denoted as n(sigX|i|) in

the rest of this paper. Notice that r(sigX|i|) is the same as min(∏i(S1U..USK)), and thus,

Pr(r(sigX|i| =∏i(rl)=1/ |S1U..USK| for every rlϵ S1U..USK and every ∏iϵ∏ very _i 2 _.

Therefore, ∏ is still min wise independent for our extended r(sigX|i|). The relation between

Pr(n(sigX|i|)= m) and X,M) is shown in the following lemma:

International Journal of Database Management Systems (IJDMS) Vol.4, No.1, February 2012

29

Lemma 2. Pr(n(sigX|i|)= m) is the same as X,M)

Proof. ∏ is minwise independent for r(sigX|i|), and thus, Pr(r(sigX|i| =∏i(rl)) =1/ |S1U..USK| for

every rlϵ S1U..USK and every ∏iϵ∏. The set of rjs contained in m number of Sls in X is denoted as

{rj/rj is included in m number of sets in X}, and therefore, Pr(r(sigX|i| = m) is the same as {rj/rj is

included in m number of sets in X}/|S1U..USK|, which is equivalent to X,M). According to

Lemma 2, we can estimate X,M) with

Sig x as follows: X,M) = |{i/n(sigX|i|)=m}|/∏ (5)

4.3 Calculation of MDL Cost Using MinHash

Recall that, if we know sup(pk,Di) for each pk, we can decide the optimal Ti and calculate the

MDL cost of a clustering as shown in Theorem 2. However, even if we do not know the essential

paths in each document, but we have 1) α= Pr(1) and β= H(X) in ME, 2) the number of the

essential paths in each document, and 3) the probabilities that a path in Ei is supported by k

documents in a cluster ci (i.e., (Di,k)), we can compute the MDL cost of a clustering.

Fig.4. GetHashMDLCost procedure.

Computation of MDL cost using n(Di,k). Recall that sup(px,Di) is the number of documents in Di

having the path px as an essential path. Let n(Di, k) represent the number of paths px whose

sup(px,Di) is k. The following lemma shows that we can count the numbers of 1s and -1s in MT

and M∆ by using only n(Di, k) MDL cost estimation by MinHash. Now we present the procedure

GetHashMDLCost in Fig. 4. Note that we estimate the MDL cost, but do not generate the

template paths of each cluster. Thus, Tk of ck is initialized as the empty set (line 1). Instead of the

template paths, the signature of ck (i.e., sig Dk) is maintained to estimate the MDL cost (lines 2-

7). If we consider the length of a signature as a constant, the complexity of GetHashMDLCost is

O(1). After finishing clustering, a post processing is needed to get the actual template paths. We

refer to the processing as the template path generation step.

4.4 Clustering With MinHash

When we merge clusters hierarchically, we select two clusters which maximize the reduction of

the MDL cost by merging them. Given a cluster ci, if a cluster cj maximizes the reduction of the

MDL cost, we call cj the nearest cluster of ci. In order to efficiently find the nearest cluster of ci,

we use the heuristic below: In Fig. 5, we provide the procedures to find the best pair using

MinHash. In TEXT-MDL in Fig. 3, the GetBestPair at line 2 is replaced by GetInitBestPair and

the GetBestPair at line 7 is replaced by GetHashBestPair. In GetInitBestPair, we first merge

clusters with the same signature of MinHash (line 1). Next, for each cluster ci, we get clusters

International Journal of Database Management Systems (IJDMS) Vol.4, No.1, February 2012

30

with the maximal Jaccard’s coefficient estimated by the signatures of MinHash (line 4) and

compute the MDL cost of each pair

Fig.5. GetInitBestPair/GetHashBestPair procedures

 (lines 5-11). The complexities of GetInitBestPair and GetHashBestPair depend on the number of

clusters with the maximal Jaccard’s coefficient. If we consider it as a constant, the complexities

of GetInitBestPair and GetHashBestPair are O(n) and O(1), where n is the number of documents

in D. The complexity of the post process to compute the optimal Ti of each cluster is O(ne),

where e is the average size of a document since we just scan documents in D once.

5. Experimental Results

All experiments reported in this section were performed on a Pentium-Core2 2.66 GHz machine

with 2 GB of main memory. All algorithms were implemented in JAVA with JRE version 1.7.0

and we used HTML Parser version 1.6 (http://htmlparser.sourceforge.net) to parse the input

HTML files.

Algorithms: TEXT-MDL: It is the naive agglomerative clustering algorithm with the

approximate entropy model. It requires no input parameter.

TEXT-HASH: It is the agglomerative clustering algorithm with MinHash signatures. It requires

an input parameter which is the length of MinHash signature.

ROADRUNNER: It is a novel technique to extract information from template web pages. It

requires two input html pages at a time.

Considering the space constraint as a limited resource let us take the two web pages shown in

fig.6 and 7 as an input pages which are belongs to different clusters(templates). The traditional

RoadRunner works only for common template pages.

International Journal of Database Management Systems (IJDMS) Vol.4, No.1, February 2012

31

Fig.6. Input page1

Fig.7. Input page 2

Now consider the system ”RoadRunner for heterogeneous web pages” which takes the

heterogeneous html web pages as input and partitions them into clusters based on similarity. And

finally the resultant clusters are given as input to the RoadRunner System. And the system will

generate the Data extraction output for each cluster. The labelling for attributes have to give by

the human manually. The expected output for input page1 Fig(6) is shown in fig. 8.

Fig.8. Data Extraction output (Dataset)

6. CONCLUSIONS

We introduced a novel approach of the template detection from heterogeneous web documents.

We employed the MDL principle to manage the unknown number of clusters and to select good

partitioning from all possible partitions of documents, and then, introduced our extended

MinHash technique to speed up the clustering process. Experimental results with real life data

sets confirmed the effectiveness of our algorithms. And finally resultant clusters will be given as

International Journal of Database Management Systems (IJDMS) Vol.4, No.1, February 2012

32

input to the Roadrunner system. The same technique can also be applied for any page-level web

information extraction system.

REFERENCES

[1] V. Crescenzi, G. Mecca, and P. Merialdo, “Roadrunner: Towards Automatic Data Extraction from

Large Web Sites,” Proc. 27th Int’l Conf. Very Large Data Bases (VLDB), 2001.

[2] Z. Bar-Yossef and S. Rajagopalan, “Template Detection via Data Mining and Its Applications,” Proc.

11th Int’l Conf. World Wide Web (WWW), 2002.

[3] A. Arasu and H. Garcia-Molina, “Extracting Structured Data from Web Pages,” Proc. ACM

SIGMOD, 2003.

[4] H. Zhao, W. Meng, Z. Wu, V. Raghavan, and C. Yu, “Fully Automatic Wrapper Generation for

Search Engines,” Proc. 14th Int’l Conf. World Wide Web (WWW), 2005.

[5] H. Zhao, W. Meng, and C. Yu, “Automatic Extraction of Dynamic Record Sections from Search

Engine Result Pages,” Proc. 32nd Int’l Conf. Very Large Data Bases (VLDB), 2006.

[6] M.N. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim, “Xtract: A System for Extracting

Document Type Descriptors from Xml Documents,” Proc. ACM SIGMOD, 2000.

[7] V. Crescenzi, P. Merialdo, and P. Missier, “Clustering Web Pages Based on Their Structure,” Data

and Knowledge Eng., vol. 54, pp. 279- 299, 2005.

[8] D. Chakrabarti, R. Kumar, and K. Punera, “Page-Level Template Detection via Isotonic Smoothing,”

Proc. 16th Int’l Conf. World Wide Web (WWW), 2007.

[9] I.S. Dhillon, S. Mallela, and D.S. Modha, “Information-Theoretic Co-Clustering,” Proc. ACM

SIGKDD, 2003.

[10] B. Long, Z. Zhang, and P.S. Yu, “Co-Clustering by Block Value Decomposition,” Proc. ACM

SIGKDD, 2005.

[11] Xpath Specification, http://www.w3.org/TR/xpath, 2010.

[12] J. Rissanen, “Modeling by Shortest Data Description,” Automatica, vol. 14, pp. 465-471, 1978.

[13] J. Rissanen, Stochastic Complexity in Statistical Inquiry. World Scientific, 1989.

[14] Z. Chen, F. Korn, N. Koudas, and S. Muithukrishnan, “Selectivity Estimation for Boolean Queries,”

Proc. ACM SIGMOD-SIGACTSIGART Symp. Principles of Database Systems (PODS), 2000.

