
International Journal of Database Management Systems (IJDMS) Vol.4, No.2, April 2012

DOI: 10.5121/ijdms.2012.4202 23

Goal Directed Relative Skyline Queries in Time

Dependent Road Networks

K.B. Priya Iyer
1
 and Dr. V. Shanthi2

1
Research Scholar, Sathyabama University

priya_balu_2002@yahoo.co.in
2
Professor, St. Joseph College of Engineering

drvshanthi@yahoo.co.in

ABSTRACT

The Wireless GIS technology is progressing rapidly in the area of mobile communications. Location-based

spatial queries are becoming an integral part of many new mobile applications. The Skyline queries are

latest apps under Location-based services. In this paper we introduce Goal Directed Relative Skyline

queries on Time dependent (GD-RST) road networks. The algorithm uses travel time as a metric in finding

the data object by considering multiple query points (multi-source skyline) relative to user location and in

the user direction of travelling. We design an efficient algorithm based on Filter phase, Heap phase and

Refine Skyline phases. At the end, we propose a dynamic skyline caching (DSC) mechanism which helps to

reduce the computation cost for future skyline queries. The experimental evaluation reflects the

performance of GD-RST algorithm over the traditional branch and bound algorithm for skyline queries in

real road networks.

KEYWORDS

GD-RST, Spatial Databases, Skyline Queries, GIS, Location based services, GPS.

1. INTRODUCTION

The Wireless technologies are popular in providing location based services to users no matter

where they are. The face of Location based services are changing with applications like Indoor

Location Positioning, Location-Based Notifications, Social Route Planning, Location-Based

Emergency Phone Calls, Navigation & Mapping, Location-Based Advertising etc. A skyline

query [4] returns all the data objects which are not dominated by other objects in data set D. For

example, a tourist may wish to search for hotel which is cheapest in price, closest to the beach

and a hospital. The algorithm now determines the set of all hotels that might be the best choice

considering all possible ratios and thus, all possible user preferences.

With the advances in spatial databases, the previous research focuses on the efficiency issues of

searching skylines, including block nested loop (BNL) [2], divide- and-conquer (D&C) [2],

bitmap and index [23], nearest neighbor (NN) [14], and branch-and-bound (BBS) [18]. It is the

first effort to focus on travel time for relative skyline query processing.

International Journal of Database Management Systems (IJDMS) Vol.4, No.2, April 2012

24

To sum up we make the following contributions:

1. Finds the GD-RST by taking travel time as metric.

2. Techniques for reducing the search space and avoid repeated access of data points while

finding out relative multi-source nearest neighbor skyline.

3. Designing efficient algorithm in three phases namely Filter, Heap and Refine Skyline

phases.

4. Developing cache-centered algorithm to reduce the computation cost of future spatial

queries.

The reminder of this paper is organized as follows. In section 2, we review the related work on

skyline queries. In section 3, we formally defined GD-RST query in Road Networks. In section 4,

we introduce algorithm for finding the data points by considering travel time in road networks.

Section 5 presents the results of our experimental evaluation of our proposed approaches with a

variety of Spatial Network with large number of data and query objects. Finally section 6

concludes the paper with future research

2. RELATED WORK

2.1 Single-source Skyline query in Euclidean space

Skyline query processing has been studied extensively in recent years [4, 5, 25, 21, 17, 19, 24].

The skyline operator was first introduced into the database community by Borzsonyi et al. [2].

Borzsonyi et al. [2] propose the Block-Nested-Loops algorithm (BNL) and the Extended Divided-

and-Conquer algorithm (DC). Both algorithms processes the entire object set for retrieving the

skyline data. In [3], the Sort-Filter- Skyline algorithm (SFS) progressively report skyline points

by pre-sorting the entire dataset according a preference function. Tan et al.[18] propose a bitmap-

based method which transforms each object to bit vectors. Bitmaps can be very large for large

values. This method cannot guarantee a good initial response time. Kossmann et al. [7] propose

an online nearest neighbor skyline query processing method which can progressively report the

skyline points in an order according to user’s preference. The objects in the dominated subspace

are pruned, and the objects in each non-determined subspace form a to-do list. To remedy this

problem, Papadias et al. [14] propose an R-tree based algorithm, Brand and Bound Skyline

(BBS), which retrieves skyline points by browsing the R-tree based on the best-first strategy.

BBS only visits the intermediate nodes not dominated by any determined skyline points. This

method has more efficient memory consumption than the method in [7]. Another study by Lin et

al. [11] process a skyline point query against the most recent N elements in a data stream.

2.2 Skyline variants

There are many variants of the traditional skyline query. Pei et al. [16] and Yuan et al. [22]

proposed methods to compute skylines in all possible subspaces. Tao et al. [19] gave an efficient

algorithm to calculate skylines in a specific subspace. Dellis and Seeger [4] proposed a reverse

skyline query, which obtains those objects that have the query point as skyline, where each

attribute is defined as the absolute difference from objects to query point along each dimension.

In the context of uncertain databases, Pei et al. [15] proposed the probabilistic skyline over

uncertain data, which returns a number of objects that are expected to be skylines with probability

higher than a threshold. The most relevant problems to our work are the dynamic skyline[14],

International Journal of Database Management Systems (IJDMS) Vol.4, No.2, April 2012

25

spatial skyline [17], multi-source skyline on road networks [5], multi-preference path planning

approach[9] and continuous probabilistic skyline queries over uncertain data streams[8].

Specifically, Papadias et al. [14] applies BBS algorithm to retrieve skyline points, where dynamic

attributes of data objects are computed by a set of dimension functions. However, only Euclidean

distance was considered for dimension functions. Similarly, the method proposed for multisource

skyline on road networks [5] also utilizes geometric information of data objects during the

pruning, which is thus limited to road network application.

In summary, previous studies on skyline variants are limited to either Euclidean space or metric

space for a specific application. In contrast, our work focuses on the travel time as a metric for

skyline search which play a vital role in road networks. It also helps future queries computation

time by caching technique.

3. SYSTEM MODEL

In this section, we describe the road network and system model; define the GD-RST query search

in spatial networks. We assume a spatial network [California Road Network], containing set of

static data objects as well as query objects searching their skyline objects. We assume all road

maps and traffic data are maintained by cloud server.

3.1 Road Network

We model the underlying road network as a weighted undirected graph G = (V,E) where E is an

Edge set of road segments in the road network, V is the Vertex set of intersection points of the

road segment and each edge is given travel time of its corresponding road segment as weights.

Figure 1. GD-RST Architecture

International Journal of Database Management Systems (IJDMS) Vol.4, No.2, April 2012

26

In this model (Figure 1), we consider our system with a mobile environment in which mobile user

is able to communicate with the service provider through wireless communication infrastructure

e.g.: Wi-Fi.

3.2 Definition

A GD-RST query is a Goal Directed Relative Skyline queries on Time dependent (GD-RST) road

networks where data objects are returned in the user way of travel relative to their location. The

GD-RST query is useful in following situations:

Example1 :(Query Q1) if a user wants to find a serviced apartment close to a hospital and a

restaurant. From the Fig: 1, the algorithm returns serviced apartment (A3) object which is close to

hospital (H4) and restaurant (R1) based on the travel time.

Example2 :(Query Q2) if a tourist wants to find a low price restaurant nearer to a temple and

close to a beach. From the Fig: 1, the algorithm returns restaurant (R1) object which is nearer to

temple (T3) and close to beach (B1) based on the travel time.

4. ALGORITHM

4.1 Pre-computation

As a pre-computation, the road network is partitioned into grids (Figure 2) to reduce the search

space in finding out the nearest neighbor vertex of the user location. We apply a road network

clustering approach to efficiently compute the nearest vertex of the query origin and reduce the

search space by considering only nodes in user direction of travel.

Figure2. Grid partition – Road Network

International Journal of Database Management Systems (IJDMS) Vol.4, No.2, April 2012

27

The algorithm first finds the nearest vertex of the query origin. The user location is given by GPS

/ Wi-Fi. The NEARESTNEIGHBOR NODE function gives the nearest neighboring road node

“u” of the user. The road network “R” is divided into G1, G2, G3….Gn grids by taking Latitude,

Longitude as grid size. This is done by the function MapGrid. It maps each node in road to a grid.

The advantage in partitioning is reducing the search space and increasing the computation speed.

Harvesian Formula is used in finding the distance between two locations. The nodes within grid

Gj are sorted in descending order of their distances from user location “u” where the top most

nodes gives the nearest neighbour of “u”.

The algorithm consists of Filter, Heap and Skyline-refine phases. During the Filter phase (refer

Figure 3), instead of searching the entire database for list of restaurants, user preferred restaurants

that are budgetary within user acceptable range are applied. The resultant candidate set is input to

the Heap phase. During Heap phase, a certain degree of aggregation is required for factors such as

hotel rating, travel time, total price etc. During this phase, the network is expanded which

explores the graph based on travel time to identify other query point nearest neighbor nodes. At

the end, for all list of candidate sets, Skyline-refine phase is applied to liter out dominated objects

that cannot be in the query answer. At this phase, a caching method is applied which stores the

query result for future queries.

From the nearest node, all adjacent nodes are traversed to find the list of first user preferred query

point. While searching the query points, the query filters out the unwanted data points that are out

of range of user preferences (Filter phase). The algorithm proceeds by applying the other query

preferences on the list of candidate data objects (Heap phase). All the candidate objects are

refined by considering the minimum travel time and other factors (Skyline-Refine phase). At the

end, the algorithm returns the goal directed skyline object relative to user location.

Figure 3. Road Network : GD-RST Query

(in above Figure3: R1,R2,R3 – restaurants, H1,H2,H3 – hospitals, T1,T2,T3 – temples, B1,B2,B3 –

beach).

International Journal of Database Management Systems (IJDMS) Vol.4, No.2, April 2012

28

Each time a query is received, the dynamic skyline cache (DSC) stores the query point. If the

cache is exceeded in size, the least frequently used (LFU) query is evicted. This is done by

incrementing a counter to each skyline w.r.t query point and also considering the traffic update.

The cache page will also be replaced when there is a drastic change in traffic.

4.3 Optimization

Optimization is achieved by computing the travel times to selected hotels which have the

potential to participate in the final query answer instead of all hotels. For example, (Query Q3):

Retrieve all low cost hospitals nearby restaurant and a temple. The optimization is as shown in

Figure(4) and Figure(5)

International Journal of Database Management Systems (IJDMS) Vol.4, No.2, April 2012

29

Figure 4. Query Q3 before Optimization

Figure 5. Query Q3 after Optimization

From the above, Query Q3 before and after optimization is compared. This approach would

enhance the query processing by avoiding redundant extensive computations. Aggregations for

secondary query points are done before applying skyline retrieval. This helps in further reduction

of query computation.

International Journal of Database Management Systems (IJDMS) Vol.4, No.2, April 2012

30

5. EXPERIMENTAL EVALUATION

5.1 Experimental Setup

We conducted experiments on California road network which contains 21,050 nodes and 21693

edges. The algorithm is implemented in Java and tested on Windows Platform with Intel Core 2

CPU and 80GB memory. The main metric we adopt is CPU time that reflects how much time the

algorithm takes in processing a skyline query. The input map is extracted from Tiger/Line files

that are publicly available [23].

5.2 Results

5.2.1 Impact of I/O on set of Query Points

 Figure 6: (a)

With this experiment in Fig 6(a), we show the impact of I/O on set of query points with GD-RST

and Branch and bound Skyline (BSS) algorithms.

5.2.2 Impact of CPU time on set of Query Points

Fig 6(b), we show the impact of CPU () on set of query points with GD-RST and BSS algorithms.

Here total execution time of all query phases except pre-computation is taken for GD-RST and

BBS algorithm is distance based skyline query processing. In both the comparison (fig 6(a) and

6(b)), the GD-RST algorithm has high performance than the traditional BSS algorithm. It has low

I/O cost and less CPU time than its counterpart BSS.

International Journal of Database Management Systems (IJDMS) Vol.4, No.2, April 2012

31

Figure 6: (b)

5.2.3 Impact of Cluster in search space

Figure 6: (c)

Fig 6(c), we show the impact of grid partitioning the road network to find nearest neighbor. Here

C1,C108,C4,C61 are clusters that define the latitude, longitude boundary of an area. The impact

of clustering with nodes in each of four cluster is depicted in figure 6(c).

International Journal of Database Management Systems (IJDMS) Vol.4, No.2, April 2012

32

5.2.4 Impact of cache in query computation

Figure 6: (d)

Fig 6(d), we show the impact of cache technique in computing future queries. Here Q1,Q2 are

queries defined in section 3.2. The figure shows for processing future queries (i,e if same query is

asked by same user/another user at any point of time and if query is in cache then the result of the

query is taken from cache instead of computing it again. The CPU time reduction in using

Dynamic Cache technique is shown here.

5.2.5 Impact of query optimization on dominant objects

 Figure 6: (e)

Fig 6(e), we show the impact of query optimization in object retrieval from database.

International Journal of Database Management Systems (IJDMS) Vol.4, No.2, April 2012

33

6. CONCLUSION

In this paper, we propose a Goal Directed Relative Skyline queries on travel time dependent (GD-

RST) road networks. This algorithm efficiently searches and computes the nearest data object to

query origin and in the user direction of traveling. The algorithm also caches the skylines to

reduce the computation cost for future queries.

Additional future works includes skyline query for moving objects, different types of

transportation mode, road types.

REFERENCES

[1] Baihua Zheng, K.C.K. Lee, and Wang-Chien Lee, "Location-Dependent Skyline Query," in 9th

International Conference on Mobile Data Managemen, Beijing, 2008, pp. 148-155.

[2] S. Borzsonyi, D. Kossmann, and K. Stoker. The skyline operator.ICDE, 2001.

[3] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with processing. ICDE, 2003.

[4] E. Dellis and B. Seeger. Efficient computation of reverse skyline queries. In Proc.

[5] K. Deng, X. Zhou, and H. T. Shen. Multi-source skyline query processing in road networks. In Proc.

23th Int. Conf.on Data Engineering, pages 796–805, 2007.

[6] Ke Deng, Xiaofang Zhou, and Heng Tao Shen, "Multi-source skyline query processing in road

networks," in IEEE 23rd International Conference on Data Engineering, Istanbul, 2007, pp. 796 –

805.

[7] D. Kossmann, F. Ranmsak, and S. Rost. Shooting stars in the sky: An online algorithm for skyline

queries.VLDB, 2002.

[8] Hui Zhu Su, En Tzu Wang and Arbee L. P. Chen. Continuous probabilistic skyline queries over

uncertain data streams. Database and Expert Systems Applications, 2011 Springer.

[9] Kriegel, H.-P.; Renz, M.; Schubert, M. Route skyline queries: A multi-preference path planning

approach.in IEEE 26th International Conference on Data Engineering (ICDE),2010.

[10] R. Kung, E. Hanson, Y. Ioannidis, T. Sellis, L. Shapiro, and M. Stonebraker. Heuristic search in data

base system. Proc.1st International Workshop on Expert Database Systems, 1986.

[11] X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the sky: Efficient skyline computation over sliding

windows. ICDE, 2005.

[12] Mehdi Sharifzadeh, Cyrus Shahabi, and Leyla Kazemi, "Processing spatial skyline queries in both

vector spaces and spatial network databases," ACM Transactions on Database Systems, vol. 34, no.

3,pp. 1-43, August 2009.

[13] D. Papadias, Q. Shen, Y. Tao, and K. Mouratids. Group nearest neighbor queries. ICDE, 2004.

[14] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline computation in database systems.

ACM Trans.Database Syst., 30(1):41–82, 2005.

International Journal of Database Management Systems (IJDMS) Vol.4, No.2, April 2012

34

[15] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic skylines on uncertain data. In Proc. 33th Int.

Conf.on Very LargeData Bases, pages 15–26, 2007.

[16] J. Pei, W. Jin, M. Ester, and Y. Tao. Catching the best views of skyline: a semantic approach based on

decisive subspaces. In Proc. 31th Int. Conf. on Very Large Data Bases, pages 253–264, 2005.

[17] M. Sharifzadeh and C. Shahabi. The spatial skyline queries. VLDB, 2006.

[18] K.-L. Tan, P.-K. Eng, and B. Ooi. Efficient progressive skyline conputation. VLDB, 2001.

[19] Y. Tao, X. K. Xiao, and J. Pei. SUBSKY: Efficient computation of skylines in subspaces. In Proc.

22th Int. Conf. on Data Engineering, page 65, 2006.

[20] Yang Du, Donghui Zhang, and Tian Xia, "The Optimal-Location Query," in 9th International

Symposium Advances in Spatial and Temporal Databases, Angra dos Reis, 2005, pp. 163-180.

[21] M. Yiu, N. Mamoulis, and D. Papadias. Aggregate nearest neighbor queries in road networks. TKDE,

17(6):820–833, 2005.

[22] Y. Yuan, X. Lin, Q., W. Wang, J. Xu Yu, and Q. Zhang. Efficient computation of the skyline cube. In

Proc. 31th Int. Conf. on Very Large Data Bases, 2005.

[23] Tiger/Line: ww.census.gov/geo/www/tiger/.

