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Abstract 
 
Although there may be lot of research work done on sequential pattern mining in static, incremental, 

progressive databases, the previous work do not fully concentrating on support issues. Most of the previous 

approaches set a single minimum support threshold for all the items or item sets. But in real world 

applications different items may have different support threshold to describe whether a given item or item 

set is a frequent item set.  This means each item will contain its own support threshold depends   upon 

various issues like cost of item, environmental factors etc. In this work we proposed a new approach which 

can be applied on any algorithm independent of that whether the particular algorithm may or may not use 

the process of generating the candidate sets for identifying the frequent item sets. The proposed algorithm 

will use the concept of “percentage of participation” instead of occurrence frequency for every possible 

combination of items or item sets. The concept of percentage of participation will be calculated based on 

the minimum support threshold for each item set. Our algorithm MS DirApp, which stands for Multiple 

Support Direct Appending, which discovers sequential patterns in by considering different multiple 

minimum support threshold values for every possible combinations of item or item sets.  
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1. INTRODUCTION 

 
Sequential Pattern mining is one of the most important research issues in data mining.  Which 

was first introduced by Agarwal and Srikanth [2] and can be described as follows:  we are given a 

set of data sequences which will be used as input data.  Each sequence consists of a list of ordered 

item sets containing a set of different items.  The sequential pattern mining finds all Sub 

sequences with frequencies lower than min support which is given by user. After that there have 

been a significant research work was done by various researchers on sequential pattern mining 

and defined number of algorithms not only for static data base [2],[3] Where data do not change 

over time but also for incremental data bases[6] where there will be new data arriving as the time 

goes by. In addition to above researchers some other researchers derived other kind of sequential 

patterns like closed sequential patterns [7], [8], [9].  Constraint sequential pattern [10] maximal 
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sequential patterns [11]  spatio temporal sequential patterns [12]. Sequential pattern on specific 

type of data [13] on stream data [14]. 

 

The sequential patterns mining in progressive data bases will be having a vide use in many 

applications. For example in mobile applications, share market.  Moreover the stock price 

changes of the company before five years ago may have very little influence on the quotes of 

other stocks.  To remedy the problem of sequential pattern mining in progressive databases, 

Haung.et.al [6] proposed an algorithm DirApp which takes the concept of period of Interest (POI) 

but Haung.et.al[6] also considered only uniform min.sup like all the previous researchers. 

 

But considering uniform min.sup, implicitly assumes that all items in the data base have similar 

frequency. However some items may appear very frequently in the data base while other rarely 

appears.  Under such circumstances, if we set the value of min support too high we will not find 

those rules involving rare items in the data base.  On the other hand if we set that value too low, it 

will generate huge amounts of meaningless patterns.  Therefore liue .et.al [4] first address this and 

propose the concept of multiple minimum supports (MMS in Short)in association rule mining.  In 

this study we first extend the definition of sequential pattern by considering the concept of MMS, 

which allows users to specify multiple min.sup for each item.  Items with low frequencies will be 

specified with lower minimum support and pattern involving these items can be easily retrieved 

for further decision support. 

 

But the major problem on frequent pattern mining with MMS is that the downward closure 

property no longer holds in the mining process, which means that a super-pattern of an infrequent 

pattern might be frequent pattern. To effectively reduce the search space in a level –wise 

methods, Liu.et.al proposes the sorted closure property, where all item in data sets are sorted in 

ascending order by their MIS values. The sorted closure property however is invalid in sequential 

pattern mining since the order in the data sequences cannot be altered. Therefore to discover 

complete set of sequential patterns with MMS is not straight forward. Based on the new 

definitions of sequential patterns with MMS, we first proposed the concept called Percentage of 

participation (POP) where POP is the percentage of participation of the item or item set with 

respect to the  no of sequences in the POI i.e. |Db| and minimum item support (MIS). 

 

The structure of this paper as follows. In section 2, we first review the concept of DirApp as the 

basis of our approach. Section 3 introduces the definition of the progressive sequential pattern 

mining with multiple minimum supports (MMS) by involving the Percentage of participation 

(POP).Our algorithm called MS-DirApp will be discussed in section 4 and we have conclusion in 

section 5. 

 

2. RELATED WORK 

 
Haung.et.al proposed algorithm which works for mining of sequential patterns in progressive data 

bases. The input of progressive sequential pattern mining is a user specified length of POI and 

user-defined minimum support threshold. POI is a sliding window protocol whose length is a user 

specified time interval continuously advances as the time advances.  The sequences having 

elements whose time stamps are within the POI will be considered to contribute for |Db| for 

current sequential patterns (where |Db| is the number of sequences in the POI).  The sequences 

having elements with time stamps older than the POI will be considered as absolute and removed. 

In this they consider an element which is set of items appeared in a sequence with the time stamp 



International Journal of Database Management Systems ( IJDMS ) Vol.4, No.4, August 2012 

31 

denoted by p, q. When the sequence database is denoted by Db then a sequence in a sequence 

database is a set of elements ordered by time stamp increasingly. They also introduced a time 

interval denoted by [p, q] to represent the time interval between time stamp p and q. Therefore 

Db
p,q

 is defined as a subset of the databases Db containing the elements of sequences from time 

stamp p to time stamp q. They also aimed finding the sequential patterns containing no repeated 

elements and having more than one element. In the beginning, the mining algorithm receives new 

data of different timestamps with a user-defined minimum support threshold and  the length   of  

POI.   For   each   POI,   the   mining   algorithm progressively updates the sequences in the 

database along with the occurrence frequencies of candidate sequential patterns. Then, the 

algorithm outputs frequent sequential patterns which   are qualified by the uniform minimum 

support threshold. Note that the mining algorithm should prune away obsolete  data  from the 

sequence database, delete obsolete  sequential patterns  rapidly,  and   update  |Db|  with   the   

number  of sequences which   have  elements  in  the  current POI.  The process  will be 

continuously executed until there is no more newly arriving data. 

 

 
 

Figure 1 

For the above example shown in figure1 the algorithm DirApp constructs the candidate sets as 

follows which is shown in figure2. 
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Figure 2 

Before this many researchers have developed various methods to find frequent sequential patterns 

with a static database. Apriori All [2], GSP [3] are the milestones of sequential pattern mining 

algorithms based on traditional association rules mining technique. SPADE [5], illustrated by 

Zaki, systematically searched the sequence lattice spanned by the subsequence relation. Han et al. 

and Pie et al. brought up Free Span and Prefix Span, which found sequential patterns by 

constructing sub databases of the entire database. Zhang et al.  proposed two algorithms  GSP+  

and   MFS+  based   on  static   algorithms GSP and  MFS  (also  derived by  the  same  

authors).But as discussed early in section1 all the researchers considered uniform min.sup to 

describe whether the sequence is frequent or not. 

 

3. PROBLEM DEFINITION 

 
In this section, we formally give definitions used in the discovery of sequential pattern with 

MMS. Let I denote the set of items in the database, and a subset of I is called an item set. A 

customer’s data-sequence is an ordered list of items with time stamps. Therefore, a sequence, say 

α, can be represented as <(a1: t1), (a2: t2), (a3: t3), …, (an: tn)>, where a j is an item, and tj  stands 

for the time when aj  occurs, 1≤ j≤n, and tj-1≤tj for 2≤j≤ n. 

 

If several items occur at the same time in tj for 2 j the sequence, they are ordered alphabetically. 
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Definition 1. Given an item set Iq = (i1, i2...im), we say item set Iq occurs in α if integers 1≤k1 < 

k2 <…< km ≤n exist such that, i1 = ak1, i2 = ak2,... ,im = akm  and tk1= tk2=...= tkm. We refer to k1 and 

tk1 jointly as the position and the time that Iq occurs in α, respectively. 

 

Definition 2. Let β = <I1, I2...Is> (Iq subset or equal to I for 1 ≤q≤ s) be a sequence of item set. 

Assume that each Iq in β occurs in α. Then we say sequence β occurs in α, or is a subsequence of α 

if tI1 < tI2<...< tIs, where tIq (1≤ q ≤s) is the time, at which Iq occurs in α. 

 

Definition 3. A sequence database S is formed by a set of records <sid, s >, where sid is the 

identifier of this data-sequence and s is a data-sequence. For a given sequence β, the support 

count of sequence β in S are defined as follows: 

 

supp (β) = |{(sid, s)| (sid, s) ЄS ^β is a subsequence in s}| 

 

The following definitions are related to the concept of MMS. In this model, the definition of the 

minimum support is changed. Each item in the database can have its minsup, which is expressed 

in terms of minimum item support (MIS). In other words, users can specify different MIS values 

for different items. 

 

Definition 4: Let MIS (i) denote the MIS value of item i (i subset or equal to I). Given an item 

set Iq = (i1,i2,...,im), the MIS value of item set Iq = (i1,i2,...,im) (1≤ k ≤m), denoted as MIS(Iq), is 

equal to:    

                                   min [MIS (i1), MIS(i2),…, MIS(im)] 

 

Definition 5: Given a sequence β = <I1.I2...Is>  

(Iq subset or equal to I for 1≤ q≤ s), the minimum support threshold of β, denoted as MIS (β), is 

equal to: 

                                       min [ MIS(I1), MIS(I2),…, MIS(Is)] 

 

Definition 6: Given a sequence database S and a sequence β, we call β is frequent in S or β is a 

sequential pattern in S if supp (β) ≥MIS (β). 

 
Definition 7: Progressive sequential pattern mining problem. “Given a user-specified 

length of POI and a user- defined minimum support threshold, find the  complete set of 

frequent subsequences whose occurrence frequencies are greater than  or equal to the minimum  

support  times the number of sequences  in the recent POI of a progressive database.” 

 
Definition 8: Let I be an item or item set and MIS (I) be the minimum item support threshold of 

item I. |Db
p,q

| is the number of sequences In the POI. Timestamps between p ,q. 

 

Percentage Of Participation(POP)=       100/ |Db
p,q

|* MIS(I) 

 

With the provision of different minimum item support thresholds for different items, user can 

effectively express different support requirements for different data-sequences. MMS allow users 

to have higher minimum supports for sequences involving high frequent items, and also allows 

us to have lower minimum supports for sequences involving rare items. Given a sequence 

Database S and a set of MIS values for all items in S, we discover all sequential patterns that 

satisfy MIS (β). 
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4. THE PROPOSED ALGORITHM 

4.1 Candidate sequential pattern generation 

The basic idea of MS-DirApp is progressively update each sequence in the flat structure and 

accumulate the percentage of participation of the candidate sequential pattern from one POI to 

other POI. In the process of accumulating the candidate sets if the POI is advancing for one 

timestamp, generally the items belongs to first time stamp in previous POI will be withdrawn 

along with the percentage of participation as the obsolete data. When new element (item or 

itemset) are arriving from the progressive time stamp MS-DirApp creates all combinations of 

items as candidate elements and accumulate the percentage of participation by calculating the 

POP of the element. In calculation process MS-Dir App consider the least minimum support of 

the item, if no of items are contributed in the combination. For example if the arriving element is 

(ABC) the combinations of candidate element are A, B, C, (AB), (AC), (BC) and (ABC) and in 

the above cases of (AB) it will consider the least minimum support of A or B. This is will be 

continued with the remaining elements like (AC),(BC) and (ABC).Then MS-DirApp finds the 

corresponding candidate set of the sequence according to the sequence ID of the element. In the 

process of forming new candidate sequential patterns with corresponding begin timestamps, MS-

DirApp joins every combination of the newly arriving data to the candidates which have already 

been accumulated in the previous candidate set. The timestamp of the begin element will be 

considered as the begin timestamp when a candidate sequential pattern appear in a sequence of 

progressive database. After that MS-DirApp inserts the newly formed candidate sequential 

patterns into the existing candidate sequential pattern. In addition to that MS-DirApp also 

calculates the Percentage of participation of the combined elements and accumulates POP of all 

candidate sequential patterns in another candidate set. For those candidate sequential patterns 

with obsolete begin timestamp (Begin is smaller than current time minus POI), MS-DirApp 

deletes them from candidate sets along with their percentage of participation. Finally MS-DirApp 

outputs frequent sequential patterns based on the multiple minimum support of each item and 

prunes away obsolete candidate sequential patterns for all sequences. 

 

 
Figure 3 

 
Now  in this example we will discuss how the MS-DirApp will generate the candidate sequential 

pattern and frequent sequential patterns in a progressive databases with multiple minimum 

supports. 
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Algorithm POP (Items, MIS(I)) 

1. var POP; 

2. var I, Imin;// Items 

3. For (all combinations of items in the ele); 

4. If (No of items >1); 

5. Check and identify the item Imin having less support; 

6. POP (ele)=100/|Db
p,q

|*MIS(Imin): // |Db
p,q

| is no of sequences from p to q 

7. else 

8. POP (ele)=100/|Db
p,q

|*MIS(I): // |Db
p,q

| is no of sequences from p to q 

 

END 

  

Figure 4(a) 

Algorithm MS-DirApp (POI) 

1. var PT; // Progressive Table 

2. var current Time; // timestamp now 

3. var eleSet; // used to store elements ele 

4. while (there is still new transaction) 

5. eleSet=read all ele at current Time; 

6. ck (currentTime, PT); 

7. current Time++ 

 

 END 

Figure 4(b) 

Algorithm ck (current time, PT)   

1. for (each ck of PT in post order) 

2. if (ck is null) 

3. for (ele of every seq in eleSet) 

4. for (all combination of elements in the ele)  

5. if (element==label of one of ele.ck) 

6. if (seq is in subck.seq_list) 

7. update timestamp of seq to currentTime, POP (ele); 

8. else 

9. create a new sequence with current Time, POP(ele); 

10. else 

11. create a new subck with element, current Time, POP(ele); 

12. else for (every seq in the seq_list) 

13. if (seq.timestamp<= currentTime_POI) 

14. delete seq, POP (el) from seq_list and continue to next seq; 

15. if (there is new ele of the seq in eleSet) 

16. for (all combination of elements in the ele) 
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18. if (element is not in ck) 

19. if (element==label of one of subck) 

20. if (seq is in subck.seq_list) 

21. subck.seq_list.seq.timestamp= seq.timestamp; 

22. else 

23. create a new sequence with seq.timestamp, POP (ele); 

24. else 

25. create a new subck with element, seq.timestamp, POP (ele); 

28. if (seq_list.Total POP (el)>=100%) 

29. output the ele as a sequential pattern; 

 

END 

 

Figure 4(c) 

The input database is the same data base which was mentioned in Figure1.But here we are 

considering those elements that sequence S01 has with their corresponding existing POI as shown 

in figure 3 and the MIS values for A,B,C,D are 0.8,0.5,0.3,0.2 continuously .  The algorithms for 

percentage of participation is shown in figure 4(a) and MS-DirApp is shown in figure 4(b, c). The 

candidate set of candidate sequential patterns for S01maintained by MS DirApp is shown in 

figure 5. The Db
p, q

 at the top of each table in figure5 represents the database containing elements 

along with their percentage of participation from timestamp p to timestamp q. First, MS DirApp 

reads the element A at timestamp 1 and stores A as a candidate with begin =1, i.e., A
1
, in the 

candidate set along with its percentage of participation.  The percentage of participation is 

calculated basing on the timestamp and the user defined minimum value of support. For example 

if the user defined minimum support for A is 0.8, the percentage of participation of element A for 

its each contribution will be 100/ (number of sequence in Db
1, 1 

(3)*MIS of A (0.8)) i.e. 41.66 % 

as per the definition 8. When receiving element B at timestamp 2, for the candidate patterns 

already in the candidate set, MS DirApp appends B to A
1
 to be AB

1
 and accumulates the 

percentage of participation as shown in the second table of figure 5. Here for the combination of 

AB, we will consider the minimum value of MIS between A, B.  For example the user specified 

minimum item supports of A, B are 0.8, 0.5 consecutively, we will consider the minimum value 

i.e. 0.5 for the combination AB.  Now, the POP of combination AB will be 100/ (number of 

sequence in Db
1, 2 

(4)*MIS of B (0.5)) i.e. 50% for its each occurrence as per the definition 8. 

This process will be continued in MS Dir App, accumulates B
2 
and its percentage of participation 

along with the AB
1
.The second table in figure 5, shows this process. 

  

The same process continues until there are no new arriving elements. When MS DirApp deals 

withDb
1, 5

 at timestamp 5, the newly arriving element is AD, combinations of this element are A, 

D, and AD. Because there is already an A
1
 in the candidate set, MS DirApp changes it’s begin 

timestamp from 1 to 5 and just accumulates  its percentage of participation by calculating it. The 

reason is that for all elements whose timestamps are between 2 and 4 are already appended to A
1
. 

Therefore, we have to only append the elements to A5 whose timestamps are larger than 5. In 

addition, MS DirApp also appends A to the candidates that do not contain an A in the candidate 

set along with their POP. Thus, BA
2
 with POP 40%, CA

4
 with POP 66%, and BCA

2
 with POP 

66% are inserted into the candidate set. After five timestamps, the POI moves to time interval [2, 

6] and accumulates the combinations along with the percentage of participation as shown in 

figure.5 table 6.  
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The algorithm not only accumulates newly arrived candidate patterns and also removes obsolete 

patterns along with percentage of participations i.e. whose time stamps begin with 1 as shown in 

figure 5 table 6. When MS DirApp handles Db
3, 7

 the candidate patterns whose begin time stamps 

are less than 3 can be deleted too. 

 

 

 

4.2 Frequent sequential pattern generation 

Now in this section we will discuss how the frequent sequential patterns will be generated from 

the candidate sequential patterns. Here we should consider the candidate sequential patterns for 

all the sequences (S01 to S06) shown in fig1. The process of construction of candidate sequential 

patterns for the first sequence was discussed previously in section 4.1.The same procedure will be 

adapted for all the sequences mentioned in figure 1.The next process is identifying the candidate 

sequential patterns with respect to the time stamps say for example Db
1, 2

, Db
1, 3

, Db
1, 4

, Db
1, 5

, 

Db
2, 6

, Db
3, 7   

for all the sequences and accumulate the total percentage of participation of the 

sequences accordingly.  

 

 

 

 

 

 

 

 

1        4  5            6             7 

Db1,1 Db1,4 Db1,5 Db2,6 Db3,7 

A1
31 A1

25 A5
25 B(AD)2 100 A5 25 A5 25 

 

B2
40 B2

40 ABD1 100 B2 40 C4 66 

2 AB1
40 AB1 40 AB(AD)1

100 C4 66 D5 100 

Db1,2 C4
66 C4 66 CA4 66 BC2 66 (AD)5 100 

A1
31 AC1

66 AC1 66 CD4 100 D5 100 CA4 66 

B2
66.6 BC2

66 BC2 66 C(AD)4 100 

( AD)5 

100 CD4 100 

AB1
66.6 ABC1

66 

ABC1 

66 ACD1 100 BA2 40 C(AD)4 100 

 

D5 100 

AC(AD)1 

100 BD2 100 B7 40 

3 

(AD)5 

100 BCA2 66 

B(AD)2 

100 AB5 40 

Db1,3 AD1 100 BCD2 100 CA4 66 CB4 40 

A1
25 

A(AD)1 

100 

BC(AD)2 

100 CD4
100 DB5 66 

B2
40 BA2 40 ABCD1 100 

C(AD)4 

100 (AD)B5 100 

AB1
40 BD2 100 

ABC(AD)1 

100 BCA2 66 CAB4 66 

 

 

 

 BCD2 100 CDB4 100 

Figure 5 
BC(AD)2 

100 

C(AD)B4 

100 
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S01 S02 S03 S04 DB
1,2

 (4) 

Db
1,2

 Db
1,2 

Db
1,2 

Db
1,2 

AB
1 

50 

A
1

31 A
1 

31 A
1 

31 D
2 

125 A(BC)
1 

83 

B
2

66.6 D
1 

125 B
2 

50 (4) AC
1 

83 

AB
1

66.6 (AD)
1 

125 C
2 

83 AD(B)
1 

125 

(1) B
2 

50 (BC)
2 

83 DB
1 

125 

AB
1 

66.6 AB
1 

66.6     (5) 

DB
1 

125 AC
1 

83 

(AD)B
1 

125 A(BC)
1 

83 

                                            (2)                             (3) 
 

Figure 6 

In the process of frequent sequential pattern mining we generally will not consider the sequences 

who are directly participating without any combinations as frequent sequences. For example A
1 

and B
2
 in table1, A

1
,D

1
,(AD)

1 
and B

2 
in table 2,A

1
,B

2
,C

2
 and (BC)

2 
in table 3,D

2 
in table 4 of 

figure 6 will not accumulated for frequent pattern generation. Finally we will treat those 

sequences whose total percentage of participation should be equal to or more than100 are 

frequent sequences. The process is shown in the figure 6 and the frequent sequential patterns for 

Db
1, 2 

are AB
1
, AD (B)

 1
, Db

1
. 

 

5. Result 
 
Our proposed algorithm is very effectively working for test dataset and we have analysed 

the test dataset for different parameters like period of interest, execution time etc. 
 
 
5.1   Impact of period of interest (POI) on execution time 
 
Execution time is the time required to execute all the instructions in the proposed algorithm. 

Here we can observe that  the execution time will  increase a li tt le bit  with 

respect  to the time taken for identifying the item having minimum MIS value. 

For this we applied the quick sorting technique .It can be noted that execution time is 

directly proportional to POI. The reason is that, the increase in POI required more time for 

process as the no of new elements will be added to the existing one. 

 

Figure 7 shows the impact of POI over the execution time. 
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Figure 7 

5.2       Impact of POI over number of patterns 
 

Number of patterns is dependent on per iod  of interest a. As from F i g . 8  we can see that as 

the period of interest increases, the number of patterns also increases. This is because as the 

period of interest increases, the algorithm has more items to process and so they give more 

number of patterns.  

 

 
Figure 8 

4.3     Comparison between MS-DirApp and DirApp in terms of time in progressive database 

 

Generally mining frequent sequential  patterns with multiple minimum supports 

will  take more t ime when compared with mining frequent sequences with 

uniform support.  In case of percentage of participation (POP), the time for execution 

of Ms-DirApp  will  take l it tle bit  more time than the DirApp . The difference of 

t ime between these two will  be the time for identifying the i tem having 

minimum MIS value from the newly arriving element and accumulating the POP. 

We can observe the difference in the Figure9 
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 Figure 9 

6. CONCLUSION 

In the proposed novel work MS DirApp algorithm is efficiently working by using the concept of 

percentage of participation (POP) for mining frequent sequences in progressive databases with 

multiple minimum supports. Even though the algorithm is taking little more time for execution 

when compared with DirApp (which finds the frequent sequential patterns in progressive 

databases by considering uniform min.support for different items) it works on frequent sequences 

with multiple minimum supports for different items. As the novel algorithm is finding the 

sequences with multiple minimum supports we can ignore the little increase in time of execution. 

But in order to calculate the POP of all candidate sequential patterns, it keeps all the candidate 

sets for all sequences in every POI. This involves huge memory usage and involves lots of 

computation. 
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