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ABSTRACT 

The Data Warehouse Striping (DWS) technique is a data partitioning approach especially designed for 

distributed data warehousing environments. In DWS the fact tables are distributed by an arbitrary number 

of low-cost computers and each query is executed in parallel by all the computers, guarantying a nearly 

optimal speed up and scale up. Data loading in distributed data warehouses is typically a heavy process 

and brings the need for loading algorithms that conciliate a balanced distribution of data among nodes 

with an efficient data allocation. These are fundamental aspects to achieve low and uniform response times 

and, consequently, high performance during the execution of queries. This paper proposes a generic 

approach for the evaluation of data distribution algorithms and assesses several alternative algorithms in 

the context of DWS. The experimental results show that the effective loading of the nodes must consider 

complementary effects, minimizing the number of distinct keys of any large dimension in the fact tables in 

each node, as well as splitting correlated rows among the nodes. 
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1. INTRODUCTION 

Data warehouses represent nowadays an essential source of strategic information for many 
companies. In fact, as competition among enterprises increases, the availability of tailored 
business information that helps decision makers during decision support processes is of utmost 
importance.  

A data warehouse (DW) is an integrated and centralized repository that offers high capabilities 
for data analysis and manipulation [1]. In a data warehouse the data is organized according to the 
multidimensional model, which includes facts and dimensions. Facts are numeric or factual data 
that represent a specific business or process activity and each dimension represents a different 
perspective for the analysis of the facts. The multidimensional model is typically implemented as 
one or more star schema made of a large central fact table surrounded by several dimensional 
tables related to the fact table by foreign keys. 

Typical data warehouses are periodically loaded with new data that represents the activity of the 
business since the last load [2]. This is part of the normal life cycle of data warehouses and 
includes three key steps (also known as ETL): Extraction, Transformation, and Loading. In 
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practice, the raw data is extracted from several sources and it is necessary to introduce some 
transformations to assure data consistency, before loading that data into the DW. 

Data warehouses store high volumes of data integrated from several different operational sources. 
Thus, the data stored in a DW can range from some hundreds of Gigabytes to dozens of 
Terabytes. Obviously, this scenario raises two important challenges. The first is related to the 
storage of the data, which requires a large and highly available storage system. The second 
concerns accessing and processing the data in due time, as the goal is to provide low response 
times for the queries issued by the users. 

In order to properly handle large volumes of data, allowing to perform complex data manipulation 
operations, enterprises normally use high performance systems to host their data warehouses. The 
most common choice consists of systems that offer massive parallel processing capabilities [3], 
[4], as Massive Parallel Processing (MPP) systems or Symmetric MultiProcessing (SMP) 
systems. Due to the high price of this type of systems, some less expensive alternatives have 
already been proposed and implemented [5], [6]. One of those alternatives is the Data Warehouse 
Stripping (DWS) technique [7], [8], a solution already implemented and made available 
commercially by Critical Software S.A. [9]. 

In the DWS technique the data of each star schema of a data warehouse is distributed over an 
arbitrary number of nodes. This way, a major challenge faced by DWS is the distribution of data 
to the cluster nodes. In fact, DWS brings the need for distribution algorithms that conciliate a 
balanced distribution of data among nodes with an efficient data allocation. Obviously, efficient 
data allocation is a major challenge as the goal is to place the data in such way that guarantees 
low and uniform response times from all cluster nodes and, consequently, high performance 
during the execution of queries. 

This paper extends a preliminary work done by the authors in [10] and proposes a generic 
methodology to evaluate and compare data distribution algorithms. The approach is based on a set 
of metrics that characterize the efficiency of the algorithms, considering three key aspects: data 
distribution time, coefficient of variation of the number of rows placed in each node, and queries 
response time. Data and queries from the TPC-DS performance benchmark [11] are used to 
exercise the data distribution algorithms. The methodology includes a set of steps that should be 
followed during the evaluation of an algorithm, which makes the approach generic and suitable 
for other data distribution algorithms besides the ones addressed in this paper. 

The paper studies three key data distribution algorithms that can be used in DWS clusters: round-
robin, random, and hash-based. Concerning the round-robin algorithm, several variants are 
addressed considering different loading windows, namely: round-robin 1, round-robin 10, round-
robin 100, round-robin 1000, and round-robin 10000. To demonstrate the proposed methodology 
and evaluate the data distribution algorithms a set of experiments was conducted using the 
PostgreSQL Database Management System (DBMS).  

The goal of these experiments is to identify the data distribution algorithm that best fits the DWS 
needs, as well as trying to establish the most relevant characteristics that can make a data 
distribution produce the best system performance. 

The structure of the paper is as follows. Section 2 presents related work. Section 3 discusses the 
data distribution problem in the context of DWS. Section 3 presents the methodology for the 
evaluation of data distribution algorithms. The experimental evaluation is described in Section 4 
and Section 5 concludes the paper. 
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2. RELATED WORK 

There is a vast literature on query processing and load balancing in parallel database systems 
(e.g., [12-14]) and distributed databases (e.g., [15-17]). In [15] it is discussed the potential of 
parallel processing in the data warehouse loading process and for the maintenance of materialized 
views. However, this work does not address the use of parallel technology for data warehouse 
analysis. 

Many DBMS vendors claim to support parallel data warehousing to various degrees, including: 
Oracle 11g [18], IBM/Informix Red Brick [19], and the Microsoft SQL Server [20]. Most of these 
products, however, do not take advantage of dimensionality of data that exists in a data 
warehouse and it remains unclear to what extent multidimensional fragmentation is exploited to 
reduce query work. None of the aforementioned vendors provide sufficient information or even 
tool support on how to determine an adequate data allocation for star schemas. In our opinion, the 
effective use of parallel processing in data warehouses can be achieved only if we are able to find 
innovative techniques for parallel data placement using the underlying properties of data.   

One of the first works to propose a parallel physical design for the data warehouse was 
DATAllegro. This work proposes a data indexing strategy based on vertical partitioning of the 
star schema to provide efficient data partitioning and parallel resource utilization. The paper 
presents algorithms that split the data among N parallel processors and perform parallel join 
operations, but without quantifying potential gains. A multidimensional hierarchical 
fragmentation and allocation method for star schemas in a parallel data warehouse environment 
was recently proposed in [21]. This approach called MDHF (MultiDimensional Hierarchical 
Fragmentation) allows all star queries referencing at least one attribute from any fragmentation 
dimension to be confined to a subset of the fact table fragments. This approach assumes a shared 
disk parallel database system that exhibits near linear scalability with respect to the number of 
disks and processors, but in certain cases (partially filled bitmap indexes) it shows an increase in 
I/O load and has some administration overhead. 

Although we are implementing a centralized data warehouse distributed over a computer network 
environment, our work is also related to distribute processing in data warehouses. The fact that 
many data warehouses tend to be extremely large in size [22] and grow quickly means that a 
scalable architecture is crucial. A truly distributed data warehouse can be achieved by distributing 
the data across multiple data warehouses in such a way that each individual data warehouse 
cooperates to provide the user with a single and global view of the data. In spite of the potential 
advantages of distributed data warehouses, especially when the organization has a clear 
distributed nature, these systems are always very complex and have a difficult global 
management [23]. On the other hand, the performance of distributed queries is normally poor, 
mainly due to load balance problems.  

In this context, DWS provides a flexible approach for distribution, inspired in both distributed 
data warehouse architecture and classical round-robin partitioning techniques. The data is 
partitioned in such a way that the load is uniformly distributed to all the available computers and, 
at the same time, the communication requirements between computers are kept to a minimum 
during the query computation phase [7], [8]. 

A considerable body of research has been performed for processing and optimizing queries over 
distributed data (see, e.g. [24-29]). However, this research has focused mainly on distributed join 
processing rather than distributed computation. The approach we explore in this paper marries the 
concepts of distributed processing and data placement to provide a fast and reliable relational data 
warehouse. 
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3. DATA DISTRIBUTION IN DWS NODES 

Data Warehouse Striping allows enterprises to build large data warehouses at low cost. DWS can 
be built using inexpensive hardware and software (e.g., low cost open source database 
management systems) and still achieve very high performance. In fact, DWS data partitioning for 
star schemas balances the workload by all computers in the cluster, supporting parallel query 
processing as well as load balancing for disks and processors. The experimental results presented 
in [7] show that a DWS cluster can provide an almost linear speedup and scale up. 

In the DWS technique [7], [8] the data of each star schema of a data warehouse is distributed over 
an arbitrary number of nodes having the same star schema (which is equal to the schema of the 
equivalent centralized version). The data of the dimension tables is replicated in each node of the 
cluster (i.e., each dimension has exactly the same rows in all the nodes) and the data of the fact 
tables is distributed over the fact tables of the several nodes (see Figure 1). It is important to 
emphasize that the replication of dimension tables does not represent a serious overhead because 
usually the dimensions only represent between 1% and 5% of the space occupied by all database 
[1]. In the rare cases in which the star schema has a very large dimension it is possible to 
accommodate that dimension in the DWS cluster by using selective loading techniques [30] or 
encoding techniques [31]. 

 

Figure 1. Traditional approach vs Data Warehouse Striping Technique 

One of the challenges faced by DWS is data loading, as distributing large amounts of data to the 
cluster nodes must be an efficient process. Original DWS proposal [7] did not address this issue 
in depth and all performance tests conducted assumed that it would be possible to define and 
implement an efficient data loading mechanism, which is not always the case. In fact, poorly 
distributed data may lead some nodes to process more data than others, which may affect the 
system's response time. 
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In a DWS cluster OLAP (On-Line Analytical Processing) queries are executed in parallel by all 
the nodes available and the results are merged by the DWS middleware (i.e., middleware that 
allows client applications to connect to the DWS system without knowing the cluster 
implementation details). Thus, if a node of the cluster presents a response time higher than the 
others, all the system is affected, as the final results can only be obtained when all individual 
results become available [7]. This means that the overall query execution time is defined by the 
slowest node, and so the data loading algorithm must ensure that the data is distributed in such a 
way that the slowest node is as fast as possible. 

In a DWS installation, the extraction and transformation steps of the ETL process are similar to 
the ones performed in typical data warehouses (i.e., DWS does not require any adaptation on 
these steps). It is in the loading step that the nodes data distribution takes place. Loading the DWS 
dimensions is a process similar to classical data warehouses; the only difference is that they must 
be replicated in all nodes available. The key difficulty is that the large fact tables have to be 
distributed by all nodes. 

Loading facts data in DWS is a two steps process. First, all data is prepared in a DWS Data 
Staging Area (DSA). This DSA has a data schema equal to the DWS nodes, with one exception: 
fact tables contain one extra column, which will register the destination node of each row. The 
data in the fact tables is chronologically ordered and the chosen algorithm is executed to 
determine the destination node of each row. In the second stage, the fact rows are effectively 
copied to the node assigned. Three key algorithms can be considered for data distribution: 

• Random data distribution: The destination node of each row is randomly assigned. The 
expected result of such an algorithm is to have an evenly mixed distribution, with a 
balanced number of rows in each of the nodes but without any sort of data correlation 
(i.e. no significant clusters of correlated data are expected in a particular node). 

• Round Robin data distribution: The rows are processed sequentially and a particular 
predefined number of rows, called a window, is assigned to the first node.  After that, the 
next window of rows is assigned to the second node, and so on. For this algorithm several 
window sizes can be considered, for example: 1, 10, 100, 1000 and 10000 rows (window 
sizes used in our experiments). Considering that the data is chronologically ordered from 
the start, some effects of using different window sizes are expected. For example, for a 
round-robin using size 1 window, rows end up chronologically scattered between the 
nodes, and so particular date frames are bound to appear evenly in each node, being the 
number of rows in each node the most balanced possible. As the size of the window 
increases, chronological grouping may become significant, and the unbalance of total 
number of facts rows between the nodes increases. 

• Hash-based data distribution: In this algorithm, the destination node is computed by 
applying a hash function [32] over the value of the key attribute (or set of attributes) of 
each row. The resulting data distribution is somewhat similar to using a random 
approach, except that this one is reproducible, meaning that each particular row is always 
assigned to the same node. 

4. EVALUATING DATA DISTRIBUTION ALGORITHMS 

Characterizing data distribution algorithms in the context of DWS requires the use of a set of 
metrics. These metrics should be easy to understand and be derived directly from 
experimentation. We believe that data distribution algorithms can be effectively characterized 
using three key metrics: 
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• Data distribution time (DT): The amount of time (in seconds) a given algorithm 
requires for distributing a given quantity of data in a cluster with a certain number of 
nodes. Algorithms should take the minimum time possible for data distribution. This is 
especially important for periodical data loads that should be very fast in order to make the 
data available as soon as possible and have a small impact on the data warehouse normal 
operation. 

• Coefficient of variation of the amount of data stored in each node (CV): 
Characterizes the differences in the amount of fact rows stored in each node. CV is the 
standard deviation divided by the mean (in percentage) and may be particularly relevant 
when homogenous nodes are used or the storage space needs to be efficiently used. It is 
also important to achieve uniform response times from all nodes.1 

• Queries response time (QT): Characterizes the efficiency of the data distribution in 
terms of the performance of the system when executing user queries. A good data 
distribution algorithm should place the data in such way that allows low response times 
for the queries issued by the users. As query response time is always determined by the 
slowest node in the DWS cluster, data distribution algorithms should assure well 
balanced response times at node level. QT represents the sum of the individual response 
times of a predefined set of queries (in seconds). 

To obtain these metrics we need data and a set of queries to explore that data. The data is initially 
distributed over the cluster nodes using the algorithm being assessed. Afterwards, the queries are 
executed to obtain response times. In our approach we use the recently proposed TPC Benchmark 
DS (TPC-DS) [11], as it models a typical decision support system, imitating the activity of a 
multi-channel (stores, catalogs, and the Internet) retailer, thus adjusting to the type of systems that 
would be implemented using the DWS technique. The TPC-DS schema is a star schema, 
consisting of multiple dimension tables and seven fact tables, modeling the sales and sales returns 
processes of the business considered. A key advantage of using TPC-DS is that is has been the 
result of an extensive study by the Transaction Processing Performance Council to define a data 
warehouse model and a set of queries that are representative of real systems from the field. The 
size of the TPC-DS database (defined in the specification as a scaling factor) should be chosen 
taking into consideration the number and capabilities of the nodes in the cluster. 

Evaluating the effectiveness of a given data distribution algorithm is thus a four steps process: 

1. Define the experimental setup by selecting the software to be used (in special the 
DBMS), the number of nodes in the cluster, and the TPC-DS scale factor. 

2. Generate the data using the “dbgen2” utility (Data Generator) of TPC-DS to generate 
the data and the “qgen2” utility (Query generator) to transform the query templates into 
executable SQL for the target DBMS. As mentioned before, generated data is temporarily 
stored in the DWS Data Staging area in a schema similar to the one used in the cluster 
nodes.  

3. Load the data into the cluster nodes and measure the data distribution time and the 
coefficient of variation of the amount of data stored in each node. Due to the obvious 
non-determinism of the data loading process, this step should be executed (i.e., repeated) 
at least three times. Ideally, to achieve some statistical representativeness it should be 

                                                
1 Notice, however, that low coefficient of variation of the total number of fact rows in each node may not 
necessarily imply the best response time, as it also depends on the characteristics of the data sent to each 
node. 
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executed a much larger number of times; however, as it is a quite heavy step, this may not 
be practical or even possible. The data distribution time and the CV are calculated as the 
average of the times and CVs obtained in each execution. 

4. Execute queries to evaluate the effectiveness of the data placing in terms of the 
performance of the user queries. TPC-DS queries should be run one at a time and the 
state of the system should be restarted between consecutive executions (e.g., by 
performing a cache flush between executions) to obtain execution times for each query 
that are independent from the queries run before. Due to the non-determinism of the 
execution time, each query should be executed at least three times. The response time for 
a given query is the average of the response times obtained for each of the three 
individual executions. 

5. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section we present an experimental evaluation of the algorithms discussed in Section 3 
using the approach proposed in Section 4. The experiments aim to identify differences, if any, 
between the various data distribution algorithms, concerning not only the performance of the 
distribution process itself, but also the performance of the DWS system when accessing data 
distributed using each of the algorithms. 

5.1. Setup and experiments 

The basic platform used consist of six Intel Pentium IV servers with 2Gb of memory, a 120Gb 
SATA hard disk, and running PostgreSQL 8.2 database engine over the Debian Linux Etch 
operating system. The following configuration parameters were used for PostgreSQL 8.2 database 
engine in each of the nodes: 950 Mb for shared_buffers, 50 Mb for work_mem and 700 Mb for 
effective_cache_size. 

The servers were connected through a dedicated fast-Ethernet network. Five of them were used as 
nodes of the DWS cluster, being the other the coordinating node, which runs the middleware that 
allows client applications to connect to the system, receives queries from the clients, creates and 
submits the sub queries to the nodes of the cluster, receives the partial results from the nodes and 
constructs the final result that is sent to the client application. 

Two TPC-DS [11] scaling factors were used, 1 and 10, representing initial data warehouse sizes 
of 1Gb and 10Gb, respectively. These small factors were used due to the limited characteristics of 
the cluster used (i.e., very low cost nodes) and the short amount of time available to perform the 
experiments. However, it is important to emphasize, that even with these small datasets it is 
possible to assess the performance of data distribution algorithms (as we show further on), and 
preliminary tests (with 100Gb and 1Tb datasets) showed that the conclusions presented also 

hold for larger datasets. 

5.2. Data distribution time 

The evaluation of the data distribution algorithms started by generating the facts data in the DWS 
Data Staging Area (DSA), located in the coordinating node. Afterwards, each algorithm was used 
to compute the destination node for each facts row. Finally, facts rows were distributed to the 
corresponding nodes. Table 1 presents the time needed to perform the data distribution using 
each of the algorithms considered. 

The algorithm using a hash function to determine the destination node for each row of the fact 
tables is clearly the less advantageous. For the 1Gb DW, all other algorithms tested took 
approximately the same time to populate the star schemas in all nodes of the cluster, with a slight 
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advantage to round-robin 100 (although the small difference in the results does not allow us to 
draw any general conclusions). For the 10 Gb DW, the fastest way to distribute the data was using 
round-robin 1, with an increasing distribution time as a larger window for round-robin is 
considered. Nevertheless, round-robin 10000, the slowest approach, took only more 936 seconds 
than round-robin 1 (the fastest), which represents less than 5% extra time. 

Table 1. Time (in the format hours:minutes:seconds) to copy the replicated dimension tables and 
to distribute facts data across the five node DWS system 

 Distribution time 

Algorithm 1 Gb 10 Gb 

Random 0:33:16 6:13:31 
Round-robin 1 0:32:09 6:07:15 
Round-robin 10 0:32:31 6:12:52 
Round-robin 100 0:31:44 6:13:21 
Round-robin 1000 0:32:14 6:16:35 
Round-robin 10000 0:32:26 6:22:51 
Hash-based 0:40:00 10:05:43 

 

5.3. Coefficient of variation of the number of rows 

Table 2 and Table 3 display the coefficient of variation of the number of rows sent to each of 
the five nodes, for each fact table of the TPC-DS schema. 

Table 2. CV(\%) of number of rows in the fact tables in each node for the 1Gb data warehouse. 

Facts table Random RR1 RR10 RR100 RR1000 RR10000 Hash-based 

catalog_returns 0.70 0.00 0.02 0.18 1.21 8.96 0.64 
catalog_sales 0.15 0.00 0.00 0.00 0.00 1.55 0.24 
inventory 0.06 0.00 0.00 0.00 0.00 0.10 0.00 
store_returns 0.18 0.00 0.01 0.08 0.87 7.53 0.22 
store_sales 0.11 0.00 0.00 0.01 0.01 0.94 0.14 
web_returns 0.84 0.00 0.03 0.34 3.61 35.73 0.99 
web_sales 0.35 0.00 0.00 0.02 0.02 3.79 0.15 

 

Table 3. CV(\%) of number of rows in the fact tables in each node for the 10Gb data warehouse. 

Facts table Random RR1 RR10 RR100 RR1000 RR10000 Hash-based 

catalog_returns 0.21 0.00 0.00 0.01 0.15 1.51 0.07 
catalog_sales 0.04 0.00 0.00 0.00 0.02 0.10 0.07 
inventory 0.02 0.00 0.00 0.00 0.00 0.02 0.00 
store_returns 0.08 0.00 0.00 0.00 0.04 0.94 0.12 
store_sales 0.05 0.00 0.00 0.00 0.01 0.06 0.08 
web_returns 0.18 0.00 0.00 0.03 0.30 3.64 0.20 
web_sales 0.12 0.00 0.00 0.00 0.00 0.00 0.01 

 

For both the data warehouses with 1Gb and 10 Gb, the best equilibrium amongst the different 
nodes in terms of number of rows in each fact table was achieved using round-robin 1. The results 
obtained for the random and hash-based distributions were similar, particularly for the 1Gb data 
warehouse. 
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The values for the CV are slightly lower for 10Gb than when a 1Gb DSA was used, which would 
be expected considering that the maximum difference in number of rows was maintained but the 
total number of rows increased considerably. 

As the total number of rows in each fact table increases, the coefficient of variation of the number 
of rows that is sent to each node decreases. If the number of rows to be distributed is considerably 
small, a larger window for the round-robin distribution will result in a poorer balance. Random 
and hash-based distributions also yield a better equilibrium of total facts rows in each node if the 
number of facts rows to distribute is larger. 

5.4. Queries response time 

To assess the performance of the DWS system during query execution, 27 queries from the TPC 
Benchmark DS (TPC-DS) were run. The queries were selected based on their intrinsic 
characteristics and taking into account the changes needed for the queries to be supported by the 
PostgreSQL DBMS. Note that, as the goal is to evaluate the data distribution algorithms and not 
to compare the performance of the system with other systems, the subset of queries used is 
sufficient. The complete set of TPC-DS queries used in the experiments can be found in [33]. 

5.4.1. Data warehouse of 1Gb 

Figure 2 shows the results obtained for five of the TPC-DS queries. As we can see, for some 
queries the execution time is highly dependent on the data distribution algorithm, while for some 
other queries the execution time seems to be relatively independent from the data distribution 
algorithm used to populate each node. The execution times for all the queries used in the 
experiments can be found at [33]. 

 

Figure 2. Execution times for each data distribution of a 1Gb data warehouse. 
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We will focus our discussion of the results on the behavior of queries 24 and 25, as their behavior 
is representative of the behavior of most of the queries used, highlighting the differences in 
performance that resulted from using different distribution algorithms. As a first step to 
understand the results for each query, we analyzed the execution times of the queries in the 
individual nodes of the cluster. The results for queries 24 and 25 are listed in Table 4, along with 
the mean execution time and the coefficient of variation of the execution times of all nodes. 

Table 4. Execution times in each node of the cluster (DW of 1Gb). 

  Execution times (ms) 

Query Node Random RR1 RR10 RR100 RR1000 RR10000 Hash 

24 

1 31391 30893 28702 24617 19761 20893 27881 
2 28089 30743 29730 24812 20284 3314 27465 
3 38539 35741 29296 23301 20202 3077 29500 
4 31288 29704 29683 24794 23530 6533 31595 
5 35783 33625 28733 27765 21144 21976 30782 

CV (%) 12.49 7.72 1.70 6.54 7.19 85.02 6.07 

25 

1 8336 8519 7775 7426 8293 1798 7603 
2 7073 9094 8338 7794 13763 1457 7109 
3 12349 11620 7523 7885 14584 6011 9022 
4 8882 8428 7175 8117 2927 1533 9732 
5 8782 8666 7561 7457 1881 19034 8621 

CV (%) 21.60 14.47 5.59 3.79 71.22 126.57 12.62 
 

By comparing the partial execution times for query 25 (see Table 4) to its overall execution time 
(displayed in Figure 2), it is apparent that the greater the unbalance of each node's execution 
time, the longer the overall execution time of the query. The opposite, though, is observed for 
query 24: the distribution with the largest unbalance of the cluster nodes’ execution times is also 
the fastest. In fact, although in this case round-robin 10000 presents two clearly slower nodes, 
they are still faster than the slowest node for any of the other distributions, resulting in a faster 
overall execution time for the query. 

The analysis of the execution plan for query 24 showed that the steps that decisively contribute 
for the total execution time are three distinct index scans (of the indexes on the primary keys of 
dimension tables customer, customer_address, and item), executed after retrieving the fact rows 
from table web_sales that comply with a given date constraint (year 2000 and quarter of year 2). 
Also for query 25, the first step of the execution is retrieving the fact rows from table 
catalog_returns that correspond to year 2001 and month 12, after which four index scans are 
executed (of the indexes on the primary keys of dimension tables customer, customer_address, 
household_demographics, and customer_demographics). 

In both cases, the number of eligible rows (i.e., rows from the fact table that comply with the date 
constraint) determines the number of times each index is scanned. Table 5 depicts the number of 
rows in table web_sales and in table catalog_returns in each node, for each distribution, that 
correspond to the date constraints being applied for queries 24 and 25. 

As we can observe, the coefficient of variation of the number of eligible facts rows in each node 
increases as we move from round-robin 1 to round-robin 10000, being similar for random and 
hash-based distributions. This is a consequence of distributing increasingly larger groups of 
sequential facts rows from a chronologically ordered set of data to the same node: with the 
increase of the round-robin “window”, more facts rows with the same value for the date key will 
end up in the same node, resulting in an increasingly uneven distribution (in what concerns the 
values for that key). In this case, whenever the query being run applies a restriction on the date, 
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the number of eligible rows in each node will be dramatically different among the nodes for a 
round-robin 10000 data distribution (which results in some nodes having to do much more 
processing to obtain a result than others), but more balanced for random or round-robin 1 or 10 
distributions. 

Table 5. Number of facts rows that comply with the date constraints of queries 24 (table 
web_sales) and 25 (table catalog_returns). 

  # of facts rows 

Facts 

Table 
Node Random RR1 RR10 RR100 RR1000 RR10000 Hash 

web_sales 

1 4061 4055 4054 4105 3994 9529 4076 
2 3990 4055 4053 4052 4283 19 3999 
3 4101 4056 4055 4002 3999 7 4044 
4 4042 4056 4056 4002 3998 740 4139 
5 4083 4055 4062 4116 4003 9982 4019 

CV (%) 1.06 0.01 0.09 1.34 3.14 128.58 1.35 

catalog_ 
returns 

1 489 477 487 499 404 16 483 
2 475 477 470 495 982 6 462 
3 490 477 472 511 960 227 470 
4 468 477 479 457 28 10 484 
5 464 478 478 424 12 2127 487 

CV (%) 2.49 0.09 1.40 7.54 100.03 194.26 2.24 

 

Nevertheless, this alone does not account for the results obtained. If that was the case, round-
robin 10000 would be the distribution with the poorer performance for both queries 24 and 25, as 
there would be a significant unbalance of the workload among the nodes, resulting in a longer 
overall execution time. 

The data in Table 6 sheds some light on why this data distribution yielded a good performance 
for query 24, but not for query 25. It displays the average time to perform two different index 
scans: the index scan on the index of the primary key of the dimension table customer, executed 
while running query 24, and the index scan on the index of the primary key of the dimension table 
customer_demographics, executed while running query 25. The number of times each index scan 
was performed during the execution of the queries and the total number of distinct foreign keys 
(corresponding to distinct rows in the dimension table) present in the queried fact table, in each 
node of the system, for round-robin 1 and round-robin 10000 distributions are also displayed. 

In both cases, the average time to perform the index scan on the index over the primary key of the 
dimension table in each of the nodes was very similar for round-robin 1, but quite variable for 
round-robin 10000. In fact, during the execution of query 24, the index scan on the index over the 
primary key of the table customer was quite fast in nodes 1 and 5 for the round-robin 10000 
distribution and, in spite of having the largest number of eligible rows in those nodes, they ended 
up executing faster than all the nodes for the round-robin 1 distribution. Although there seems to 
be some preparation time for the execution of an index scan, independently of the number of rows 
that are afterwards looked for in the index (which accounts for the higher average time for nodes 
2, 3 and 4), carefully looking at the data on Table 6 allows us to conclude that the time needed to 
perform the index scan in the different nodes decreases when the number of distinct primary key 
values of the dimension that are present in the fact table scanned also decreases. 
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Table 6. Average time to perform an index scan on dimension table customer (query 24) and on 
dimension table customer_demographics (query 25). 

Query Algorithm Node 

Exec. 

Time 

(ms) 

Index scan on dimension Diff. values of 

foreign key in 

facts table 
avg time (ms) # of times perf. 

24 

Round-robin 
1 

1 30893 3.027 4055 42475 
2 30743 3.074 4055 42518 
3 35741 3.696 4056 42414 
4 29704 2.858 4056 42458 
5 33625 3.363 4055 42419 

Round-robin 
10000 

1 20893 0.777 9529 12766 
2 3314 17.000 19 12953 
3 3077 19.370 7 12422 
4 6533 1.596 740 12280 
5 21976 0.725 9982 12447 

25 

Round-robin 
1 

1 8519 0.019 38 28006 
2 9094 0.019 32 27983 
3 11620 0.019 22 28035 
4 8428 0.019 32 28034 
5 8666 0.017 39 28035 

Round-robin 
10000 

1 1798 66.523 1 29231 
2 1457 73.488 1 29077 
3 6011 34.751 2 29163 
4 1533 - 0 29068 
5 19034 19.696 146 23454 

 

This way, the relation between the number of distinct values for the foreign keys and the 
execution time in each node seams to be quite clear: the less distinct keys there are to look for in 
the indexes, the shorter is the execution time of the query in the node (mostly because the less 
distinct rows of the dimension that need to be looked for, the less pages need to be fetched from 
disk, which dramatically lowers I/O time). This explains why query 24 runs faster in a round-
robin 10000 data distribution: each node had fewer distinct values of the foreign key in the 
queried fact table. For query 25, as the total different values of foreign key in the queried fact 
table in each node was very similar, the predominant effect was the unbalance of eligible rows, 
and round-robin 10000 data distribution resulted in a poorer performance. 

These results ended up revealing an crucial aspect: some amount of clustering of fact tables rows, 
concerning each of the foreign keys, seems to result in an improvement of performance (as 
happened for query 24), but too much clustering, when specific filters are applied to the values of 
that keys, result in a decrease of performance (as happened for query 25). 

5.4.2. Data warehouse of 10Gb 

The same kind of results were obtained for a DWS system equivalent to a 10Gb data warehouse, 
and the 3 previously identified behaviors were also found: queries whose execution times did not 
appear to depend on the distribution, queries that ran faster on round-robin 10000, and queries 
that ran faster on the random distribution. The queries presented more balanced execution times 
for all data distributions, the exception being round-robin 10000, for which most queries had 
either the shortest or the longest execution time. 

Query 25, for example, had now more even execution times for all data distributions, except for 
round-robin 10000, in which it was still noticeably slower. With the considerable increase of the 
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total number of rows in each facts table, the difference in number of eligible facts rows (after 
applying the date constraint) between the nodes became quite small for random and round-robin 
with smaller “windows”, and the effect of uneven work among the nodes was toned down for 
these distributions, therefore having a significant impact on total execution time only for round-
robin 10000. This is made clear by the data on Table 7, and further confirms the findings 
discussed in the previous section. 

Table 7. Execution times and number of facts rows in table catalog_returns that comply with the 
date constraint of query 25, for data warehouses of 1Gb and 10Gb. 

Algorithm Node 

10Gb 1Gb 

Ex. Time 

(ms) 

# of elegible 

facts rows 

Ex. Time 

(ms) 

# of elegible 

facts rows 

Random 

1 51332 4801 8336 489 
2 59553 4720 7073 475 
3 65959 4858 12349 490 
4 63130 4741 8882 468 
5 57764 4691 8782 464 

CV (%) 9.37  1.41 21.60 2.49 

Round-robin 
1000 

1 65303 5000 8293 404 
2 63286 5000 13763 982 
3 47439 4255 14584 960 
4 59298 4556 2927 28 
5 58479 5000 1881 12 

CV (%) 11.79  7.19 71.22 100.03 

Round-robin 
10000 

1 23845  1556 1798 16 
2 90823 10000 1457 6 
3 103885 10000 6011 227 
4 38238 2255 1533 10 
5 2303 0 19034 2127 

CV (%) 84.40  101.86 126.57 194.26 

 

The larger the number of facts rows to distribute among the nodes, the more round-robin data 
distributions with small “windows” (relative to the total number of facts rows being distributed) 
resemble the random distribution.  

Other queries had also leveled execution times for each of the data distributions, but were still 
clearly faster for round-robin 1000 and 10000 distributions, as was the case for queries 12 and 24. 
In fact, the time advantage for these distributions has been dilated, as now the unbalance of 
eligible facts rows in each node has been diminished, and the predominant effect becomes the 
lower number of distinct dimension keys in each node for the round-robin distributions with the 
largest windows (see data on Table 8). 

When the number of facts rows to distribute is small, a random distribution is not as effective as 
with a larger number of rows in obtaining an even distribution of foreign keys (either date 
dimension keys, which significantly influence the number of eligible rows, or the total number of 
distinct keys of other dimensions) in each node. In the case of a 10Gb data warehouse, as the 
amount of data was significantly higher, the random distribution caused better spreading of the 
data than the round-robin with small windows caused in the 1Gb distribution. 
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Table 8. Execution times, number of facts rows in table web_sales that comply with the date 
constraint of query 24, and corresponding number of different foreign keys for dimension 

customer. 

Algorithm Node 
Ex. Time 

(ms) 

# of elegible 

facts rows 

Diff. values of 

foreign key 

Random 

1 219359 41010 334469 
2 251610 40932 334316 
3 232501 41442 334618 
4 231936 41139 334394 
5 247064 41329 334678 

CV (%) 5.47  0.52 0.05 

Round-robin 
1000 

1 219961 41200 334139 
2 220745 41133 334123 
3 258224 41119 334166 
4 253699 41200 334032 
5 254747 41200 334299 

CV (%) 8.02  0.10 0.03 

Round-robin 
10000 

1 132622 40000 143899 
2 129446 40000 145687 
3 146040 40000 145875 
4 165073 45852 145477 
5 150075 40000 146115 

CV (%) 9.92  6.36 0.60 
 

Round-robin 1 is always a bad distribution in what concerns the spreading of the different 
dimension keys, as it tends to send to every node nearly every distinct key possible. With the 
increase of the total number of rows in each facts table, random distribution became more 
effective, and with even more initial data to distribute, it would probably end up performing better 
than round-robin 10000. Still, there will always be a window for which the distribution of 
different dimension keys to each node is more effective than the random distribution. 

But even though the best distribution was not the same for the 10Gb data warehouse, the reason 
for it is similar: eligible rows for queries were better distributed among the nodes and lower 
number of distinct primary keys values of the dimension on the fact tables determined the 
differences. 

6. CONCLUSIONS AND FUTURE WORK 

This work analyzes three data distribution algorithms for the loading of the nodes of a data 
warehouse using the DWS technique: random, round-robin and a hash-based algorithm. Overall, 
the most important aspects we were able to draw from the experiments were concerning two 
values: 1) the number of distinct values of a particular dimension within a queried fact table and 
2) the number of rows that are retrieved after applying a particular filter in each node. 

As a way to understand these aspects, consider, for instance, the existence of a data warehouse 
with a single fact table and a single dimension, constituted by 10000 facts corresponding to 100 
different dimension values (100 rows for each dimension value). Consider, also, that we have the 
data ordered by the dimension column and that there are 5 nodes. There are two opposing 
distributions possible, which distribute evenly the rows among the five nodes (resulting 2000 
rows in each node): a typical round-robin 1 distribution that copies one row to each node at a 
time, and a simpler one that copies the first 2000 rows to the first node, the next 2000 to the 
second, and so on. 
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In the first case, all 100 different dimension values end up in the fact table of each node, while, in 
the second case, the 2000 rows in each node have only 20 of the distinct dimension values. As 
consequence, a query execution on the first distribution may imply the loading of 100% of the 
dimension table in all of the nodes, while on the second distribution a maximum of 20% of the 
dimension table will have to be loaded in each node, because each node has only 20% of all the 
possible distinct values of the dimension.  

If the query run retrieves a large number of rows, regardless of their location on the nodes, the 
second distribution would result in a better performance, as fewer dimension rows would need to 
be read and processed in each node. On the other hand, if the query has a very restrictive filter, 
selecting only a few different values of the dimension, then the first distribution will yield a better 
execution time, because these different values will be more evenly distributed among the nodes, 
resulting in a more distributed processing time, thus lowering the overall execution time for the 
query. 

The aforementioned effects suggest an optimal solution to the problem of the loading of the 
DWS. As a first step, this loading algorithm would classify all the dimensions in the data 
warehouse as large dimensions and small dimensions. Exactly how this classification would be 
done depends on the business considered (i.e., on the queries performed) and must also account 
the fact that this classification might be affected by subsequent data loadings. The effective 
loading of the nodes must then consider complementary effects: it should minimize the number of 
distinct keys of any large dimension in the fact tables of each node, minimizing the disk reading 
on the nodes and, at the same time, it should try to split correlated rows among the nodes, 
avoiding that eligible rows of typical filters used in the queries end up grouped in a few of them. 

However, to accomplish that, it appears to be impossible to decide beforehand a specific loading 
strategy to use without taking the business into consideration. The suggestion here would be to 
analyze the types of queries and filters mostly used in order to decide what would be the best 
solution for each case. 
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