
International Journal of Database Management Systems (IJDMS) Vol.4, No.6, December 2012

DOI: 10.5121/ijdms.2012.4602 11

FAST-ON*: AN EXTENDED ALGORITHM FOR

GRAPH ISOMORPHISM PROBLEM AND GRAPH

QUERY PROCESSING

Mosab Hassaan and Karam Gouda

Faculty of Computers and Informatics, Benha University, Egypt

{mosab.hassaan, karam.gouda}@fci.bu.edu.eg

ABSTRACT

Graphs are widely used to model complicated data semantics in many applications. In our paper [8], we

proposed Fast-ON, an efficient algorithm for subgraph isomorphism problem. In this paper, we develop an

efficient algorithm called Fast-ON* that extends Fast-ON to handle two other problems, namely, graph

isomorphism problem and graph query processing. Our performance study shows that Fast-ON*

outperforms previously proposed algorithms of the two problems with a wide margin.

KEYWORDS

graph isomorphism, graph query processing

1. INTRODUCTION

As a popular data structure, graphs have been used to model many complex data objects and their

relationships in the real world, such as the chemical compounds [20], entities in images [16], and

social networks [2], etc. For example, in social network, a person i corresponds to a vertex vi in

the graph G , and another person j corresponds to a vertex vj in the graph G . If persons i and j

are acquaintances or they have a business relation, then an edge (vi, vj) exists, which connects

vertex vi and

vj. Also in chemistry, a set of atoms combined with designated bonds are used to

describe chemical molecules.

The Graph Isomorphism Problem (GIP) tests whether two given graphs are isomorphic. In

other words, it asks whether there is a one-to-one mapping between the vertices of the graphs,

preserving the edges. This problem has been studied for decades by mathematicians, chemists and

computer scientists, and is considered interesting from both the theoretical and the practical point

of view, since it has applications in many fields, ranging from pattern recognition and computer

vision [7] to information retrieval [1], data mining [19], or chemistry [14]. For example, in data

mining, one main challenges in frequent subgraph mining is to systematically generate candidate

subgraphs in a non-redundant manner, such that we do not generate the same graph more than

once. This means that we have to do graph isomorphism checking to make sure that duplicate

graphs are removed. Given the two graphs q and q' in Figure 1, we have q is iosmorphic to q' (u1

is mapped to u3', u2 is mapped to u1', and u3 is mapped to u2'). GIP has not been possible thus far to

prove it to be in the complexity class P nor NP-complete. Many algorithms have been proposed,

such as Ullman [18], Nauty [15], and Vflib [4].

International Journal of Database Management Systems (IJDMS) Vol.4, No.6, December 2012

12

Graph query processing [6, 22, 3, 21, 10, 23, 9, 26, 17, 29, 11, 24, 28, 27, 25] has attracted much

attention in recent years thanks to the increasing popularity of graph databases in various

application domains. Existing research on graph query processing is conducted mainly on two

types of graph databases as follows.

Figure 1: Running Example

The first one is a large graph such as social networks. Query processing on large graph (Subgraph

over Large Graph (SLG)) can be described as follows. Given a query graph q and large graph

G , we want to retrieve as output the set of subgraphs of G , each of which is isomorphic to q .

For example, in protein-protein interaction networks, biologists may want to recognize groups of

proteins which match a particular pattern in a large protein-protein interaction network. . Given

the the graph G and and the query graph q in Figure 1, we have q is iosmorphic to two subgraphs

in G (the first one: u1 is mapped to v1, u2 is mapped to v3, and u3 is mapped to v4 and the second

one: u1 is mapped to v2, u2 is mapped to v4, and u3 is mapped to v5). There are many algorithms

have been proposed for subgraph over large graph, such as [24, 28, 27, 25].

The second one is transaction graph databases that consist of a set of relatively smaller graphs.

Transaction graph databases are prevalently used in scientific domains such as chemistry,

bioinformatics, etc. Query processing on transaction graph databases (Subgraph Search Problem

(SSP)) can be described as follows. Given a query graph q and a graph database

},...,,,{= 321 nggggD , we want to retrieve as output all graph Dgi ∈ such that q is a

subgraph of ig . For example, given a large chemical compound database, a chemist may want to

find all chemical compounds having a particular substructure. Given the databases graphs

D =

{G, G'} and query graph q in Figure 1, Graph G should be returned as the result since G contains

q. There are many algorithms have been proposed for subgraph search problem, such as [6, 22, 3,

21, 10, 23, 9, 26, 17, 29, 11].

In this paper, we propose an efficient algorithm called Fast-ON
*
for testing GIP, SLG, and SSP.

Fast-ON
*
is an extension of Fast-ON, a previously published algorithm developed by us [8]. We

evaluate Fast-ON
*
and compare it with Ullman and Vflib on real and synthetic datasets for GIP,

with SMS [27] and GADDI [24] for SLG, and with CT-index [11] and FG-index [3] for SSP.

Organization. This paper is organized as follows. Section 2 introduces the preliminary concepts.

Section 3 presents the related work. Fast-ON
*
 algorithm is introduced in Section 4. Section 5

reports the experimental results. We conclude in Section 6 by giving a summary and directions

for future work. In Section 7 (Appendix), we give more details about Ullman and Fast-ON

algorithms.

International Journal of Database Management Systems (IJDMS) Vol.4, No.6, December 2012

13

2. PRELIMINARY CONCEPTS

As a general data structure, labeled graph is used to model complex structured and schema-less

data. In labeled graph, vertices and edges represent entity and relationship, respectively. The

attributes associated with entities and relationships are called labels. This paper focuses on simple

undirected graphs with vertex and edge labels or with vertex label only. Below, the terminology

used throughout the paper is introduced.

Definition 2.1 Labeled Graph.

A labeled graph G is defined as a 4-tuples <
GGGG lLEV ,,, > , where

GV is the set of vertices,

GE is the set of edges,
GL is the set of labels, and

Gl is a labeling function that maps each

vertex or edge to a label in
GL .

Definition 2.2 Vertex Neighborhood.

Given a graph G , the neighborhood of GVu ∈ is the set GG VvuN ∈{=)(| }),(GEvu ∈ . The

degree of a vertex GVv ∈ is defined as |)(=|)(vNvdeg G for simple graphs.

Definition 2.3 Graph Isomorphism Problem (SIP).

Given two graphs H = <
HHHH lLEV ,,, > and G = < GGGG lLEV ,,, > . A graph isomorphism

from H to G is a bijection
GH VVf a: such that: (1) for any edge HEvu ∈),(, there is an

edge
GEvfuf ∈))(),((, (2)))((=)(uflul GH

 and))((=)(vflvl GH
, and (3)

)))(),(((=)),((vfuflvul GH
.

The concept of subgraph isomorphism probelm can be defined analogously by using an

injection instead of a bijection. A graph H is called a subgraph of another graph G (or G is a

supergraph of H), denoted as GH ⊆ (or HG ⊇), if there exists a subgraph isomorphism from

H to G .

Definition 2.4 Vertex Labeled Neighborhood. [8]

Given a graph G and a vertex GVu ∈ , the labeled neighborhood of u is given as)(uNLG =

GGG Vvvulvl ∈:))),((),({(and }),(GEvu ∈ .

The following theorem [8] presents the necessary condition required to map a vertex qVu ∈ to a

vertex GVv ∈ .

Theorem 2.1

Given two graphs q and G such that q is subgraph isomorphic G under injective

function f. If qVu ∈ is mapped to GVv ∈ , then)()(vNLuNL Gq ⊆

International Journal of Database Management Systems (IJDMS) Vol.4, No.6, December 2012

14

Definition 2.5 Subgraph Over Large Graph (SLG).

Given a large data graph G and a query graph q , where || qV << || GV , the problem of

subgraph over large graph is defined as to find all matches of q in G , where matches are

defined in Definition 2.3.

Definition 2.6 Subgraph Search Problem (SSP).

Given a graph database },...,,,{= 321 nggggD and a query graph q , the subgraph search

problem is to find a set of graphs qD which contain q from D , such that gDq {= |

Dg ∈ and }Gq ⊆ .

3. RELATED WORK

Ullman [18] and Vflib [4] are two well-known algorithms for (sub)graph isomorphism problem

and Nauty [15] is well-known algorithm for graph isomorphism problem. Ullman algorithm is

developed based on the branch and bound paradigm [13]. It is prohibitively expensive for

querying against a very large data graph. The Vflib algorithm is another important algorithm for

subgraph isomorphism problem. It uses an optimized serial version of Ullman algorithm. The

algorithm proceeds by creating and modifying a match state. The match state contains a matched-

set, which is a set of vertex pairs that match between the query graph q and data graph G. If the

matched-set contains all of the query graph q, then the algorithm is successful and returns.

Otherwise, the algorithm attempts to add a new pair. It does this by tracking the in-set and out-set

of each graph, which are the sets of vertices immediately adjacent to the matched-set. These two

sets define the potential vertices that can be added to a given state. The only pairs that can be

added are either in the in-set of both graphs or the out-set of both graphs. The algorithm uses

backtracking search to find either a successful match state, or return a failure. Nauty is a

backtracking algorithm that traverses a search tree looking for a canonical labeling, and, in the

process, builds the automorphism group of the graph. Nauty starts with an initial vertex

classification by their degree, that defines a partition of the vertices. From this partition, it

performs successive refinements based on the adjacencies of the vertices of a cell of the partition

with the vertices in all the cells of the partition.

For subgraph over large graph (SLG), Ullman [18] and Vflib [4] cannot work well in large

graphs. There are many algorithms have been proposed for SLG. GADDI [24] has been proposed

for this problem. The authors of GADDI proposed an index based on Neighborhood

discriminative substructures. It counts the number of small substructures in induced intersection

graph between the neighborhood of two vertices. Nova [28] is another algorithm for SLG. Nova

utilizes a noval index called nIndex. It pre-order the query vertices in a way such that more

computational cost could be shared. It also employed an eagerly pruning strategy which could

determine the current enumeration state is impossible to lead to a successful mapping, so that the

enumeration process could exit early. Also SPath [25] has been proposed for this problem. SPath

maintains for each vertex of the network (large graph) a neighborhood signature, a compact

indexing structure comprising decomposed shortest path information within the vertex’s vicinity.

It revolutionizes the way of graph query processing from vertex-at-a-time to path-at-a-time. There

is another algorithm called SMS [27] for SLG. It desgin vertex code based on the information of

each vertex and its neighbors. The authors of SMS proposed the strategy of partitioning the large

graph to improve the query performance.

For subgraph search problem (SSP), Ullman [18] and Vflib [4] also cannot work well since

subgraph isomorphism problem is NP-complete problem [5] and we need to perform subgraph

International Journal of Database Management Systems (IJDMS) Vol.4, No.6, December 2012

15

isomorphism checking of q against each graph Dgi ∈ . The major challenge in this scenario is

to reduce the number of pairwise subgraph isomorphism checking. A number of graph indexing

techniques have been proposed to address this challenge [22, 3, 23, 26, 17, 11, 10, 29]. There are

two categories of graph indexing techniques: feature-based index and nonfeature-based index. In

feature-based index [22, 3, 23, 26, 17, 11], some subgraphs are chosen as index features, and an

inverted list is built for each feature. Generally, query processing follows the filtering-and-

verification framework. for example, CT-index [11] is proposed for SSP. The authors of CT-

index proposed new approach based on the filtering-and-verification framework, using a new

hash-key fingerprint technique with a combination of tree and cycle features for filtering and a

new subgraph isomorphism test for verification. In another new indexing technique FG-Index [3],

both frequent subgraphs and infrequent edges are chosen as feature set and it supports

verification-free strategy. In the category of non-feature-based index. Closure-tree [10] (a

clustering-based index) has been proposed to support both subgraph search problem and

similarity queries. The authors of Closure-tree proposed pseudo subgraph isomorphism using the

strategy of checking the existence of semi-perfect matching between query graph and databases

graphs. Also GCoding [29] has been proposed. Based on GCoding, the structure of the graph can

be encoded into a numerical space, and a two-step filtering method is presented to search the

graph database.

In Section 7 (Appendix), Since Fast-ON
*
 is extended version of Fast-ON [8], we will give more

details about Fast-ON algorithm and we will give also more details about Ullman algorithm [18].

4. FAST-ON* ALGORITHM

In this section, we present an algorithm called Fast-ON
*
 that extends Fast-ON (see subsection

7.2. in Appendix) to handle two other problems, namely, graph isomorphism problem and graph

query processing.

4.1. Graph Isomorphism Problem (GIP).

Considering the graph isomorphism instead of the subgraph isomorphism, we must apply the

following. First, we test that the query graph and the data graph have the same number of

vertices. If || qV is not equal to || GV , we are sure that q is not isomorphic to G , thus the

process could exit early. Then, we must modify the bit matrix DLNM in Algorithm 5 (Subsection

7.2) as follows. 1=),(jim if][=][jDLNiDLN Gq , otherwise 0=),(jim . Fast-ON
*

algorithm for GIP is presented in the following algorithm.

--

Algorithm 1: Fast -ON
*

),(Gq for graph isomorphism problem (GIP)

 Input: two graph q and G .

 Output: Boolean: q is isomorphic to G .

 Boolean Test = FALSE; /* Global Variable */

 1: if(||=|| Gq VV) then

 2: Fast -),(GqON

 3: else

 4: return FASLE

 --

International Journal of Database Management Systems (IJDMS) Vol.4, No.6, December 2012

16

4.2. Graph Query Processing.

As we discussed in Section 1, graph query processing consists of two problems as follows.

4.2.1. Subgraph over Large Graph (SLG).

Recall, SLG can be described as follows. Given a query graph q and large graph G , we want to

retrieve as output the set of subgraphs of G, each of which is isomorphic to q. Fast-ON
*

algorithm for SLG can be presented as follows. The output of this algorithm will be all subgraph

somorphism mappings f of q against G. This will be done by some changes in Fast-ON

algorithm (Algorithm 5) as follows. First, remove the statement Boolean Test = FALSE. Then

replace the lines 7-9 (in Procedure:)(_ iuSearchRecursive) by only one line "Output a mapping

f ". In some cases, we do not use distinct neighborhoods strategy (see optimization two in

Subsection 7.2) since the large graph may have large size of distinct neighborhoods.

4.2.2. Subgraph Search Problem (SSP).

Recall, SSP can be described as follows. Given a query graph q and a graph database

},...,,,{= 321 nggggD , we want to retrieve as output all graph Dgi ∈ such that q is a subgraph

of ig . Fast-ON
*
 algorithm for SSP is presented in the following algorithm.

Algorithm 2: Fast -ON
*

),(Dq for subgraph search problem (SSP).

Input: q : a query graph and D : a graph database.

Output: qD : the answer set.

1: φ=qD

2: for each DG ∈ do

3: Boolean Test = FALSE;

4: if Fast -),(GqON

5:

}{= GDD qq ∪

5. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of Fast-ON
*
 on real and synthetic graphs. Fast-

ON
*
 is implemented in standard C++ with STL library support and compiled with GNU GCC.

Experiments were run on a PC with Intel 3GHz dual Core CPU and 4G memory running Linux.

In experiments, we consider vertex-labeled and edge-labeled(or edge-unlabeled) simple

undirected graphs.

5.1. Datasets

Experimental evaluation are performed on a group of real and synthetic datasets as follows.

Real Datasets. The first real dataset, referred to as AIDS_10K, consists of 10,000 graphs that are

randomly drawn from the AIDS Antiviral screen database
1
. These graphs have 25 vertices and 27

1 http://dtp.nci.gov/.

International Journal of Database Management Systems (IJDMS) Vol.4, No.6, December 2012

17

edges on average. There are totally 62 distinct vertex labels in the dataset but the majority of

these labels are C, O and N. The total number of distinct edge labels is 3. The second real dataset,

referred to as Chem_1M. it is a subset of the PubChem database
2
, and consists of one million

graphs. Chem_1M has 23.98 vertices and 25.76 edges on average. The number of distinct vertex

and distinct edge labels are 81 and 3 respectively. For this study, we derive subsets from

Chem_1M, each of which consists of N graphs and called Chem_N dataset. The third real

dataset, referred to as HRPD, that is, a human protein interaction network (one large graph). It

consists of 9,460 vertices, 37,000 edges and 307 generated vertex labels with GO term

description. In this dataset, the edge labels and direction are ignored in our experiment.

Synthetic Datasets. The synthetic graph dataset is generated as follows: first, a set of S seed

fragments (seed of a small subgraphs) is generated randomly, whose size is determined by a

Poisson distribution with mean I . The size of each graph is a Poisson random variable with

mean T . Seed fragments are then randomly selected and inserted into a graph one by one until

the graph reaches its size. More details about the synthetic data generator are available in [12]. A

typical dataset may have the following setting: it has 10,000 graphs and uses 100 seed fragments

(100=S) with distinct vertex labels, 3=VL and distinct edge labels, 2=EL . On average, each

graph has 50 edges (50=T) and each seed fragment has 15 edges (15=I). This dataset is

denoted by Syn_10K.

 Query Sets. For the three datasets AIDS_10K, Chem_1M and Syn_10K, there are six query sets

Q4, Q8, Q12, Q16, Q20 and Q24. Each set Qi consists of 1000 query graphs with i edges. For

AIDS_10K, we adopt the query set from [22]. In order to generate query sets for Chem_1M and

Syn_10K datasets, a set of 1000 graphs whose size larger than or equal to 24 are randomly

selected from the dataset. Then, edges are removed from graphs such that the remaining graphs

still connected. These graphs constitute Qi when all graphs are of size i . For HRPD dataset, we

generate only three queries, namely, q4, q8, and q12 with size 4 , 8, and 12 respectively.

5.2 Performance Study

In this section, we evaluate the performance of Fast-ON
*
 on various datasets for the two

problems, namely, graph isomorphism problem and graph query processing as follows.

5.2.1. Performance Study for Graph Isomorphism Problem (GIP)

In this subsection, for GIP, we evaluate the performance of Fast-ON
*
 on the query sets of the

three datasets, namely, AIDS_10k, Chem_1M, and Syn_10K against themselves, i.e., we perform

Qi against Qi where ∈i {4, 8, 12, 16, 20, 24}. This will be done by comparing Fast-ON
*

with the two algorithms Ullman and Vflib. Total response time in msec for each query set is

recorded and demonstrated in Figure 2. From this Figure, Fast-ON
*
 algorithm significantly

outperforms Ullman algorithm and Vflib algorithm and it achieves even more performance gain

with increasing query size.

5.2.2. Performance Study for graph query processing

In this subsection, we evaluate the performance of Fast-ON
*
 for the two problems of graph

query processing on real and synthetic graphs as follows.

1. Performance Study for Subgraph over Large Graph (SLG).

2 ftp://ftp.ncbi.nlm.nih.gov/pubchem/.

International Journal of Database Management Systems (IJDMS) Vol.4, No.6, December 2012

18

For SLG, we evaluate the performance of Fast-ON
*
 on HRPD dataset by comparing it with the

two algorithms GADDI and SMS. Total response time in msec for the queries (q4, q8, and q12) is

recorded and demonstrated in Figure 3. From this Figure, Fast-ON
*
 algorithm significantly

outperforms the two algorithms GADDI and SMS by 7 order of magnitude and a factor up to 2

respectively.

2. Performance Study for Subgraph Graph Search (SSP).

For SSP, we evaluate the performance of Fast-ON
*
 on AIDS_40K and Chem_200K datasets by

comparing it with the two algorithms FG-index and CT-index. Note that, the total response time

of the algorithm FG-index (or CT-index) is equal to its index construction time plus its query

processing time. Total response time in sec for each query set is recorded and demonstrated in

Figure 4. In Figure 4(a), Fast-ON
*
 algorithm significantly outperforms FG-index algorithm and

CT-index algorithm by 5 order of magnitude and 2 order of magnitude respectively. In Figure

4(b), Fast-ON
*
 algorithm significantly outperforms FG-index algorithm with a factor up to 4.

Note that CT-index is not shown in Figure 4(b), since it failed to run on our machine.

6. CONCLUSION

In this paper, we develop an efficient algorithm called Fast-ON
*
 that extends Fast-ON to handle

two other problems, namely, graph isomorphism problem and graph query processing. The

algorithm presented in this paper is very effective and efficient. The experimental results

demonstrated that Fast-ON
*
 outperforms the state-of-the-art algorithms of the two problems that

studied in this paper on various datasets. Possible direction for future studies include an

approximate graph query processing.

International Journal of Database Management Systems (IJDMS) Vol.4, No.6, December 2012

19

Figure 2: Performance Study for Graph Isomorphism Problem (GIP)

International Journal of Database Management Systems (IJDMS) Vol.4, No.6, December 2012

20

Figure 3: Performance Study for Subgraph over Large Graph (SLG)

F

igure 4: Performance Study for Subgraph Search Problem (SSP)

International Journal of Database Management Systems (IJDMS) Vol.4, No.6, December 2012

21

7. APPENDIX

In this section, we discuss Ullman algorithm and Fast-ON algorithm in more details as follows.

7.1. Ullman Algorithm [18]

Given a query graph q and a data graph G. To check if q is subgraph of G, Ullman’s basic

approach is to enumerate all possible mappings of vertices in qV to those in GV using a depth-

first tree-search algorithm. Figure 5 shows a part of the search tree generated from testing the two

graphs G and q (query graph) in Figure 1. At level i of the search tree, a vertex iu in qV is

mapped to some vertex in GV (the number j inside each node in the search tree means that this

node represents the vertex ∈jv GV). The root node of the search tree represents the starting point

of the search, inner nodes of the search tree correspond to partial mappings, and nodes at level

| qV | represent complete – not necessarily sub-isomorphic – mappings. If there exists a complete

mapping that preserves adjacency in both q and G, then we have q is subgraph isomorphic to G,

otherwise q is not subgraph isomorphic to G. The bold path in Figure 4, (1u is mapped to 1v , 2u

is mapped to 3v , and 3u is mapped to 4v), is a complete mapping that preserves adjacency in q

and G, thus q is subgraphs isomorphic to G.

Unfortunately, the number of complete mappings is exponential in the number of nodes of the

involved graphs. This means that the running time may be huge even for reasonably small graphs.

In order to cope with subgraph isomorphism problem efficiently, Ullman uses a refinement

procedure to prune the search space. This procedure based on the following two conditions:

1. Label and degree condition. A vertex ∈u qV can be mapped to ∈v GV under injective

mapping f, i.e., v = f(u), if

(i) ql (u) = Gl (v), and

(ii) deg(u) ≤ deg(v).

2. Neighbor condition. By this condition, Ullman algorithm examines the feasibility of mapping

∈u qV to ∈v GV by considering the preservation of structural connectivity. If there exist edges

connecting u with previously explored vertices of q but there are no counterpart edges in G, the

mapping test simply fails.

Figure 5: A Part of the Search Tree of Ullman Algorithm

International Journal of Database Management Systems (IJDMS) Vol.4, No.6, December 2012

22

7.2. Fast-ON Algorithm [8]

Our algorithm Fast-ON is based on Ullman algorithm. It improves Ullman algorithm by

considering two effective optimizations as follows. It reduces the search space as much as

possible by following a novel ordering strategy of the query’s vertices (first optimization (Opt1)),

and by utilizing the label information of vertex’s neighborhood (second optimization (Opt2)).

Comparing to Ullman [18] and Vflib [4], Fast-ON achieves up to 1-3 orders of magnitude speed-

up. The two optimizations are explained as follows.

The first optimization is based on the observation that the search order in Ullman algorithm is

random. Ullman algorithm depends on the order of query vertices imposed during input. This

default ordering of qV can possibly result in a search order that seriously slows down the

algorithm. The adopted approach to order qV is to require the currently processing query vertex

to have high connectivity with the previously explored ones, that is, suppose that qi Vu ∈ is the

currently processing vertex, then iu should have the higher connectivity with 121 ,,, −iuuu K

among the remaining ones. Whereas, 1u is the one with maximum degree. This ordering forces

unsuccesful mapping to be discarded as early as possible during the search, thus saving much of

the time that Ullman algorithm may take on false long partial mappings. Algorithm 4 outlines this

idea.

--

Algorithm 4:)(_ qVVerticesOrder

--

Input: },,,{= ||21
q

Vq uuuV K ;

Output: An order of qV , },,,{= ||21

'

q
V

'''

q uuuV K ;

1: φ='

qV ;

2: for each qVu ∈ do calculate)(udeg ;

3: k

'
uu =1 , k = argmax)(udeg

q
Vu∈ ;

4: Add
'

u1 to
'

qV and remove ku from qV ;

5: for ||2= qVi K

6:

k

'
uu =1

, k = argmax |}:),{(| '' '

qq
q

Vu VuEuu ∈∈∈ ;

7: Add
'

iu to
'

qV and remove ku from qV ;

8: return
'

qV ;

--

For the second optimization, Fast-ON uses Theorem 2.1 to map a vertex qVu ∈ to a vertex

GVv ∈ to improve the condition 2 in Ullman algorithm. To reduce the cost of the containment

checks, Fast-ON cashing most of the repeated computation, as in the following steps:

1. Find the set of distinct labeled neighborhoods for the two graphs q and G , denoted as

GDLN and qDLN respectively.

International Journal of Database Management Systems (IJDMS) Vol.4, No.6, December 2012

23

2. Construct a bit matrix αβ)],([= jimM DLN where |=| qDLNα and |=| GDLNβ , to maintain

the inclusion relationship between distinct neighborhoods of q and G , that is, 1=),(jim if

][][jDLNiDLN Gq ⊆ , otherwise 0=),(jim .

 3. For a graph g – g is q or G – construct an array of pointers gP of size || gV , called

position array, where each slot u holds the index of the vertex u labeled neighborhood at

gDLN .

Algorithm 5 outlines Fast-ON algorithm. Line 1 applies the first optimization Opt1, whereas

lines 2-5 outline the second optimization Opt2. In line 5, for each query vertex qVu ∈ , data graph

vertices GVv ∈ that satisfy the modified first condition are collected into a set called candidate

set)(uC . The procedure SearchRecursive_ matches iu over)(iuC (line 5) and proceeds

step-by-step by recursively matching the subsequent vertex 1+iu over)(1+iuC (lines 6-7), or sets

Test to true value and returns if every vertex of q has counterpart in G (line 9). If iu exhausts

all vertices in)(iuC and still cannot find matching, Recursive_Search backtracks to the previous

state for further exploration (line 11). The procedure Matchable applies the second condition in

[18]. This condition examines the feasibility of mapping qVu ∈ to
GVv ∈ by considering the

preservation of structural connectivity. If there exist edges connecting u with previously

explored vertices of q but there are no counterpart edges in G , the mapping test simply fails.

--

Algorithm 5:),(GqONFast −

--

Input: q : a query graph and G : a data graph.

Output: Boolean: q is a subgraph of G .

Boolean Test = FALSE; /* Global Variable */

1:)(_ q

'

q VVerticesOrderV = ; /* Opt1 */

2: Construct qG DLNDLN , and DLNM ;

3: Construct both qP and GP ;

4: for each
'

qVu ∈ do

5:),(=)(,:{)(vlulVvvuC GqG∈= and }1))(),((=vPuPm Gq ; /* Opt2 (Cond. 1 of Ullman

after changing)*/

6:)(_ 1uSearchRecursive ;

7: return Test;

--

International Journal of Database Management Systems (IJDMS) Vol.4, No.6, December 2012

24

--

Algorithm 5:),(GqONFast − [continued]

--

Procedure)(_ iuSearchRecursive

1: if NOT Test then

2: for)(iuCv ∈ and v is unmatched do

3: if NOT),(vuMatchable i
 then continue;

4: vuf i =)(; v = matched;

5: if |<| '

qVi then

6:)(_ 1+iuSearchRecursive ;

7: else

8: Test = TRUE;

9: return;

10: =)(iuf NULL; v = unmatched; /* Backtrack */

Function),(vuMatchable i /* Cond. 2 of Ullman*/

1: for each ij < do

2: if Gj Eufv ∉))(,(then return FALSE;

3: return TRUE;

REFERENCES

[1] A. T. Berztiss. A backtrack procedure for isomorphism of directed graphs. Journal of the ACM, Vol.

20, No. 3, pp365–377, 1973.

[2] D. Cai, Z. Shao, X. He, X. Yan, and J. Han. Community mining from multi-relational networks. Proc.

of PKDD, 2005.

[3] J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index: towards verification-free query processing on graph

databases. SIGMOD, pp857–872, 2007.

[4] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph isomorphism algorithm for

matching large graphs. IEEE transaction on pattern analysis and machine intelligence, Vol. 26, No.

10, pp1367–1372, 2004.

[5] M. R. Garey and D. S. Johnson. Computers and intractability; guide to the theory of NP-

completeness. W. H. Freeman & Co., 1990.

[6] R. Giugno and D. Shasha. Graphgrep; a fast and universal method for quering graphs. Proc. of the

16th International Conference on Pattern Recognition, pp112–115, 2002.

[7] M. Gori, M. Maggini, and L. Sarti. Graph matching using random walks. Proc. of the 17th

International Conference on Pattern Recognition, pp394–397, 2004.

[8] K. Gouad and M. Hassaan. A fast algorithm for subgraph search problem. Proc. of the 8th

International Conference on Informatics and Systems, ppDE–53 – DE–59, 2012.

[9] W.-S. Han, J. Lee, M.-D. Pham, and J. X. Yu. igraph: a framework for comparisons of disk-based

graph indexing techniques. PVLDB, pp449–459, 2010.

[10] H. He and A. K. Singh. Closure-tree: An index structure for graph queries. ICDE, pp38–49, 2006.

[11] Karsten Klein, Nils Kriege, and Petra Mutzel. Ct-index: Fingerprint-based graph indexing combining

cycles and trees. ICDE, pp1115–1126, 2011.

[12] M. Kuramochi and G. Karypis. Frequent subgraph discovery. Proc. of ICDM, pp313–320, 2001.

[13] A. H. Land and A. G. Doig. An automatic method of solving discrete programming problems.

Econometrica, Vol. 28, No. 3, pp497–520.

[14] X. Liu and D. J. Klein. The graph isomorphism problem. Journal of Computational Chemistry, Vol.

12, No. 10, pp1243–1251, 1991.

International Journal of Database Management Systems (IJDMS) Vol.4, No.6, December 2012

25

[15] B. D. McKay. Practical graph isomorphism. Congressus Numerantium, Vol. 30, pp45–87, 1981.

[16] E. G. M. Petrakis and C. Faloutsos. Similarity searching in medical image databases. IEEE

transactions on knowledge and data enginnering, , Vol. 9, No. 3, 1997.

[17] H. Shang, Y. Zhang, and X. Lin. Taming verification hardness: an efficient algorithm for testing

subgraph isomorphism. PVLDB, pp364–375, 2008.

[18] J. R. Ullmann. An algorithm for subgraph isomorphism. ACM, , Vol. 23, No. 1, pp31–42, 1976.

[19] T. Washio and H. Motoda. State of the art of graph-based data mining. ACM SIGKDD Explorations

Newsletter, , Vol. 5, No. 1, pp59–68, 2003.

[20] P. Willett. Chemical similarity searching. J. Chem. Inf. Computer Science, , Vol. 38, No. 6, 1998.

[21] D. W. Williams, J. Huan, and W. Wang. Graph database indexing using structured graph

decomposition. ICDE, pp976–985, 2007.

[22] X. Yan, S. Yu, and J. Han. Graph indexing: a frequent structure-based approach. SIGMOD, pp335–

346, 2004.

[23] S. Zhang, M. Hu, and J. Yang. Treepi: A novel graph indexing method. ICDE, pp966–975, 2007.

[24] S. Zhang, S. Li, and J. X. Yu. Gaddi: distance index based subgraph matching in biological networks.

EDBT, 2009.

[25] P. Zhao and J. Han. On graph query optimization in large networks. VLDB, 2010.

[26] P. Zhao, J. X. Yu, and P. S. Yu. Graph indexing: tree + delta <= graph. VLDB, pp938–949, 2007.

[27] W. Zheng, L. Zou, and D. Zhao. Answering subgraph queries over large graphs. WAIM, pp390–402,

2011.

[28] K. Zhu, Y. Zhang, X. Zhu, and W. Wang. Nova: A novel and efficient framework for finding

subgraph isomorphism mappings in large graphs. DASFAA, pp140–154, 2010.

[29] L. Zou, L. Chen, J. X. Yu, and Y. Lu. A novel spectral coding in a large graph database. EDBT,

pp181–192, 2008.

