
International Journal of Database Management Systems (IJDMS) Vol.5, No.1, February 2013

DOI: 10.5121/ijdms.2013.5105 53

OPTIMIZATION OF DYNAMICALLY GENERATED

SQL QUERIES FOR TINY-HUGE, HUGE-TINY

PROBLEM

Arjun K Sirohi
1

1
Doctorate Student, Faculty of Technology (Computer Science), CMJ University,

Shillong, India
 2

Consulting Member Technical Staff, Oracle, Bellevue, WA, USA
asirohi@yahoo.com

ABSTRACT

In most new commercial business software applications like Customer Relationship Management, the data

is stored in the database layer which is usually a Relational Database Management System (RDBMS) like

Oracle, DB2 UDB or SQL Server. To access data from these databases, Structured Query Language (SQL)

queries are used that are generated dynamically at run time based on defined business models and business

rules. One such business rule is visibility- the capability of the application to restrict data access based on

the role and responsibility of the user logged in to the application. This is generally achieved by appending

security predicates in the form of sub-queries to the main query based on the roles and responsibility of the

user. In some cases, the outer query may be more restrictive while in other cases, the security predicates

may be more restrictive. This often results in a dilemma for the cost-based optimizer (CBO) of the backend

database whether to drive from the outer query or drive from the security predicate sub-queries. This

dilemma is sometimes called the “Tiny-Huge, Huge-Tiny” problem and results in serious performance

degradation by way of increased response times on the application User Interface (UI). This paper

provides a case study of a new approach to vastly reduce this CBO dilemma by a combination of de-

normalized columns and re-writing of the security predicates’ sub-queries at run-time, thereby levelling the

outer and security sub-queries. This approach results in more stable execution plans in the database and

much better performance of such SQLs, effectively leading to higher performance and scalability of the

application.

KEYWORDS

SQL Performance, RDBMS, Cost Based Optimizer (CBO), SQL, Plan Cost, Execution Plan, Buffer Gets,

Query Optimization, Performance, Scalability, CRM Applications

1. INTRODUCTION

Most commercial business applications use relational databases as the back-end to store business

data. Such data is accessed using SQL queries that are dynamically generated by the application

framework, using a defined business model and business rules. For example, Oracle Application

Development Framework uses its SQL generation engine to do this. The performance of the

application is generally gauged by the response times in the UI. The UI response times in turn

depends in a large part on the query response time in the database. If a user has to wait to get the

results in the UI, they complain about it as the application performing badly. The query response

time in the database depends on many factors, including the size and complexity of the SQL text

as well as how much processing the database engine must do before it can arrive at the result set

to be sent to the application requesting for it. A simple SQL with few tables and joins with good,

restrictive filter predicates will generally perform better than a SQL with many tables, views and

joins and less restrictive filter predicates. One of the key elements of SQL performance is the

International Journal of Database Management Systems (IJDMS) Vol.5, No.1, February 2013

54

decision by the CBO to arrive at an execution plan that it considers as most optimal. In Oracle

database, the CBO is a complex engine and it evaluates many different optimization paths and

access methods before finalizing an execution plan. In recent releases, the concept of cardinality

feedback and other features also often result in second, third or more execution plans for the same

SQL. From the application perspective, a common way to restrict access to the data on a need to

know basis is to implement security and visibility through a set of roles and responsibilities that

each are defined by way of sub-queries that get appended to the main SQL at run time. This

method of adding sub-queries cumulatively through a security framework results in complex

SQLs, especially for users who are granted many different roles and responsibilities. The main

query is usually referred to as the outer query and the appended security predicates’ sub-queries

are termed as the inner query. When such SQLs arrive at the database, the CBO evaluates them

for possible access paths and join optimizations to decide on an execution plan based on available

statistics. Very often, the CBO is posed with the dilemma of whether to drive from the outer

query or drive from the inner query. For some users, the outer query with its filter predicates can

be greatly restrictive while for other users, the inner security predicates’ sub-queries can be more

restrictive. This if sometimes referred to as the “Tiny-Huge, Huge-Tiny” problem that many

application and database designers struggle to manage. Many times, this problem leads to poor

choices by the CBO, resulting in sub-optimal execution plans leading to poor query response

times and consequently causing performance and scalability issues for the application as well as

the database. This paper presents the analysis of SQLs and CBO execution plans from the

Opportunity Management module of a CRM application that performed poorly due to the

aforesaid “Tiny-Huge, Huge-Tiny” problem. Based on the analysis, the paper then presents a

suggested solution incorporating some de-normalized columns and rewrite of the security

predicates’ sub-queries that result in vastly improved performance and scalability of such queries

and consequently of the application.

2. THE EXISTING SQLS, PLANS AND ISSUES AFFECTING PERFORMANCE

The Opportunity Management Module of any CRM application is a widely used application in

any sales department of businesses. Details of sales opportunities are stored in tables of relational

databases and accessed through the user interface of the web-based application. The visibility or

access-control of which user can access which records of such sales opportunities is controlled

through rules defined in terms of SQL sub-queries that get appended to the main SQL at run time

based on the roles and responsibilities of the logged in user. For example, roles could be Sales

Representative, Sales Manager, Sales Vice President or Sales Administrator. The access could

also be defined in terms of teams or sales territories. The access could also come from the user

being in a management hierarchy. All these access rules are stored as seeded sub-queries in the

application and get appended at run-time to a dynamically generated SQL. As such, the developer

does not have much control over how the SQL is written.

2.1. Existing SQLs, Performance and Execution Plans

A sample SQL text, its performance metrics and execution plan are presented below.

International Journal of Database Management Systems (IJDMS) Vol.5, No.1, February 2013

55

Figure 1. Existing SQL Outer Query

International Journal of Database Management Systems (IJDMS) Vol.5, No.1, February 2013

56

Figure 2. Existing Data Security Sub-Queries

International Journal of Database Management Systems (IJDMS) Vol.5, No.1, February 2013

57

A sample SQL is provided in two parts above. The first part is the outer SQL that is generated at

run time by the application engine. The second part is the data security predicate sub-queries that

are appended to the outer SQL at run time based on the identity of the application user logged in.

The performance of such a SQL against an Oracle 11gR2 database was measured using a

benchmarking Java tool for fetching the first 25 rows from the database.

Figure 3. Bind values and SQL benchmark metrics

The execution plan chosen by the optimizer is shown in Figure 4 below.

International Journal of Database Management Systems (IJDMS) Vol.5, No.1, February 2013

58

International Journal of Database Management Systems (IJDMS) Vol.5, No.1, February 2013

59

Figure 4. Execution Plan Chosen by Optimizer

2.1.1 Issues Affecting Existing SQLs’ Performance

In SQL tuning exercises, the first aim is to identify the issues in the execution plan and the

reasons for the optimizer to choose the plan. It is not always an easy task but needs careful

understanding of the business functionality that the SQL is trying to achieve as well as a deep

understanding of the various operations that the optimizer uses. It also needs constant updating of

one’s knowledge of the optimizer features and behaviour changes that come with changed and

new database parameters. Needless to say, it can become quite complex.

International Journal of Database Management Systems (IJDMS) Vol.5, No.1, February 2013

60

As seen in the performance metrics above in Figure 3, the performance of the SQL is quite poor,

both in terms of time taken as well as the number of buffer gets that the optimizer had to process.

Even though the plan cost came up low at 145, it is apparent that the optimizer did not do a very

good job at estimations. The benchmark metrics show that the database took more than 5 seconds

warm time with an extremely high 2.5 million buffer gets to return 25 rows of the result set.

The execution plan shows that even though the outer query processed very few qualifying rows,

the optimizer had to evaluate all the security predicates’ sub-queries to find out which rows the

user was entitled to see, only to eliminate most of them later, based on the outer query. This is a

typical “tiny-huge, huge-tiny” problem. It means that the optimizer has to make a quick decision

whether to drive from the outer query or drive from the security predicate sub-queries. Which one

of these will result in more restrictive row sets is always a difficult question to answer. This

decision making is complicated by the fact that the SQL has many tables and joins and it uses

bind variables which make estimating the cardinality that much more complicated in the process

of deciding on an execution plan.

The analysis of the SQL, execution plan and schema helped in narrowing down to broadly three

issues. The three broad areas affecting the existing SQL’s performance are the security

predicates’ sub-queries and the associated “tiny-huge, huge-tiny” problem, the main filter

predicate columns coming from different tables and lastly inadequacy of existing indexes.

The two main filtering predicates in the outer SQL are:

AND (((OpportunityEO.STATUS_CD = :BindDefaultStatusCd)

AND (RevenueEO.EFFECTIVE_DATE BETWEEN :BindEffectiveBeginDate AND :BindEffectiveEndDate)))

As seen above, the Effective_Date column is from the Revenue table while Status_Cd column is

from the Opportunity table. This makes the optimizer’s job difficult.

The “tiny-huge, huge-tiny” problem is partly due to the fact that the data security sub-queries do

not have any of the two filtering predicates that the outer query has i.e. EFFECTIVE_DATE and

STATUS_CD.

Finally, there can be additional indexes that may help performance.

3. SUGGESTED APPROACH TO IMPROVE SQL PERFORMANCE

The resolutions for the three issues identified above can now be easily tried and tested using the

same Java benchmark tool.

First, let us try to resolve the issue of filter predicate columns coming from different tables. To

make the optimizer’s job a little easier, it is sometimes a good idea to de-normalize such filter

predicate columns. In the present case, adding EFFECTIVE_DATE column to MOO_OPTY table

and adding EFFECTIVE_DATE, STATUS_CD to MOO_OPTY_RESOURCES table will make

the optimizer’s choices less complex and as a result more stable and predictable. In addition,

appropriate indexes will also be needed on these columns. Thus, the outer query would now have

the following filter predicates from the same Opportunity table:

AND (((OpportunityEO.STATUS_CD = :BindDefaultStatusCd)

AND (OpportunityEO.EFFECTIVE_DATE BETWEEN :BindEffectiveBeginDate AND :BindEffectiveEndDate)))

The resolution for the “tiny-huge, huge-tiny” issue is a little trickier. One approach that has

worked consistently well is to create a wrapper around the data security predicates’ sub-queries,

International Journal of Database Management Systems (IJDMS) Vol.5, No.1, February 2013

61

use DISTINCT clause in the wrapper as well as data security sub-queries and also push the outer

query’s filter predicates into the data security wrapper code. The changed outer SQL would thus

be as in Figure 5 below and the changed data security predicates sub-queries would be rewritten

as in Figure 6 below.

Figure 5. Rewritten Outer Query Using De-normalized Columns

International Journal of Database Management Systems (IJDMS) Vol.5, No.1, February 2013

62

Figure 6. Rewritten Data Security Sub-Queries with Wrapper Code & DISTINCT Clause

International Journal of Database Management Systems (IJDMS) Vol.5, No.1, February 2013

63

Lastly, to support the above filter predicate changes and the rewritten data security sub-queries,

the following indexes were created:

MOO_OPTY (OWNER_RESOURCE_ID, EFFECTIVE_DATE, STATUS_CD, SUM_REVN_ID)

MOO_OPTY (OPTY_ID, SUM_REVN_ID)

MOO_OPTY_RESOURCES (RESOURCE_ID, EFFECTIVE_DATE, STATUS_CD, OPTY_ID)

MOO_REVN (OPTY_ID, OWNER_RESOURCE_ID, EFFECTIVE_DATE, PRIMARY_FLAG, STATUS_CODE)

3.1. Benchmark Metrics and Execution Plan of Rewritten SQL

The three-pronged strategy described above worked very well and when the SQL was

benchmarked using the same Java tool against the same database, results were drastically

improved both in terms of warm time as well as the buffer gets. As seen in Figure 7 below, the

warm time was only 365 milliseconds and buffer gets were down to 9697.

 Figure 7. SQL Benchmark Metrics for Rewritten SQL

The execution plan for the rewritten SQL is as seen in Figure 8 below. Notice the much reduced

A-Rows column as well as reduced buffers in the plan, which shows the levelling of the outer and

data security sub-queries’ cardinality achieved using the suggested approach.

International Journal of Database Management Systems (IJDMS) Vol.5, No.1, February 2013

64

International Journal of Database Management Systems (IJDMS) Vol.5, No.1, February 2013

65

Figure 8. Execution Plan for Rewritten SQL

3.2. Confirmation of Performance Improvements Using Above Approach

The approach described and detailed above was tried on many different variations of SQLs for

different roles, responsibilities and users. The performance metrics and execution plans for the

rewritten SQL were always better than the original SQLs.

A summary of the benchmark results for different scenarios is provided below in Figures 9 and

10.

International Journal of Database Management Systems (IJDMS) Vol.5, No.1, February 2013

66

Figure 9. Benchmark Results for Rewritten SQL for “MySalesTeam” Scenario

Figure 10. Benchmark Results for Rewritten SQL for “MySubordinates” Scenario

4. CONCLUSION

Most commercial business applications today like Sales Automation are built around technology

layers that generate physical SQLs at run time. Access to data in many such applications is

restricted on a need to know basis usually by implementing security and visibility through a set of

roles and responsibilities that each are defined by way of sub-queries that get appended to the

main SQL at run time. This method of adding sub-queries cumulatively through a security

framework results in complex SQLs, especially for users who are granted many different roles

and responsibilities. The main query is usually referred to as the outer query and the appended

security predicates’ sub-queries are termed as the inner query. When such SQLs arrive at the

database, the CBO evaluates them for possible access paths and join optimizations to decide on

an execution plan based on available statistics. Very often, the CBO is posed with the dilemma of

whether to drive from the outer query or drive from the inner query. For some users, the outer

query with its filter predicates can be greatly restrictive while for other users, the inner security

predicates’ sub-queries can be more restrictive. This if sometimes referred to as the “Tiny-Huge,

Huge-Tiny” problem that many application and database designers struggle to manage. Many

times, this problem leads to poor choices by the CBO, resulting in sub-optimal execution plans

International Journal of Database Management Systems (IJDMS) Vol.5, No.1, February 2013

67

leading to poor query response times and consequently causing performance and scalability issues

for the application as well as the database.

This paper has presented the analysis of such SQLs and CBO execution plans from the

Opportunity Management module of a CRM application that performed poorly due to the

aforesaid “Tiny-Huge, Huge-Tiny” problem. Based on the analysis, the paper then presented a

suggested solution incorporating some de-normalized columns and rewrite of the security

predicates’ sub-queries that result in vastly improved performance and scalability of such queries

and consequently of the application.

This approach can be suitably amended and applied to different applications based on the

specifics of any such similar SQL performance issues.

REFERENCES

[1] “Oracle® Database Performance Tuning Guide 11g Release 2 (11.2) E16638-07” [Online].

Available: http://docs.oracle.com/cd/E11882_01/server.112/e16638.pdf. [Accessed Dec-Jan 2012-

2013]

[2] “Oracle® Fusion Middleware Fusion Developer's Guide for Oracle Application Development

Framework 11g Release 1 (11.1.1.5.0)” [Online]

Available: http://docs.oracle.com/cd/E21764_01/web.1111/b31974/bcintro.htm[Accessed Jan 2013]

[3] Abraham Silberschatz, Hank Korth and S. Sudarshan. Database system concepts, 5th Edition.

McGraw-Hill, 2006

[4] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of database systems, Fifth edition. Pearson

Education ,2009.

[5] Won Kim,David S. Reiner,Don s. Batory. Query processing in database systems. Springer Verlag,

Berlin Heidelberg New York Tokyo.

[6] Aper PMG, Hevner AR,Yao SB, “Optimization algorithms for distributed queries”, IEEE

Transactions on software Engineering, SE-9.1, January 1983, 57-68.

[7] Chokri Ben Necib and Johann-Christoph Freytag, “Using Ontologies for Database Query

Reformulation, Advances in Databases and Information Systems” (ADBIS), Hungary, 2004.

[8] William miles , “Optimizing SQL Query Processing” , InterviewInfo.net 2005.

[9] Williams, and Martha E., “Query Expansion, Annual Review of Information Systems and

Technology" (ARIST), http://faculty.washington.edu/efthimis/pubs/Pubs/qe-arist/QE-arist.html, pp

121-187, 1996.

[10] Steve Renals, “Query Expansion”,http://homepages.inf.ed.ac.uk/srenals/ pubs/1999/esca99-

thisl/node6.html, 1999.

[11] F.A. Grootjen and Th. P. van der Weide, “Conceptual Query Expansion”, Journal of Data Knowledge

and Engineering, pp. 174-193, 2004.

[12] Abdelkrim Bouramoul, Mohamed-Khireddine Kholladi and Bich-Lien Doan, “Using Context to

Improve the Evaluation of Information Retrieval Systems”,International Journal of Database

Management Systems (IJDMS), Vol.3, No.2, May 2011.

[13] Query Result Size Estimation Techniques in Database Systems – Banchong Harangsri - 1998

[14] The Effect of Cost Distributions on Evolutionary Optimization Algorithms – F. Waas, C. Galindo-

Legaria, Florian Waas - 2000

[15] Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access path selection in a

relational database management system. In: Proceedings of the 1979 ACM SIGMOD international

conference on Management of data, pp. 23–34. ACM Press, New York (1979)

[16] Exploiting Functional Dependence in Query Optimization – Glenn Norman Paulley - 2000

[17] Optimizing Join Orders – Michael Steinbrunn, Guido Moerkotte, Alfons Kemper - 1993

[18] Query Optimization – Yannis E. Ioannidis - 1996

[19] Exploiting Cost Distributions for Query Optimization – F. Waas, J. Pellenkoft, Florian Waas, Arjan

Pellenkoft - 1998

[20] Steinbrunn, M., Moerkotte, G., Kemper, A.: Heuristic and randomized optimization for the join

ordering problem. VLDB Journal: Very Large Data Bases 6(3), 191–208 (1997)

International Journal of Database Management Systems (IJDMS) Vol.5, No.1, February 2013

68

[21] Swami, A.: Optimization of large join queries: combining heuristics and combinatorial techniques. In:

SIGMOD 1989: Proceedings of the 1989 ACM SIGMOD international conference on Management of

data, pp. 367–376. ACM Press, New York (1989)

Authors

1. Mr. Arjun Sirohi is currently a Consulting Member of Technical Staff in the PSR Engineering Division

(Performance Scalability and Reliability) at Oracle USA located in Bellevue, WA, USA. He holds a

MS CS degree from City University of Seattle, from where he graduated with President’s Honours

with 3.93 GPA.

2. He has 21 years of work experience in software design, development and implementation in various

roles as Developer, Database Consultant, Architecture Specialist and Senior Systems Manager. He has

extensive experience in application, SQL, database and system performance tuning, optimizations and

testing. Apart from databases, he has deep expertise in data warehousing and business intelligence

applications' performance and scalability.

