
International Journal of Database Management Systems (IJDMS) Vol.6, No.2, April 2014

DOI : 10.5121/ijdms.2014.6205 67

TOWARDS A LOW COST ETL SYSTEM

Vasco Santos
1
, Rui Silva

2
 and Orlando Belo

3

1,2
CIICESI - School of Management and Technology,

Polytechnic of Porto, Felgueiras, Portugal
2
ALGORITMI R&D Centre, University of Minho, Portugal

ABSTRACT

Data Warehouses store integrated and consistent data in a subject-oriented data repository dedicated

especially to support business intelligence processes. However, keeping these repositories updated usually

involves complex and time-consuming processes, commonly denominated as Extract-Transform-Load tasks.

These data intensive tasks normally execute in a limited time window and their computational requirements

tend to grow in time as more data is dealt with. Therefore, we believe that a grid environment could suit

rather well as support for the backbone of the technical infrastructure with the clear financial advantage of

using already acquired desktop computers normally present in the organization. This article proposes a

different approach to deal with the distribution of ETL processes in a grid environment, taking into account

not only the processing performance of its nodes but also the existing bandwidth to estimate the grid

availability in a near future and therefore optimize workflow distribution.

KEYWORDS

Data Warehousing, Grid Computing, ETL Processing, Distributing ETL tasks, ETL Performance

Optimization

1. INTRODUCTION

In the last decade we have observed an exponential growth in the supply of computing devices at

the same time as the increase of computational needs. Nevertheless the capabilities of such

devices are often underused once they require not very demanding resources to perform their

normal tasks, such as Web browsing, word processing, data analysis or social networking

services, just to name a few. On the other hand, the usual approach to deal with this need for

increased processing power was to purchase better devices, not considering the distributed

processing capabilities that older less powerful devices could provide when cooperating in a

network. Distributed and parallel processing is not a new issue to the scientific community. But

the advances that occurred in network capabilities, network operating systems and portable

devices have led to new fields of research. New terms have arisen like Grid computing [1] or

Cloud computing [2]. Yet, both approaches have the same goals - distribution and resource

sharing - with the focus shifting from a technology point of view to a service oriented philosophy.

The use of grid environments in data processing intensive tasks has been studied in academic and

scientific institutions already for a long time. Commercial organizations are now adopting this

approach to help the mitigation of the impact of the increased amount of data gathered by their

enterprise information systems that needs to be analysed, through testing grid middleware

software. The basic idea is to take advantage (or to attenuate the effect) of the inactivity of their

computing devices during a regular day helping them to perform those tasks. A grid based

approach maximizes the investments already made and postpones some other expensive computer

acquisitions [3]. One of the objectives of an enterprise information system is to support

management's decision-making processes through the analysis of large amounts of data stored in

them. Since data increases normally through time, the processing power needed to analyse it in a

International Journal of Database Management Systems (IJDMS) Vol.6, No.2, April 2014

68

useful time also increases undermining the infrastructure available. A grid environment might be

a suitable solution to this kind of problem, due to the easiness and inexpensiveness of adding new

processing nodes to the infrastructure [4, 5].

In this article we studied the configuration and exploitation of a specific grid environment in

order to receive and support the execution of an ETL process of a data warehousing system,

giving particular emphasis to the distribution of ETL tasks, and focusing on the heterogeneous

bandwidth capabilities of processing nodes interconnection. The article is organized as follows. In

section 2, we briefly analyse related work in grid environments, task distribution and data

warehouse applications. Next, we specialize our study on the distribution of ETL tasks over a grid

environment (section 3), and present the model we conceived for ETL workflow distribution in a

heterogeneous processing network, like a grid environment (section 4). Finally, we'll end the

article with some brief remarks, pointing out some future developments and research lines.

2. RELATED WORK

Grid and Cloud computing environments have been the recent focus of attention of a large part of

the scientific community, which was interested to achieve better performance and reliability in

everyday business operations through the use of low cost computational power to data intensive

operations [1]. Resource demanding operations, such as those present in the fields of health and

astronomy, can benefit from this approach since they deal with large data sets requiring enormous

computational resources to process them [6]. These environments are also being faced as a

potential business opportunity, where resources are lent to clients that temporarily need them [7].

As a consequence of their work, recently researchers turned their attention to the complex

problem of task distribution and management, relegating for a second place the grid itself

(architecture, models, functionalities, etc.) [8-10]. As a natural evolution of these researching

processes, the distribution and management of workflows [11-14] in grids remain a challenge and

is becoming more popular in several fields of practice, in particularly in the Data Warehousing

Systems (DWS) domain. DWS are known for gathering, processing and storing large amounts of

data [15, 16]. Such characteristics blend well with the possibilities that any grid environment

provides. There are already several studies where DWS's data is distributed in a grid environment

[17-19], with particular emphasis on query distributing approaches [5, 20]. However, the use of

grid environments has not been extensively studied in DWS. A DWS populating process, ETL for

short, are data intensive tasks that prepare transactional data to be loaded into a data warehouse

[21, 22]. Their modelling phase has been studied widely [23] in conjunction with the optimization

of the workflows that they generate [24, 25]. However, it is recognized that there is a lack of

research in the combination of grid environments and ETL processes because ETL tasks normally

work over large data sets making bandwidth the primary concern in their distribution, thus driving

away DWS researchers from this kind of approach. Recently, this last issue has been addressed by

several researchers that proposed some new methods to monitor, quantify and predict bandwidth

availability in grid networks [26-29].

3. SCHEDULING ETL TASKS ON GRID ENVIRONMENTS

Task distribution and management has been subject of intensive study especially over parallel

architectures. Nevertheless, these architectures are very different from the normal grid

environments, mainly due to the fact that these are composed of heterogeneous, autonomous and

physically distributed resources. Shan [9] proposed a super scheduler architecture that manages

jobs in a grid by cooperating with local schedulers, submitting, re-submitting or transferring jobs

between the available resources. However, the lack of control over such local schedulers has led

to several problems, since these resources are shared and their status and utilization change over

time. Grid users submit jobs to the grid and the grid scheduler has to choose to which resources

jobs should be sent, based on information about the grid - probably already out-dated. Keeping

this in mind, Schopf [8] proposed a three-phase architecture for grid scheduling, which is based

International Journal of Database Management Systems (IJDMS) Vol.6, No.2, April 2014

69

on resource discovery, system selection, and job execution. The first phase objective is to gather

information about the resources that are available to the user. The second phase intends to

identify which resources satisfy the minimum requirements asked by the user - operating system,

software, and hardware configurations. Additionally, in this phase, some information gathering

tasks are also executed, mostly concerning with dynamic updated information over resources, like

CPU usage, or RAM/disk space availability. The last phase, job execution, involves a set of tasks

that must be performed in order to execute the jobs, like advance reservation of resources,

preparation of job submission, job monitoring and job completion tasks such as clean-up tasks.

Latter, Ben Segal [30] suggested that the availability and proximity of computational capacity and

required data should be taken into account every time the grid's scheduler distributes and

decomposes jobs for remote execution. This is very critical mainly because data is transferred to

remote nodes over limited bandwidth - a normal situation in grid environments. More recently,

other aspects have been taken into consideration, like fault recovery, checkpoint techniques or

task replication and job migration. Also, the use of resource load prediction (usage profiling) has

attracted some attention when we are interested in maximizing the performance and reliability of

a grid [10]. Summarizing, whenever there is lack of server computational power to perform data

intensive tasks, and exists a computer network with under-explored resources, the possibility of

using a grid computing environment emerges as very viable and interesting solution. Even so,

efficient task distribution and management becomes critical factors of success that real challenges

such option. Therefore, in order to successfully address it, we must remember that information

resource gathering is critical, job decomposition and replication are essential, to approach a

maximization of the performance and reliability guarantee, particularly in environments with

significant bandwidth bottlenecks.

4. PUTTING AN ETL SYSTEM ON A GRID ENVIRONMENT

The use of grid environments to support DWS has mainly been adopted to distribute data and

queries. However, since the DWS ETL component is very resource demanding and its

characteristics are fit for distribution and parallelization, researching has been focused on the

possible advantages of using grids, using already existing enterprises' computational resources

when they are in idle time, for instance. Nevertheless, in order to take advantage of the

potentialities of a grid in ETL, a very structured workflow of operations must be defined. In a

previous work, we have presented an approach to model ETL workflows for grid environments,

using Relational Algebra to specify each ETL task [31]. Tasks were distributed over the grid

using a proposed performance prediction model [32] with the ability to categorize grid nodes

according to their availability.

As a running example to help us introducing our proposal, we selected a simplified part of the

Microsoft Database AdventureWorksDW1 : a dimension table dim_Person that is fed from three

different source tables. We present the logical model that specifies the transformation's flow

needed to load the DW, using Vassiliadis notation [33] (Figure 1), and then present it oriented

especially to grid environments.

1 http://msftdbprodsamples.codeplex.com

International Journal of Database Management Systems (IJDMS) Vol.6, No.2, April 2014

70

Figure 1 - ETL logical model – populating the dim_Person dimension table.

The characteristics of a grid environment led us to adopt Relational Algebra to specify each ETL

task appealing to some new operators that extend relational algebra [34, 35]. Such extensions

allow us to represent the most common ETL operations, and so distribute the ETL workflow over

a grid (Figure 2). Data was stored in XML format for better compatibility in heterogeneous

environments. Relational algebra operations were coded using JAVA.

Figure 2 - (a) Relational algebra operations workflow; (b) Operations' specification

Once the ETL logical model is defined (Figure 2(a)), we need to represent it in a format that can

be interpreted by a grid and then instantiated to its task scheduler with inputs from the Grid

Information Service (GIS), such as information about the availability of the resources that meet

the minimum requirements of each ETL operation. As already referred, the GIS provides valuable

information about the most up to date status of the grid. Additionally, statistical information about

past executions is quite important to improve task distribution, such as effective runtime, effective

quantity of data transferred and received, etc. The architecture we proposed is represented in

Figure 3. Nevertheless choosing the best computational node to execute a task is not an easy job.

It's particularly important when the computational power of the node is not the decisive factor

every time we need to choose where to delegate a task execution. Since ETL tasks tend not only

International Journal of Database Management Systems (IJDMS) Vol.6, No.2, April 2014

71

to work over large data sets but also produce large ones too, the available bandwidth to transport

the data is a critical factor in the evaluation of the execution node. Generalizing, the available

bandwidth of each grid node, namely download and upload bandwidth, should be available to the

scheduler or stored in the GIS.

Figure 3 - A view of the grid architecture for ETL tasks.

5. TESTING AND EVALUATING THE EXECUTION OF ETL TASKS

To test and validate the way we make ETL tasks distribution involving large data sets in a grid,

we used Globus Toolkit 4.2.1 Middleware [36]. In the test, we configured and used four different

computational platforms as our test bed (Table 1).

Table 1 - The characteristics of the nodes.

PC Processor RAM HD OS Network Card

debian1 Pentium 4 2.4 GHz 1.2 GB 70.3 GB Ubuntu 10-10 100 Mb/s

debian3 Pentium 4 1.5 GHz 376.6 MB 35.6 GB Debian 5 100 Mb/s

debian3 Pentium 4 2.4 GHz 494.9 MB 36.2 GB Ubuntu 10-10 100 Mb/s

debian4 Pentium 4 2.8 GHz 1.5 GB 35.1 GB Debian 5 100 Mb/s

The GIS of the Globus Middleware is provided by the MDS component [37]. Complementarily,

we also used Ganglia monitoring system [38] to gather all the available information of the grid's

nodes. This information is then accessed through a dedicated Globus Web Service by the

scheduler.

To monitor and develop the scheduler module that deals with the defined workflow and then

instantiates it to the grid we selected JAVA CoG Kit JGlobus [39]. debian4 computer has all the

grid's services, and debian1 has the scheduler and all the source files needed for the workflow. As

such, debian1 will not accept any jobs, only the three remaining nodes will execute workflow

tasks - the size of the source files is presented in Table 2.

Table 2 – Input files size.

File Operation Size

PersonAddress.xml Projection_1 6.379 MB

HumanResourcesEmployAddress.xml Projection_2 0.070 MB

HumanResourcesEmployee.xml Projection_3 0.203 MB

5.1. Running Experiments Without Considering Bandwidth

Our first experiment was based in the work presented in [32], where each node of a grid is

evaluated according to its performance availability.

International Journal of Database Management Systems (IJDMS) Vol.6, No.2, April 2014

72

 (1)

In Formula 1 the performance is affected by a coefficient (AvailCOEF) that, in our case, is inversely

proportional to the average CPU load of the last five minutes. We then use another proposed

algorithm that classifies each node in an interval of six classes (C0-C5) based also on its

performance availability. Then we define that each of these classes has an importance 20% higher

than the preceding class (Table 3).

Table 3 - Probabilities assigned to the classes.

Class Probability

C0 10%

C1 12%

C2 15%

C3 17%

C4 21%

C5 25%

Whenever a workflow is submitted to the grid, the scheduler generates a random number between

0.0 and 1.0 for each task, and calculates which node will execute the task according to its weight

in the grid architecture. All workflow's tasks can be followed in the system observing the

evolution of the grid's status (Figure 4). Since there is a random factor assigned to the distribution

of the tasks, each experiment presented in this article is unique. The characteristics and problems

observed for each approach are consistent even if we run several experiments for each approach.

The computing nodes and times for each task vary slightly but the conclusions are the same.

Figure 4 - Showing the status of a running process.

When analysing the workflow, we see three branches of operations ending all of them with a Join

operation. This operation can only start when all previous operations are terminated. The

International Journal of Database Management Systems (IJDMS) Vol.6, No.2, April 2014

73

operation Join_1 is very resource demanding and slows down the execution of the workflow

(Figure 5).

Figure 5 - Scheduling of the ETL workflow without prediction or limited bandwidth.

A second experiment involved a distribution model based on the prediction strategy presented in

[32]. All nodes of the grid were evaluated taking in consideration their computing performance

and memory capabilities through time. This information was stored in a statistical file and used to

predict the class of each node in a time period. To help us on this specific task we used

RapidMiner
2 decision tree algorithms. Predictions are one of the most important inputs to the

scheduler. The overall worse performance of this approach, in comparison with the previous one,

is justified by the fact that the grid used has a small number of working nodes (Figure 6).

Figure 6 - Scheduling of the ETL workflow with prediction and without limited bandwidth.

The prevision model distinguishes the best nodes, but the random factor used to select the node

and the reduced difference of importance in the class nodes, contribute to a slower outcome. In

fact, a complex task may be assigned to a slower node (as was the case in Join_1) increasing the

2 http://www.rapidminer.org

International Journal of Database Management Systems (IJDMS) Vol.6, No.2, April 2014

74

amount of time needed for completion. In addition, since we are using prediction to evaluate

performance in a given time, the real availability of the nodes could be different.

In order to reduce the Stage Out time of the tasks and network communications when returning

results, we decided to distribute branches of tasks to a same node. In this experiment case we

intended to reduce communication bandwidth with the scheduler node as well as the Stage In and

Stage Out time (Figure 7). To achieve this goal, we started to change the scheduler behaviour and

remove the Stage Out phase. So, succeeding tasks could get directly the input files that they need

from the preceding node. When a task is assigned to a node, the grid scheduler verifies if the

preceding task has only one child. If so, it assigns the task to the same node that has the parent

task in order to save some time, once the input file that it requires is already in the node. If the

parent node has more than one child, the scheduler behaves in the same mode as already

described. The only difference is that the input files are not located in the scheduler node but in

the node where the parent task was executed. Therefore, the transference of the input files occurs

between those two nodes.

Figure 7 - Scheduling of the ETL Workflow, with prediction, branch optimization and without

limited bandwidth.

5.2. Running Experiments with Limited Bandwidth

The next batch of experiments was based on the premises that grid architectures have usually a lot

of nodes with disparate characteristics in terms of performance capabilities and bandwidth

connections. The latter, is one of the more relevant characteristic when we are worried about the

transference of large files, undermining the scheduler effort of selecting the best computational

node. In the grid we configured, we limited the bandwidth of the node debian3 to 20Mbits/s

instead of the original 100Mbits/s. Then, we resubmitted the tasks workflow accordingly to the

guidelines presented in Figure 6 and 7, i.e., with prediction and branch optimization, respectively.

In this experiment, the first task was assigned to the limited node and the Stage In phase took, in

average, two times more than when we used normal bandwidth. This result is justified mainly

because on this phase we considered authentication between the nodes, independently of the

bandwidth available, which consumes, as we know, a precious slice of time. We also had other

tasks assigned to the limited node. However, the dimension of the data transference involved with

was not relevant to the outcome.

International Journal of Database Management Systems (IJDMS) Vol.6, No.2, April 2014

75

Figure 8 - Scheduling of the ETL Workflow, considering prediction, and limited bandwidth on

debian3.

Distributing the workflow with branch optimization on a limited bandwidth environment is also

problematic. However, since a branch is assigned to a node, data is only transferred in the

beginning and at the end of the branch simplifying the effect of limited bandwidth on the overall

result. Nevertheless, for each task, the grid scheduler keeps the transference of the task (and some

additional information) to the execution node. In addition, if a limited node is chosen to execute a

task that uses (or produces) a large data set, the impact of the limited bandwidth will be

exponential. When comparing this last experiment with the ones that we showed previously in

Figure 7, we quickly see that we got worst results. This last experiment is approximately 20%

slower than the one presented in Figure 7.

Figure 9 - Scheduling of the ETL Workflow, considering prediction, branch optimization, and

limited bandwidth on debian3.

To finish our experiments, we adopted the same approach as followed in [32] but applying it not

only to node performance but also to the bandwidth availability. We store statistical information

over bandwidth availability of each grid node and use RapidMiner to predict bandwidth

International Journal of Database Management Systems (IJDMS) Vol.6, No.2, April 2014

76

availability for a certain point of time. Then we average the performance and bandwidth classes

of each node in order to define the overall class.

The result was an improvement if we consider the overall time, mainly because the limited node,

although good in performance wise, has an overall reduced class that reduces the chance of being

used to execute a task. Nevertheless, one branch was assigned to it. Improving the balance

between bandwidth and performance and distinguishing the weight of each class used on nodes

evaluation, would contribute to a better outcome. Eventually, each task of the workflow might

have a ratio to balance bandwidth and performance according to its inputs, outputs and

computational tasks.

Figure 10 - Scheduling of the ETL workflow, considering prediction based on performance,

available bandwidth, and branch optimization.

6. CONCLUSIONS AND FUTURE WORK

In most cases, DWS are extremely demanding in terms of computational resources, requiring

significant processing and storing capabilities. They use to deal with very large data sets during a

limited time window, in a daily basis. The architectures that are defined and installed to support

their activities are not available to all companies, especially the ones with scarce financial

resources. Besides, as a DWS grows its architecture also needs to evolve, frequently implying

strong restructurings to receive new requirements and services. These are, as we know, very

expensive processes. In this article we developed and tested an approach based on grid

environments, as the supporting infrastructure exclusively for ETL systems. Our goal was to

prove that a grid infrastructure could be an efficient alternative to implement such kind of

processes, taking advantage, of course, of the existence of computational resources with low

utilization. Thus, it's possible to reduce significantly the costs of a traditional ETL system

implementation. To configure and run an ETL system (or a set of specific ETL tasks) we

decompose the ETL workflow in a set of relational algebra operations, which were distributed

and then executed, using JAVA and XML as support.

The scheduling of workflows that deal with large data sets is not only a computational problem

but also a communications problem, since a grid environment might contain nodes with limited

download and upload bandwidth. We studied the impact of scheduling an ETL workflow using

performance prediction, branch optimization and finally bandwidth prediction. As we have seen,

the first three tests we have made do not take into account the available bandwidth, which makes

them impractical to be implemented, since it does not provide a credible solution to accommodate

a conventional ETL system - we assumed that a grid normally does not comprises local nodes

International Journal of Database Management Systems (IJDMS) Vol.6, No.2, April 2014

77

only. However, the following tests have considered this problem. The prediction of performance

and bandwidth, although they may produce worse results than those who do not use prediction,

allow reducing the work of the grid’s scheduler. Otherwise it would still have to track the

performance and the available bandwidth of each node before submitting the work. Additionally,

we found that the submission of branches of tasks, significantly reduces the communication time

between jobs, simply because the results are already stored at the execution node rather than

having the scheduler receive and transmit those results. In spite of all these advantages, we know

clearly that this kind of solution it’s not viable for (near) real-time ETL processes or for ETL

processes that demands exclusive resources for task execution. However, we believe for a small-

medium class 3 ETL process that a grid environment could be a good infrastructure solution.

In a near future, several improvements and optimizations might be considered. Some of them will

be related to the application of different weights to the classes of performance used to select the

nodes, or to use different bandwidth and performance ratios in the evaluation of the nodes,

particularly applying them according to each task characteristics.

REFERENCES

[1] I. Foster, C. Kesselman, and S. Tuecke. (2001). The Anatomy of the Grid : Enabling Scalable

Virtual Organizations. International Journal of High Performance Computing Applications, 15(3),

200-222.

[2] M. A. Vouk. (2008). Cloud Computing – Issues, Research and Implementations. Journal of

Computing and Information Technology, 16(4), 235-246.

[3] T. Demiya, T. Yoshihisa, and M. Kanazawa. (2008). Compact grid : a grid computing system

using low resource compact computers. Int. J. Commun. Netw. Distrib. Syst., 1(2), 17.

[4] M. Poess and R. O. Nambiar. (2005). Large scale data warehouses on grid: Oracle database 10g

and HP proliant servers. Paper presented at the Proceedings of the 31st international conference

on Very large data bases, Trondheim, Norway.

[5] P. Wehrle, M. Miquel, and A. Tchounikine. (2005, 20-22 July). A Model for Distributing and

Querying a Data Warehouse on a Computing Grid. Paper presented at the Parallel and Distributed

Systems, 2005. Proceedings. 11th International Conference on.

[6] B. T. Beshah, J. Welter, and K. Morin. (2004). Distributed Computing in Ground Processing.

Paper presented at the XXth ISPRS Congress, Istambul, Turkey.

[7] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger. (2002). Economic models for resource

management and scheduling in Grid computing. Concurrency and Computation: Practice and

Experience, 14(13-15), 1507-1542. doi: 10.1002/cpe.690

[8] J. M. Schopf. (2002). A General Architecture for Scheduling on the Grid. Journal of Parallel and

Distributed Computing, 17.

[9] H. Shan, L. Oliker, and R. Biswas. (2003). Job Superscheduler Architecture and Performance in

Computational Grid Environments. Paper presented at the Proceedings of the 2003 ACM/IEEE

conference on Supercomputing.

[10] A. R. Mury, B. Schulze, and A. T. A. Gomes. (2010). Task distribution models in grids: towards a

profile-based approach. Concurrency and Computation: Practice and Experience, 22(3), 358-374.

doi: 10.1002/cpe.1474

[11] C. Junwei. (2003). GridFlow: Workflow Management for Grid Computing.

[12] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, et al. (2004). Pegasus: Mapping

Scientific Workflows onto the Grid. In M. Dikaiakos (Ed.), Grid Computing (Vol. 3165, pp. 131-

140): Springer Berlin / Heidelberg.

[13] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, et al. (2005, 9-12 May). Task

scheduling strategies for workflow-based applications in grids. Paper presented at the IEEE

International Symposium on Cluster Computing and the Grid, 2005.

[14] J. Yu and R. Buyya. (2005). A Taxonomy of Workflow Management Systems for Grid

Computing. Journal of Grid Computing, 3(3), 171-200. doi: 10.1007/s10723-005-9010-8

[15] W. H. Inmon. (2002). Building the Data Warehouse (3rd ed.): John Wiley & Sons.

International Journal of Database Management Systems (IJDMS) Vol.6, No.2, April 2014

78

[16] R. Kimball, M. Ross, W. Thornthwaite, J. Mundy, and B. Becker. (2008). The Data Warehouse

Lifecycle Toolkit - Practical Techniques for Building Data Warehouse and Business Intelligence

Systems (Second Edition ed.). : Wiley Publishing, Inc.

[17] S. Iqbal, J. J. Bunn, and H. B. Newman. (2003). Distributed Heterogeneous Relational Data

Warehouse In A Grid Environment. Paper presented at the Computing in High Energy and Nuclear

Physics, La Jolla, California.

[18] W. Dubitzky, D. McCourt, M. Galushka, M. Romberg, and B. Schuller. (2004). Grid-enabled data

warehousing for molecular engineering. Parallel Computing, 30(9-10), 1019-1035. doi:

10.1016/j.parco.2004.07.009

[19] R. L. d. C. Costa and P. Furtado. (2007). An SLA-Enabled Grid DataWarehouse. Paper presented

at the 11th International Database Engineering and Applications Symposium (IDEAS 2007),

Banff, Alberta, Canada.

[20] P. Wehrle, M. Miquel, and A. Tchounikine. (2007, 21-23 May). A Grid Services-Oriented

Architecture for Efficient Operation of Distributed Data Warehouses on Globus. Paper presented

at the Advanced Information Networking and Applications, 2007.

[21] R. Kimball and J. Caserta. (2004). The Data Warehouse ETL Toolkit - Pratical Techniques for

Extracting, Cleaning, Conforming, and Delivering Data. : Wiley Publishing, Inc.

[22] A. Albrecht and F. Naumann. (2008). Managing ETL Processes. Paper presented at the

Proceedings of the International Workshop on New Trends in Information Integration, NTII 2008,

Auckland, New Zealand.

[23] A. Simitsis. (2003). Modeling and managing ETL processes. Paper presented at the 29th

International Conference on Very Large Data Bases, Berlin.

[24] P. Vassiliadis, A. Simitsis, M. Terrovitis, and S. Skiadopoulos. (2005). Blueprints and Measures

for ETL Workflows (pp. 385-400).

[25] A. Simitsis, K. Wilkinson, U. Dayal, and M. Castellanos. (2010, 1-6 March). Optimizing ETL

workflows for fault-tolerance. Paper presented at the Proceedings of the 26th International

Conference on Data Engineering, Long Beach, California.

[26] H. Ningning and P. Steenkiste. (2003). Evaluation and characterization of available bandwidth

probing techniques. Selected Areas in Communications, IEEE Journal on, 21(6), 879-894.

[27] M. M. Yousaf and M. Welzl. (2005). A Reliable Network Measurement and Prediction

Architecture for Grid Scheduling.

[28] L. Marchal, P. V. B. Primet, Y. Robert, and J. Zeng. (2006). Optimal Bandwidth Sharing in Grid

Environments. Paper presented at the High Performance Distributed Computing, 2006 15th IEEE

International Symposium on.

[29] N. W. Keat, A. T. Fong, L. T. Chaw, and L. C. Sun. (2006). Scheduling Framework for

Bandwidth-Aware Job Grouping-Based Scheduling in Grid Computing. Malaysian Journal of

Computer Science, 19(2), 117--125.

[30] B. Segal, L. Robertson, F. Gagliardi, and F. Carminati. (2000). Grid computing: the European

Data Grid Project. Paper presented at the 47th IEEE Nuclear Science Symposium and Medical

Imaging Conference, Lyons, France.

[31] V. Santos, B. Oliveira, R. Silva, and O. Belo. (2012). Configuring and Executing ETL Tasks on

GRID Environments - Requirements and Specificities. Procedia Technology, 1, 112--117.

[32] N. Guerreiro and O. Belo. (2009). Predicting the Performance of a GRID Environment: An Initial

Effort to Increase Scheduling Efficiency. In Y.-h. Lee, T.-h. Kim, W.-c. Fang, and D. Slezak

(Eds.), Future Generation Information Technology (Vol. 5899, pp. 112-119): Springer Berlin /

Heidelberg.

[33] P. Vassiliadis, A. Simitsis, and S. Skiadopoulos. (2002). Conceptual modeling for ETL processes.

Paper presented at the Proceedings of the 5th ACM international workshop on Data Warehousing

and OLAP, McLean, Virginia, USA.

[34] P. W. P. J. Grefen and R. A. de By. (1994, 14-18 February). A multi-set extended relational

algebra: a formal approach to a practical issue. Paper presented at the Data Engineering, 1994.

Proceedings.10th International Conference.

[35] J. Albert. (1991). Algebraic Properties of Bag Data Types. Paper presented at the Proceedings of

the 17th International Conference on Very Large Data Bases.

[36] I. Foster. (2006). Globus Toolkit Version 4: Software for Service-Oriented Systems. Paper

presented at the IFIP International Conference on Network and Parallel Computing.

International Journal of Database Management Systems (IJDMS) Vol.6, No.2, April 2014

79

[37] Z. Xuehai and J. M. Schopf. (2004). Performance analysis of the Globus Toolkit Monitoring and

Discovery Service, MDS2. Paper presented at the IEEE International Conference on Performance,

Computing, and Communications.

[38] M. L. Massie, B. N. Chun, and D. E. Culler. (2004). The ganglia distributed monitoring system:

design, implementation, and experience. Parallel Computing, 30(7), 817-840. doi:

10.1016/j.parco.2004.04.001

[39] G. von Laszewski, J. Gawor, P. Lane, N. Rehn, and M. Russell. (2002). Features of the Java

Commodity Grid Kit. Concurrency and Computation: Practice and Experience, 14(13-15), 1045-

1055. doi: 10.1002/cpe.674

Authors

Vasco Santos (http://www.estgf.ipp.pt) is an auxiliary professor at Polytechnic of

Porto – School of Management and Technology of Felgueiras (IPP.ESTGF), in

Portugal. He obtained is graduate degree in 1997 at University of Minho and is MSc.

in 2004 in the same University. He is currently obtaining is PhD under the

supervision of professor Orlando Belo. He is member of CIICESI research center in

the IPP.ESTGF school and is currently developing is PhD studies in the area of data

warehouse design methodologies in particular ETL conceptual and logical design.

Rui Silva (http://www.estgf.ipp.pt) is a guest assistant professor at Polytechnic of

Porto – School of Management and Technology of Felgueiras (IPP.ESTGF), in

Portugal. He obtained is graduate degree in 2009 at IPP.ESTGF and is MSc. in 2012

in the same University. He is member of CIICESI research center in the IPP.ESTGF

school. His main research topic is related with ETL process scheduling in grid

environments.

Orlando Belo (http://www.di.uminho.pt) is an associate professor, with habilitation,

at the Department of Informatics of Minho University, in Portugal. He is also a

member of the ALGORITMI R&D Centre in the same university, working

in Business Intelligence, with particular emphasis in Data Warehousing Systems,

OLAP, and Data Mining. His main research topics are related with data warehouse

design, implementation and tuning, ETL services, and distributed multidimensional

structures processing. During the last few years he was involved with several

projects in the decision support systems area designing and implementing

computational platforms for specific applications like fraud detection and control in

telecommunication systems, data quality evaluation, and ETL systems for industrial

data warehousing systems. More recently, he was developing some research work

establishing OLAP usage profiles and optimizing OLAP selection methods

incorporating knowledge acquired over OLAP user sessions and users’ preferences.

