International Journal of Database Management Systems ([JDMS) Vol.6, No.3, June 2014

AN ONTOLOGICAL APPROACH TO HANDLE
MULTIDIMENSIONAL SCHEMA EVOLUTION
FOR DATA WAREHOUSE

M.Thenmozhi and K.Vivekanandan

Department of Computer Science and Engineering,
Pondicherry Engineering College, Puducherry, India

ABSTRACT

In recent years, the number of digital information storage and retrieval systems has increased immensely.
Data warehousing has been found to be an extremely useful technology for integrating such heterogeneous
and autonomous information sources. Data within the data warehouse is modelled in the form of a star or
snowflake schema which facilitates business analysis in a multidimensional perspective. As user
requirements are interesting measures of business processes, the data warehouse schema is derived from
the information sources and business requirements. Due to the changing business scenario, the information
sources not only change their data, but also change their schema structure. In addition to the source
changes the business requirements for data warehouse may also change. Both these changes results in data
warehouse schema evolution. These changes can be handled either by just updating it in the DW model, or
can be developed as a new version of the DW structure. Existing approaches either deal with source
changes or requirements changes in a manual way and changes to the data warehouse schema is carried
out at the physical level. This may induce high maintenance costs and complex OLAP server
administration. As ontology seems to be a promising solution for the data warehouse research, in this
paper an ontological approach to automate the evolution of a data warehouse schema is proposed. This
method assists the data warehouse designer in handling evolution at the ontological level based on which
decision can be made to carry out the changes at the physical level. We evaluate the proposed ontological
approach with the existing method of manual adaptation of data warehouse schema.

KEYWORDS

Data Warehouse Evolution, Multidimensional Schema Evolution, Data Warehouse Schema Changes

1. INTRODUCTION

Business analysts increasingly rely on data warehouse for making strategic decisions for their
organization. The data warehouse is populated from several operational sources using extraction,
transformation and loading (ETL) operations [8]. In order to discover trends and critical factors
in business, the data warehouse provides multidimensional view of the data which is used by
Online Analytical Processing (OLAP) and other reporting tools [3]. A retail organization for
example, analyzes purchases by its customers to come up with products of likely interest to the
customer. The analytical results generated by these tools need to be accurate and reliable. Hence

DOI : 10.5121/ijdms.2014.6303 33

International Journal of Database Management Systems ([JDMS) Vol.6, No.3, June 2014

the management of such data warehouse system is rather difficult when compared to traditional
operational systems.

The common assumption is that once created the DW remains static. However, due to changes in
business needs, the DW needs to evolve. Evolution in a DW can be generated by two different
causes: (i) a change in the source schema or (ii) a change in the DW requirements [19]. An
inherent feature of source schema is their evolution in time with respect not only to their contents
(data) but also to their structures (schemas). In addition to this, the business processes in which
the analyst is involved are subject to frequent changes. These changes in business processes are
reflected in the analysis requirements. New types of queries that require different data become
necessary. The new query requirements lead to changes in the DW schema [9]. These changes
need to be propagated to the data warehouse system in order to provide accurate in-sight of the
business data.

Considering the importance of the evolution problem in the data warehouse domain, some
existing works have addressed this issue. In the literature, the DW evolution can be classified
into three different approaches namely schema evolution [1] [2] and schema versioning [14] [15]
[17]. Schema evolution consists in replacing old schema into a new schema as well transferring
old data from old schema and updating it in a new schema. Schema versioning consists in
keeping the history of all versions by temporal extension or by physical storing of different
versions.

Existing works to the data warehouse evolution problems mainly concentrated on handling the
DW schema changes at the physical level. As a consequence, the DW administrator is
responsible for complex maintenance task either for schema evolution approach or versioning
approach. The proposed work gives a different perspective for data warehouse evolution. It helps
the data warehouse designer to give an insight of how the requirement or source changes can be
propagated to the data warehouse schema using ontology. Hence, the designer can make a choice
of propagating the changes to the physical level.

2. LITERATURE SURVEY

In [15] the authors proposed an approach based on versioning called MVTDW (Multiversion
Trajectory Data Warehouse) in order to handle structural changes of the DW. They defined a set
of constraints that need to be guaranteed by the real versions and alternative versions maintained
by the MVTDW. Moreover they proposed some algorithms that can be applied in case of schema
and instance changes on the TDW versions. For MVTDW to answer the queries the user needs to
define the correct version. If data required by a query exists in different versions, it is necessary
provide a data mapping between them. In this paper [17] the authors proposed the metadata
model for a multi-version data warehouse. The metadata is used to describe the data warehouse
schema versions at logical level, their storage in the relational database at physical level,
information about reports defined by users on schema versions, and semantics of data stored in
the data warehouse. The proposed data warehouse evolution framework enables the user to
construct report based on desirable terms and term versions from the semantic metadata. In this
paper [1] the authors formally defined the data warehouse model supporting extended hierarchies.
Different features such as multiple hierarchies, non-covering hierarchies, non-onto hierarchies,
and non-strict hierarchies are explained. They use Uni-level Description Language (ULD) and
multilevel dictionary definition (MDD) in order to model the constructs. In this paper [4] the

34

International Journal of Database Management Systems ([JDMS) Vol.6, No.3, June 2014

authors developed the multi-version data warehouse (MVDW) approach to manage DW
evolution. Since in MVDW fact and dimension data are physically distributed among multiple
DW versions, the authors proposed a multi-version join index (MVIJI) technique. The MVIJI has
an upper level for indexing attributes and a lower level for indexing DW versions. The paper also
presents the theoretical upper bound analysis of the MVIJI performance characteristic with respect
to I/O operations. In [18] the authors proposed a framework for DW evolution based on
requirements. The framework consists of Requirement level; which keep tracks of changes in
requirements, Change Management level; keeps track of changes in source, Design level; to
perform the required changes in the data warehouse schema, and View level; to define and
generate customized reports and views. In this paper [2] the authors proposed a Rule-based Data
Warehouse (R-DW) model to support data warehouse evolution. They follow a user-driven
approach in order to update the data warehouse schema. Based on users’ knowledge the
aggregated data is represented in the form of “if-then” rules. Using these aggregation rules the
granularity of the dimension are defined dynamically.

3. BACKGROUND

The following sections describe about the multidimensional model for data warehouse and the
basics of ontology and its applicability in data warehouse domain.

3.1. Multidimensional Model

Data within the data warehouse is represented as Multidimensional model. This “cube” structure
representation makes more compatible logical data representation suitable for On-Line Analytical
Processing (OLAP) and data management. The advantages of dimensional modelling are: (i) To
produce database structures that are easy for end-users to understand and write queries against,
and (ii) To maximize the efficiency of queries. The basic concepts of dimensional modelling are:
facts, dimensions and measures [10]. A fact is a collection of related data items, consisting of
measures and context data. In general it represents business items or business transactions of a
particular domain. A dimension is a collection of data that describe one business dimension. It
determines the contextual background for the facts and they are the parameters over which we
want to perform OLAP operations. A measure represents the numeric attribute of a fact which
provides the performance or behaviour of the business relative to the dimensions. There are two
basic models that are used in dimensional modelling: Star model and Snowflake model [3]. The
basic structure for a dimensional model is the star model. It has one large central table (fact table)
and a set of smaller tables (dimensions) arranged in a radial pattern around the central table as
shown in Figure 1. The Figure 1 represents the star schema the sales domain. The snowflake
model is the result of decomposing one or more of the dimensions. There exist many-to-one
relationships among sets of attributes of a dimension which can separate new dimension tables,
forming a hierarchy as shown in Figure 2. The decomposed snowflake structure visualizes the
hierarchical structure of dimensions very well.

35

International Journal of Database Management Systems ([JDMS) Vol.6, No.3, June 2014

Dimension table Dimension table
Product Fiscal quarter

Prod_no Fact table Qtr
Prod_name Business results Year
Prod_descr Beg_date
Prod_style Product End_date
Prod_line Quarter

Region

Sales_revenue Dimension table

Region
Subregion
Figure 1. Star Schema
Dirmension tables Dimension tables
Prama Fiscal quarter FQ dates
Prod_name Fact table Cir ‘ Bog_date
Prod_descr » Product a o oar o End_date
usnEss regults Beq dak W
__\l Brod 1o \ fl,. khag_cate
" Prod_name Product ;
Style COuarter #
» Prod_line_no Region *
! Revenue
Pine ¥ \! Sales revenise
Prod ling_ng chu;m
Frod line name Subregron

Figure 2. Snow Flake Schema

3.2. Ontology Basics

A relational database is a structured, formal representation of a set of data; in the same way,
ontology is a structured, formal representation of an area of knowledge. It defines and restricts
what can be said about that area of knowledge. Ontology is most commonly defined as “a formal,
explicit specification of a shared conceptualization” [7]. Ontology describes the knowledge in a
domain in terms of classes and properties, as well as relationships between them”[7]. Basic
building blocks of ontology design include: classes or concepts, properties of each concept
describing various features and attributes of the concept, restrictions on slots (facets). Classes
(Concepts) are abstract groups, sets, or collections of objects. Concepts in the ontology should be
close to objects (physical or logical) and relationships in the domain of interest. The decision in
using an ontology-based approach for data warehouse, instead of using another technology for
example a UML-based approach, lies in the fact that ontology provides an elegant way to
represent concepts using Web Ontology Language (OWL) format. The OWL is an international
standard for encoding and exchanging ontologies [16]. The reason for choosing the OWL is that,
it provides the system with the means of not only representing information but also for automatic
processing of that information.

36

International Journal of Database Management Systems ([JDMS) Vol.6, No.3, June 2014
4. PROPOSED APPROACH

The objective of the work described in this paper is to propose a methodology that supports an
automatic adaptation of the multidimensional schema when the requirements and source evolves.
Our main idea for the data warehouse evolution is that the whole system is specified at the
conceptual level. Any changes at the source or requirements are propagated to the data warehouse
schema at the ontological level. Hence the proposed approach analyses the impact of a given
change at the logical level, before it is propagated to the data warehouse schema at the physical
level.

In our work we represent the data source, requirements and data warehouse using ontology. The
ontological representation of these entities helps us to automate the evolution task. As the data
source schema changes, the data warehouse schema need to evolve. Any changes at the original
source or requirements are obtained and these are updated at the source and requirement
ontology. Depending on the type of change, the changes are propagated over the data warehouse
ontology. Based on the evolved data warehouse ontology the DW administrator can make a
decision to carry the changes at the physical level. Following are the phases of our methodology:

1. Formalizations of inputs

2. Defining Evolution operators

3. Update change in requirements or source ontology
4. Extract Data Warehouse schema change

5. Propagate change to Data Warehouse schema

6. Check consistency of Data Warehouse schema

4.1. Formalization of Inputs

In this section, we formalize the proposed method in order to standardize and to ensure the
correctness of the DW evolution process. We use OWL ontology to describe the semantics of
different entities involved in our methodology. The reason for using OWL as the utility, instead
of XML, UML or others, is that OWL supports the semantic reasoning, and is better for future
extensions of this work, such as, reasoning-based DW schema evolution. We describe the data
source, requirements and DW schema by ontology.

We illustrate our approach using TPC-H [5] and Star Schema Benchmark (SSB) [12] schemas.
TPC-H is a decision support benchmark which represents our source. The Star Schema
Benchmark is a variation of the TPC-H benchmark, which models the data warehouse for the
TPC-H schema. The following sections describe our approach in detail.

4.1.1. Ontology for data sources

Data sources may contain different types of structures. Hence these sources are mapped to a local
ontology which will express the semantic of the data sources. Following are the rules to map a
database to ontology:

¢ The database table is mapped to an ontology class.
e [If a database table is related to another, then the two tables are mapped to classes with
parents-child relationship.

37

International Journal of Database Management Systems ([JDMS) Vol.6, No.3, June 2014

e If a database table is related to two tables, then the table is divided into two transferred
classes.

e The primary key is mapped to a data type property of the ontology. The foreign key
would be mapped to an object property of the ontology.

e The attributes of a table are mapped to properties of the equivalent class.

In the case that source data is extract from distributed data sources, more than one initial
ontologies could be generated. Ontology merging [11] is used to merge different initial ontology
together to represent a single integrated source. Figure 3 represents the ontology for the TPC-H
schema. Formally, the data source ontology (DSO) to be used by our approach can be defined:

DSO = {C,DP,OP}
- Cis a set of OWL classes representing the tables
- DP is a set of data type properties representing the table attributes
- OP is a set of object type properties representing the relationship between tables

Supplier Part
Suppiier_s_spobeyATRIBUT | 4 Provides 14 Pariaipp Part_p_sesiprcaA TRIBLIT
il 5 _rasoATRIEUT Partsepp_ps_patheyATRIELIT Pat_p_sieATRIELIT
Suspiier_s_commasUATREUT -Partssnn_m_sipetyconATREUT Part_p,_comtsneck TREILIT
| Susqiier_s_raboskay ATRIBUT Line e Partsepp_ps_commaalkTRIEUT | - 1 |LPart_p typeATREUT
Supplier_s_phoned TRIBUT Linetterm_|_lasehTRoOBI T -Partseon_pe_availity ATRIBUT W Part_p_brandd TREIUT
Sugpiier_§_scrBalATRIBUT L b iy A TR IBUT -Parspn, e mappayATRIBLIT - Pt o gt TRIB LT
Supplier_s_adsressATRIBLIT Linstiarm_|_suppkeyATREUT T Part_p_samadTREUT
K -Lined e _|_irsrusimbisd TRIBUT Pt comiraslA TRIBLIT
: Lineiterm_|_comimisda teATRIBLT Part_p_mige TRIBLIT
Lini lerr_|_ralernisgATRIBLIT o Linetem_Partsep
Lineilem_|_shipmoce ATREUT
-Lingi lern_|_mmmmantATRIBUT Ories
~Linetiem_|_guanisyATRIBUT 1.0 o 1
Wokiln Lineilem_|_descoustATRIBUT -0 oederhay ATRIBUT
Linsitem_|_oearkay ATRIBUT -0 oederpaorty ATRIBLIT
Lineilem_|_ines s TRBLIT Cusio=ar -0 Joksipdca ATRIBUT
Linsi lern_|_shipineiuct ATRIBLIT L Cutomar_¢_cuslind TRIBUT 1| Depy 1= [CuESSOSSATRIGUT
Linetlem_|_parthey ATRELT Cusiomer_o_mkisegmentATRIBLT ro_mersATRIBUT
Linwsibov_|_risci plckalon TRIBUT | Customr_i_nalionking TRIBLT -0_shippreniATREUT
1y .Linetiem_|_shipdaeATRIBLIT | Customer_o_nameATRIBLT 0_oederstabusATRIBUT
o ot . commenBTRIBUT o_commereATRIBAT
[Mation,_n_commergATRIBUT FCLsomar_o_phonsk TRIBLIT it
Matios_n_mgonkeyATRIBUT | I L o+ Flusiomss_c_addressA TREBUT
e e o | Cusomar_¢_sccttaldTRIBLIT
Haltion_n_nationkey&TRIBLIT

i

LisgalEnkity | Indliaidual
-Legal Enity_be_regrumd TRIBUT |--rnnuua| DnumATRIELT

EUNation
-ELINation_img_aatonkayt TRELIT

b

Ragian
MonELMatien Rliagiot_t_namaATRIELIT i " i Araa
-HonElMation_neu_ralorkey ATRIBUT Bingion,_r_regionksyATRIBUT -Aras_s_snsakaps TRIBUT
Ragion_r_commentATRIBUT AT aneana maATRIBUT

Figure 3. Data Source Ontology
4.1.2. Ontology for Requirements

Requirements play a major role in DW design. We assume that a requirement analysis has been
carried out earlier and the corresponding requirement specification is available for the business
domain. Here we explain the process for constructing the DW requirements ontology (DWRO)

38

International Journal of Database Management Systems ([JDMS) Vol.6, No.3, June 2014

for semantically describing the requirement glossaries. DWRO is based on the i* framework [6]
for the modelling of goals and information requirements for DWs. The DWRO should be capable
to model the following type of information: i) Strategic goals: These are the main objectives of
the business process (for example, ‘‘increase sales”); ii) Decision goals: They attempt to answer
the question: ‘‘how can a strategic goal be achieved?” (for example, ‘determine some kind of
promotion”); iii) Information goals: They attempt to answer the question: ‘‘how can decision
goals be achieved in terms of information required” (for example, ‘‘analyze customer purchases”
or ‘‘examine stocks”). Information requirements for decision makers are derived from
information goals. The multidimensional elements are the process measures under analysis
(Measure stereotype), and context of analysis (Context stereotype). Figure 4 represents the
requirement ontology based on TPC-H benchmark schema. Formally, the DWRO can be defined:

DWRO = {S, I, D, IR, BP,M,C}, where:
- Sis aset of OWL classes representing the strategic goals
- lis aset of OWL classes representing the information goals
- Dis aset of OWL classes representing the decision goals
- IR s a set of OWL classes representing the information requirements
- BP s a set of object properties representing business process
- Mis a set of data type properties representing measures
- Cisaset of OWL classes representing the contexts

| Exaegic Goal
TTEEs PO

v _

" Decion Goal| Decision Goal |
noresse noreEsE
Reverue o R for
Orers Pars Sod
niommnation Gioal nibrm ation Goal
Eaudy Reerue Eaudy Revere
by Onders, by Pars Sold,
Peesiod Pesiod
. TR | L. . v
[Irfamation Requirement By [Inibrenation Fiequi ement] | Imbrmation Requremen: | | Imiomaton Requramen: [Infbrmarion Requiement |
—‘I e Pt | Analyze Revenue basan Anayze Reenus Ess | Analyss Revenue bessr
==t EEE e o B o F -
Peakyse R Ea i ke Ea on Customer Oders, on Pars on [Paris £ 3 giken Period
2 : en Poricd Customer, Customer
LElE J e Maticn for a piven Perid
b S ol s o -
| Cortiext | Meazare Conext Measure | Coniext Meszue | Corext ez | Conex: T [EEEE |
Oate ExtendedPrice I C::;:er ExtendedPrice I ['3'35 ExerdedPrice | Pa ExtendedPrie Pars ExendedPrice
Discount Date Discaunt pre Ciscount | Discount Qe Disicount
J L Jl_ == |

Figure 4. Data Warehouse Requirement Ontology

39

International Journal of Database Management Systems ([JDMS) Vol.6, No.3, June 2014
4.1.3. Ontology for Data Warehouse

The SSB data warehouse schema for the TPC-H source schema is given in Figure 5. DW schema
can be formally defined using DWO as given below:

DWO = {F,FP,M,D,DP,RP}

- Fis aset of OWL classes representing the fact

- FPis a set of OWL classes representing the fact properties

- Mis a set of data type properties representing the measures of the fact

- Dis aset of OWL classes representing the dimensions

- DPis a set of data type properties representing the dimension properties

- RP s a set of object properties representing the relationship between facts and

dimensions
CUSTOMER SUPPLIER
(DIMENSION) (DIMENSION)
Customer_c_cuslay (PE) LINECRLER FACT) ':.‘.u]:u]:ul?a:‘_s-_supp:—:ag.' P
Customer_c_mitsegment ‘fuj:lj:l:!af_a_:'ﬁ:
Customes ¢_name LineOrdar_| linanumber (PE) Supplisr_s_sddress
4 | Lin=Order | suppkey FK) | Supplisr_s_phaone
LinaOrder | orderkavw FE) E‘J]Jpl!a:‘_s-_‘-‘-:bal
LineOrder_o_custiey FK) Supplier_s_commant
LinsOrder | partzkay (FK) Supplier_s_nation
LineOrder |tz Supplisr_z_ysgion
LineOrder_1 extendadprice

LineOrder_1 guantity
LinaOrder_ 1 dizcount
LineOrder_1 commitdats

| Lin=Drder 1 returnflzg DART

LineOrder_ 1 shipmoda

LineOrder 1 linestztus Bart_p_partkey (PE)
DATE LineOrder 1 shipinstuct Part_p_name
{CIMENSION) LinaOrder | receiptdste Dasts_p_zizm
- EE—— Linz0rdzr_|_zhipdate Dert_p_mier
v - =
&E;_i_itée o LineOrder_ps_supplycost Part_p_catzgory
Dotz d wasic LineOrder_o ordarpriority Dast_p_brand
Dat: 4 menth Lin=Order_o_totprice Bart_p_color
Date_d_wear LineOrder_o_orderdate Part p_fype
LineOrder_o shippriority Bart_p_contziner
LineOrder_ o ordags tztus Bart_p_ratzilprice

LineOrder o commnst

(DIMENZION

Figure 5. Data Warehouse Ontology
4.2. Defining Evolution Operators

In this section we present the set of evolution operators to represent the type of change and
concept changed. The three possible changes that occur are addition, deletion and rename. The
DW elements such as Fact, Dimension, Measures etc., are subject to change. Their equivalent
ontology concepts in DWO need to be changed accordingly. Performing a change over the DWO
may require additional changes to be executed over the ontology. For example, addition of a new
dimension i.e., class to the DWO requires addition of its data property and object property. The
type of change, element changed and additional changes are given in Table 1.

40

International Journal of Database Management Systems ([JDMS) Vol.6, No.3, June 2014

Table 1. Evolution Operators

Equivalent
Type of DW Schema Elements Ontology Elementary Changes
Change Concept
Changed
Table Class Add Data Property
(Fact, Dimension) Add Object Property
- Attributes Add Property Domain
Addition (Measures, Descriptive) Data Property Add Property Range
Relationship . Add Property Domain
(Primary Key, Foreign Key) Object Property Add Property Range
Table Class Delete Data Property
(Fact, Dimension) Delete Object Property
: Attributes Delete Property Domain
Deletion perty
(Measures, Descriptive) Data Property Delete Property Range
Relationship . Delete Property Domain
(Primary Key, Foreign Key) Object Property Delete Property Range
Table Class Rename Class
(Fact, Dimension) (If required)
Attributes Rename Data Property
Rename (Measures, Descriptive) Data Property (If required)
Relationship . Rename Object Property
(Primary Key, Foreign Key) Object Property (If required)

4.3 Update Change in Requirements or Source Ontology

Given the changes in source schema or business requirements, the next step is to update them in

the corresponding ontology. Using an ontology editor such as protégé [13] the changes can be
directly applied over the ontology. When there is change in the business requirements, before the

change is propagated over the DWO, the DSO need to be verified for the existence of the

particular concept. Algorithm 2 SearchOntology verifies the existence of the concept. Steps 1-6

verifies for class existence, steps 7-12 verifies for data property existence, steps 8-17 verifies for
object property existence. If concept not found the business requirements need to be refined.

:S‘carc.ifc’ura.sbg}' Oniogy. Concapt Concept __Tips)

1 if Comcapy _ Tupe ==Class then

2 forall c: = Cdo

£] ifcr == Comncspt then
<4 Flag=Found

] end if

5 end for

7 else if Camcept Mg ==DamPraperyy then
a for all o=, = DF do

= ifdip, == Corcepe then
10 Flag=Foumnd
11 end if

12 end for

=)
7]

elzse if Comcepr _ Mpee ==0 &fcciProperiy then
for all op, = GOF do
ifop, == Cormcespw then
Flag=Foumnd
end if
end for

L
00 = ol e

elsa

[¥)
(=]

Flag=NotFoumd
end if
return Fiaz

[SR N]
[

Figure 6. Algorithm Search Ontology

41

International Journal of Database Management Systems ([JDMS) Vol.6, No.3, June 2014

For our TPC-H domain a new decision goal “Increase Revenue through promotions” has been
added in the requirement ontology. “Study Revenue by Customer Promotions” is the information
goal and the corresponding information requirement is “Analyse Revenue based on Customer for
a given Promotions”. The context for the new information requirement is “Customer” and
“Promotions”. The measures for analyzing Revenue are “ExtendedPrice” and “Discount”. Figure
7 highlights the new requirement added to the requirement ontology.

Table 2 represents the details changes of a new table/class “Promotions” and its corresponding
attributes/data properties that have been added to the TPC-H source schema ontology and other
changes such as rename and deletions.

————
Wi
sgpes

| Decion Gl | Deedlsion Gl CesinGE
neesEe NCEEE | e
FEEE ¥ fEEnEte FeEne hou

-1
=t

| interarion Gl nhrEn G mhrrarson G
f Sy ReEne SamiyReEE Sy e
by O, by Fats it try CUERNE,
el Promeios
L)
{ mbrwinFeqieTen | bmeimFegienen | | himesn Regienen (" interaon Fecureren |
— - Al ER PN D A3 E8 FEEnE DaE AnalyER RN Dass | Aneyee Fenenue e
| - b S A o CUERNEY ONEE e NPENET 3 ghen Petd o Custner iy agen
"“ﬁgmm‘-’;‘; Gﬂ]wﬂm{lhi CLEDTES CLEYE PO
herton 1t @ A Pl
|
| Comext | VemU | Comet MemUE Comext VEEUE " Comext MeELE Comext [T I Comext NEEUE
s ExerkrPrie E'jﬁ‘ s || O D gy |DemePtz | Pax | B | Ceove | e |
Diecoumt DE'E Diecoumt [T Do Decom e Discoum Frornons [Digoam
s.

Figure 6. Data Warehouse Requirement Ontology after Updation

Table 2. Change Details.

Data Source | Data Source Ontology Entity Changed

Change Change

ADDITION

Table Class Promotion
Attribute Data Property Promotion _p_id
Attribute Data Property Promotion _p_name
Attribute Data Property Promotion _p_category
Attribute Data Property Promotion _p_subcategory
Attribute Data Property Promotion _p_cost

42

International Journal of Database Management Systems ([JDMS) Vol.6, No.3, June 2014

Attribute Data Property Promotion _p_begdate
Attribute Data Property Promotion _p_enddate
Attribute Data Property Promotion _p_total
RENAME
Attribute Data Property OldName:Customer_c_comment

NewName:Customer_c_feedbac

Attribute Data Property OldName:Part_p_category,
NewName: Part_p_model
DELETION
Attribute Data Property Customer_c_mktsegment
Attribute Data Property Part_p_container

4.4. Extract Data Warehouse Schema Change

If change type is addition then it is necessary to find the multidimensional element type of the
concept. Figure 7 represents the Algorithm to propagate change. It is used for finding the
multidimensional element. The inputs for Algorithm 3 are DSO, change information,
multidimensional element list available in DWO.

First the algorithm checks whether the concept added is a class and identifies it as a fact or a
dimension or a level. To find whether the class ci is a fact, the range class of ci is obtained. If the
range class exists in DSO and it belongs to a dimension in DWO, ci is likely to be a fact. The data
properties of ci is derived and checked whether it contains enough numerical properties to qualify
as a fact. If ci has n:1 relationship with range class then it is identified as fact (steps 2-16). To
find whether ci is a dimension, the domain class of ci is obtained. If the domain class cj belongs
to a fact in DWO then ci is likely to be a dimension. If the domain class ci has 1:n relationship
with fact then ci is identified as dimension (steps 17-21). To find whether ci is a level, the domain
class of ci is obtained. If the domain class cj belongs to a dimension or level in DWO then ci is
identified as a level (steps 18-24).

Next the algorithm checks whether the concept added is a data property and identifies it as a fact
or a dimension or a level property. The domain d of dpi is obtained. If d is a fact then concept
added is identified as fact property. If d is a dimension then concept added is identified as
dimension property. If d is a level then concept added is identified as level property.

Finally, the algorithm checks whether the concept added is an object property and identifies it as
a fact or a dimension or a level relation. The domain d and range r of opi is obtained. If d is a fact
and r is a dimension then concept added is identified as fact-dimension relation. If d is a
dimension and r is a fact then concept added is identified as dimension-fact relation. If d is a
dimension and r is a level then concept added is identified as dimension-level relation.

In Table 2 the changes related to addition has been listed for the TPC-H domain. By using
Algorithm multidimensional type we are able to identify the multidimensional element type for
the class “Promotions” and its data properties. Table 3 gives the details of data warehouse
multidimensional type of the change that need to be propagated to DWO.

43

International Journal of Database Management Systems ([JDMS) Vol.6, No.3, June 2014

Input : Ontology of'the form O = {C,DTP,OTP}
Output : MD Concepts: MD = {FL,ML,DL}

IindMDType (Ontology, Concept, Concept _Type)

if Concept Type

Class then

1

2 forall ¢c; € ' do

3 ifc; ConceptChanged then

4 if (Rng(ci.opi)!= null & & Rng(ci.op:) eDimensionList))then
5 for all data properties ¢; .dp; € DP do

6 rng = Rng(ci .dpi), rng € D1xml

7 if isnumeric(rng) then

8 e+

9 end if

10 end for

11 if n>threshold then

12 cji=Rng(ci.opi), ci € C

13 if (ci.op;allValuelFrom c; & & maxCardinality /) then
14 ci =FactClass

15 end if

16 endif

17 else if (Domain(ci.op;)! =null & & Domain(ci.op;)eFactList) then
18 ¢j- Domain(ci.opi)

19 if (¢;.op; allValueFrom ¢; & & maxCardinality 1) then
20 ci =DimensionClass

21 end if

22 else if (Domain(ci.op:)! =null & & Domain(ci.op:)e (Dimlist || € LevelList)) then
23 c;i = LevelClass

24 endif

25 end if

26 end if

27 end if

28 end for

29 else if Concept Type DataProperty then

30 for all dp; € DP do

31 if dp; Concept then

32 d- Domain(dpi)

B33 if d= FactClass then

34 dpi=FactProperty

35 else if d= DimensionClass then

36 dpi;=DimensionProperty

37 else

38 dpi=LevelProperty

39 end if

40 end if

41 end if

42 end if

43 end for

44 else if Concept Type —=ObjectProperty then

4s for all op; € OP do

46 ifop; == Concept then

47 d- Domain(op;)

48 r= Rng(opi)

49 if (de@actList) & & re(DimensionList) then

50 opi=FactDiemensionRelation

51 else if (d e(DimensionlList) & & re@actlist) then
52 opi=DiemensionlactRelation

53 else if (d e(DimensionlList) & & r e(evellist) then
54 opi=DiemensionlLevelRelation

55 end if

56 end if

57 end if

58 end if

59 end for

60 end if

61 end if

62 end if

Figure 7. Algorithm Multidimensional Type

44

International Journal of Database Management Systems ([JDMS) Vol.6, No.3, June 2014

Table 3. Multidimensional Type of Addition Change.

Data Source Ontology Entity Changed Multidimensional Type
Change

Class Promotions Dimension Class

Data Property Promotion _p_id Dimension Data Property
Data Property Promotion _p_name Dimension Data Property
Data Property Promotion _p_category Dimension Data Property
Data Property Promotion _p_subcategory Dimension Data Property
Data Property Promotion _p_cost Dimension Data Property
Data Property Promotion _p_begdate Dimension Data Property
Data Property Promotion _p_enddate Dimension Data Property
Data Property Promotion _p_total Dimension Data Property

4.5. Propagate Changes to Data Warehouse

To apply the changes over the DWO, we use different algorithms depending on the type of

change. If the type of change is addition the multidimensional element is identified using the
previous step. For propagating the addition change we apply Algorithm Apply Change Addition
given in Figure 8. If the concept type is a class then we retrieve the list of data properties and
object properties for the class to be added. The new class is added to the DWO and for each data
property its range and domain is included. Similarly, for each object property its range and
domain is included. If the concept type is data property, the new data property is added to the
class in DWO and its range and domain are included accordingly. If the concept type is object
property, the new object property is added to the class in DWO and its range and domain are

included accordingly.

b Cihrarrsed ol f oD W0 miology, Cormc opt Comcspd _ Tupe)

if Cormncapr _ Tipe ==Cass then
Add = O in O
Geat DPLiy apwd OQFPLisy
for each & in DPCfsy
Add s sy = DF
Ser Rung(c.dps)
Ker Domilc. o)
end for
foreach op in OFLfzr
Add & op; = OF
Ser Ragi(c, opd,
Ker Domic o)
end for
elze if Concapr _Tpprs ==DaraPraparpy then
Gat DPLizy
foreach o in D FPIizy
Add s sy = DF
Ser Ruglc: . &)
Ker Daomilc:s oy
emnd for
else if Cormcapr _ Tuipe ==0 &fecrFroperpy then
Ceat OFLEr
foreach op in OFLizr
Add o = OF
Seor Fng(c o
Eeor Domilc. opd
end or
end if
end if
emd if

Figure 8. Algorithm Apply Change Addition

45

International Journal of Database Management Systems ([JDMS) Vol.6, No.3, June 2014

For propagating the deletion change we apply Algorithm Apply Change Deletion given in Figure
9. If the concept type is a class then we delete the class. The corresponding data properties and
object properties for the class is also deleted. If the concept type is data property or object
property it can be directly deleted from the given class.

IApplyChangeDeletion(DWOntology, Concept, Concept _Type)

if Concept Type ==Class then
Delete ce Cin O
for all data properties c.dp; € DP do
Delete c.dpi
end for
for all object properties ci.opi € OP do
Delete c.opi
end for
end if
if Concept _Type == DataProperty then
for all data properties c.dpi € DP do
Delete c.dpi
end for
end if
if Concept _Type == Object Property then
for all object properties ci.opi € OP do
Delete c.op;
end for
end if
end if

Figure 9. Algorithm Apply Change Deletion

For propagating the rename change we apply Algorithm Apply Change Rename given in Figure
10. If the concept type is a class or data property or object property for the old concept is deleted
and the new concept name is included in the ontology.

Table 4 presents the changes that are propagated over the DWO. For adding the dimension class
“Promotions”, its domain, range and data properties are added. For adding a dimension data
property say, ‘“Promotion _p_id”, its corresponding domain and range are included in the DWO.
For renaming the Customer dimension data property say, “Customer_c_comment”, its old name
is deleted and new name is added as “Customer_c_feedback”. And for deleting the Customer
dimension data property say, “Customer_c_mktsegment”, its domain and range are deleted from
the DWO. Figure 11 represents the final DWO after the changes are applied.

46

International Journal of Database Management Systems ([JDMS) Vol.6, No.3, June 2014

ApplyChangeRename(DWOntology, OldConcept, NewConcept,
Concept Type)

if Concept Type ==Class then
forallc; € C do
if ci == OldConcept then
Add NewConcept
Delete c;
end if
end for
else if Concept Type ==DataProperty then
for all dpi € DP do

if dpi == OldConcept then
Add NewConcept
Delete dpi
end if
end for
else if Concept Type ==ObjectProperty then
for all opi € OP do
if opi == OldConcept then
Add NewConcept
Delete opi
end if
end for
end if

Figure 10. Algorithm Apply Change Rename

Table 4. Change Propagation

Data Warehouse Change Applied
Ontology Change
ADDITION

Dimension Class Add Promotions Add Domain; Add Range:
Dimension Data Property | Add Promotion _p _id Add Domain: Promotion | Add Range: Inteper
Dimension Data Property | Add Promotion _p_name Add Domain: Promotion | Add Range: String
Dimension Data Property | Add Promotion _p_category Add Domain: Promotion | Add Range: Siring
Dimension Data Property | Add Fromotion _p_subCategory Add Domain: Promotion | Add Range: Siring
Dimension Data Property | Add Promotion _p_cost Add Domain: Promotion | Add Range: Double
Dimension Data Property | Add Fromotion _p_begdate Add Domain: Promotion | Add Range: Date
Dimension Data Property | Add Promotion _p enddate Add Domain: Promotion | Add Range: Date
Dimension Data Property | Add Promotion _p_total Add Domain: Promotion | Add Range: Double

RENAME

Dimension Data Property

Delete Name: Customer_¢_comment .

Add Name:Customer_c_feadback

Dimension Data Property

Delete Name:Part_p_category,
Add Name: Part_p_model

DELETION

Dimension Data Property

Customer_c_mkise gment

Delete Domain:

Delete Range:

Dimension Data Property

Part_p_container

Delete Domain: Part

Delete Kange:

47

CUSTOMER
(THMENSION)

International Journal of Database Management Systems ([JDMS) Vol.6, No.3, June 2014

Cis tomer_c_cuskay (FED
Costomer_c_ndotze gment
Customer_c_name
Customer_c_address
Costoner_c_phona
Customer_c_acchal
Customer_c_feadback
Costomer_c_nation
Customer_c_feEion

LINEORDER.(FACT)

SUFELIER
(THNEN 10N

LineOrdar_1 linenumber (PE)
LinaOrdar_ | suppley (FE)
LineOrder_ | onderkay (FE)
LinaOydar_o custday (FE)
LinaOrdar_| partkey (FE)
LineCrdar_| tax
LineOydar_| exendadprica

Supplier_s_suppkey (FED)
Supplier =_name
Supplisr = _sddrazs
Supplier =_phone
Supplier = scchal
Supplier =_comment
Supplier_=_nation
Supplier =_r=gion

Lin=Ordar_| quantity
LineOrdar_| discount
—| Lin=iDrdar | commitdats

| LinaDrdar 1 retumflag BART
LinaOrder_| shipmoda (DINENSITH)
Lin=Ordar_| linsstzmus Bart_p_parthey (FK)
DATE LineOrdar_| shipinstuct Bart_p_name
(DIEN ST LinsCdar_| raceiptdats Bartz_p_ziza
- e LineOder 1 =hipdste Part_p_nfers
E:;_:_:::j\-‘ o LinaOrdar p= supplycost Part_p_modal
Dmta d wesk -+ Lin=Ordar_o_ord erpriority Part_p_brand
Da:—-_ »z_nnr th LineOrdar_o_totprice Part_p_color
Da[;_ c._r-'-a::) LinaOrdar o orderdata Part_p_typs
= LineOrdar_o_shippricrity Past_p_comtainer
LinaOrdar o orders tatus pm:p :rar,a itprire
LineOrdar_o commet

v

PROMOTIONS

(DIMVENSION)
Bromotion_p id{PED)
Promotion_p neme
Bromotion_p catagory
Bromotion_p_subcatamoay
Promotion_p cost
Bromotion_p begdate
Promotion_p enddate
Bromotion_p totsl

Figure 11. Updated Data Warehouse Ontology
4.6. Check the Consistency

This step is used to check the consistency of DWO after the changes are applied. Ontology
reasoner available in protégé [13] is used in order to check the consistency of the given ontology.
Following are the steps used check consistency:

¢ Load the DWO
e Load the reasoner
e Using the loaded reasoner check the consistency of the ontology

Using the DW designer suggestions any inconsistency can be resolved for the DWO. The
modified DWO can be kept as a new version of DW schema.

5. EVALUATION OF THE PROPOSED APPROACH

In order to evaluate the efficiency of our approach we examine the cost of manually handling
evolution at the physical level with respect to our ontological approach for handling evolution.

48

International Journal of Database Management Systems ([JDMS) Vol.6, No.3, June 2014

The manual effort comprises of detection, inspection and where necessary the rewriting of
affected activities by an event.

Human effort for manual handling of schema evolution for a change c, over an event e, is
expressed as:

] a a
MC. = AX. +RX.
Where,

AX =no. of changes c, affected by event e, that is manually detected
RX = no. of changes c, which must be manually updated to event e

For a set of evolution operators O, in an activity A, the overall cost of manual adaption to the
change c, for an event e is given as:

CMA =3 > MC.

cal zm A
Automatic handling of schema evolution using the proposed ontological approach is quantified as
a sum of no. of changes imposed on the DW schema CS and cost of manually discovering and
adjusting activities AMC that escape the automation Ag4, The latter cost AMC is expressed as:

AMC :ZOZA: MC:

The overall cost of automated adoption is given by,

CAA =CS + AMC

The set of evolution operations occurred in the TPC_H source schema included addition of
attributes and table renaming of attributes and table, deletion of attributes and table. A total
number of 849 evolution operations where encountered and the distribution of occurrence per
kind of operation is shown in Figure 12.

| Attribute Addition
| Attribure Deletion
W Attribute Rename
m Table Addition
® Table Rename

H Table Deletion

Figure 12. Distribution of occurrence per kind of evolution operations

49

International Journal of Database Management Systems ([JDMS) Vol.6, No.3, June 2014

In Table 4, we summarize our results for different kinds of events. First, we note that most of the
activities were affected by attribute additions and renaming, since these kinds of operations were
the most common in our scenarios. Most important, we can conclude that our framework can
effectively adapt activities to the examined kinds of operations. Figure 13 and Figure 14 shows
the comparison of no. of entities affected and that are corrected by using the proposed approach
by taking the evolution operators along the x-axis and of no. of entities along the y-axis.

Table 4. Affected and Corrected operations.

Evolution Event
Type Total Affected | Total Corrected
Attribute Addition 210 206
Attribute Deletion 189 189
Attribute Rename 196 194
Table Addition 98 95
Table Deletion 84 83
Table Rename 72 69
215
210 -
@ 205 -
g 200 i
E 195 -
E: 100 4 m Affected
‘23 1a5 4 u Corrected
180 -
175 -
Addition Deletion Rename
Change Type

Figure 13. No. of Attributes Affected and Corrected Status

120

100

a0 -+

60 -
m Affected

No. of Tables

Corrected

Addition Rename Deletion

Change Type

Figure 14. No. of Tables Affected and Corrected Status

50

International Journal of Database Management Systems ([JDMS) Vol.6, No.3, June 2014

From the Figurel5 it is found that the cost of automated adaptation (CAA) for the proposed
approach is comparatively less than that of manual cost of adoption (CMA) in the existing
approach.

400
350
300
250 +°
200
150
100
50

m MVTDW Approach

Adaptation Cost

W Proposed Approach

Addition Rename Deletion

Change Type

Figure 15. Comparison of Adaptation cost for existing and proposed approach

6. CONCLUSIONS

The data warehouse is considered as the core component of the modern decision support systems.
As the information sources and business requirements from which the data warehouse is derived
frequently change, it may have its impact on the data warehouse schema. The existing works on
DW evolution such as schema versioning and schema evolution mainly concentrate on changing
the schema structure at the physical level. The proposed approach handles evolution of the data
warehouse schema at the ontological level. The ontological representation of the data source,
requirements and data warehouse schema helps us to provide automation (semi-automation) of
evolution task. The impact that the evolution has brought over the data warehouse schema are
analyzed and the designer is left with the choice of carrying the changes over the existing
physical schema of the data warehouse. Compared to existing approaches of manually handling
the evolution task the proposed ontological approach provides minimal adaptation cost.

REFERENCES

[1] Banerjee, S., & Davis, K. C. (2009). Modeling data warehouse schema evolution over extended
hierarchy semantics. In Journal on Data Semantics XIII (pp. 72-96). Springer Berlin Heidelberg

[2] Bentayeb, F., Favre, C., & Boussaid, O. (2008). A user-driven data warehouse evolution approach for
concurrent personalized analysis needs. Integrated Computer-Aided Engineering, 15(1), 21-36.

[3] Chaudhuri, S., & Dayal, U. (1997). An overview of data warehousing and OLAP technology. ACM
Sigmod record, 26(1), 65-74.

[4] Chmiel, J., Morzy, T., & Wrembel, R. (2009). Multiversion join index for multiversion data
warehouse. Information and Software Technology, 51(1), 98-108.

[5] Council, T. P. P. (2008), TPC-H benchmark specification.[Online] www.tpc.org/tpch/ (Accessed 20
May 2014).

[6] Glorio, O., Pardillo, J., Mazoén, J. N., & Trujillo, J. (2008, September). Dawara: An eclipse plugin for
using i* on data warehouse requirement analysis.In International Requirements Engineering, 2008.
RE'08. 16th IEEE (pp. 317-318). IEEE.

51

International Journal of Database Management Systems ([JDMS) Vol.6, No.3, June 2014

[71 Gruber, T. R. (1993). A translation approach to portable ontology specifications.Knowledge
acquisition, Vol. 5 No. 2, pp. 199-220.

[8]1 Inmon, W. H. (2005). Building the data warehouse. John wiley & so Golfarelli, M., Maio, D., &
Rizzi, S. (1998). The dimensional fact model: Aconceptual model for data warehouses. International
Journal of Cooperativelnformation Systems, 7(02n03), 215-247.

[9] Janet, E., Ramirez, R., Guerrero, E.: A Model and Language for Bi-temporal Schema Versioning in
Data Warehouses. (2006). In Proceedings of the 15th International Conference on Computing (CIC
'06). IEEE Computer Society, 309-314.

[10] Kimball, Ralph, The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling, New
York, NY: John Wiley and Sons, Inc., 2002. 436pp.

[11] Noy, N. F., & Musen, M. A. (2000, August). Algorithm and tool for automated ontology merging and
alignment. In Proceedings of the 17th National Conference on Artificial Intelligence (AAAI-00).
Available as SMI technical report SMI-2000-0831.

[12] O’Neil, P., O’Neil, E. J, & Chen, X. (2007). The star schema benchmark [Online]
http://www.cs.umb.edu/~poneil/StarSchemaB.PDF (Accessed 20 May 2014).

[13] Ontology, P. (2007). Knowledge Acquisition System. See [Online] http://protege. stanford. edu.
(Accessed 12 November 2013).

[14] Oueslati, W., & Akaichi, J. (2010). A survey on Data warehouse evolution. International Journal of
Database Management Systems (IJDMS), 2(4), 11-24.

[15] Oueslati, W., & Akaichi, J. (2011). A Multiversion Trajectory Data Warehouse to Handle Structure
Changes. International Journal of Database Theory & Application, 4(2).

[16] Smith, M. K., Welty, C., & McGuinness, D. L. (2004). OWL Web OntologyLanguage Guide. W3C.
[online] http://www.w3.org/TR/owl-guide/. (Accessed 12 November 2013).

[17] Solodovnikova, D., & Niedrite, L. (2011). Evolution-Oriented User-Centric Data Warehouse. In
Information Systems Development (pp. 721-734). Springer New York.

[18] Thakur, G., & Gosain, A. (2011). DWEVOLVE: a requirement based framework for data warehouse
evolution. ACM SIGSOFT Software Engineering Notes,36(6), 1-8.

[19] Wrembel, R. (2011). On Handling the Evolution of External Data Sources in a Data Warehouse
Architecture.

AUTHORS

M.Thenmozhi received her B.Tech in Computer Science and Engineering from Pondicherry University and
M.E in Computer Science and Engineering from Anna University. She is currently pursuing her Ph.D in
Computer Science and Engineering, from Pondicherry Engineering College affiliated to Pondicherry
University. Presently she is working as Assistant Professor in Department of Computer Science and
Engineering, Pondicherry Engineering College. Her research interest includes Data warehousing, Data
Modeling, Data mining and Ontology.

Dr.K.Vivekanandan received his B.E from Bharathiyar University, M.Tech from Indian Institute of
Technology, Bombay and Ph.D from Pondicherry University. He has been the faculty of Department of
Computer Science and Engineering, Pondicherry Engineering College from 1992. Presently he is working
as Professor in the Department of Computer Science and Engineering. His research interest includes
Software Engineering, Object Oriented Systems, Information Security and Web Services. He has
coordinated two AICTE sponsored RPS projects on “Developing Product Line Architecture and
Components for e-Governance Applications of Indian Context” and “Development of a framework for
designing WDM Optical Network”. He has published more than 60 papers in International Conferences
and Journals.

52

