
International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

DOI : 10.5121/ijdms.2014.6303 33

AN ONTOLOGICAL APPROACH TO HANDLE

MULTIDIMENSIONAL SCHEMA EVOLUTION

FOR DATA WAREHOUSE

M.Thenmozhi and K.Vivekanandan

Department of Computer Science and Engineering,

Pondicherry Engineering College, Puducherry, India

ABSTRACT

In recent years, the number of digital information storage and retrieval systems has increased immensely.

Data warehousing has been found to be an extremely useful technology for integrating such heterogeneous

and autonomous information sources. Data within the data warehouse is modelled in the form of a star or

snowflake schema which facilitates business analysis in a multidimensional perspective. As user

requirements are interesting measures of business processes, the data warehouse schema is derived from

the information sources and business requirements. Due to the changing business scenario, the information

sources not only change their data, but also change their schema structure. In addition to the source

changes the business requirements for data warehouse may also change. Both these changes results in data

warehouse schema evolution. These changes can be handled either by just updating it in the DW model, or

can be developed as a new version of the DW structure. Existing approaches either deal with source

changes or requirements changes in a manual way and changes to the data warehouse schema is carried

out at the physical level. This may induce high maintenance costs and complex OLAP server

administration. As ontology seems to be a promising solution for the data warehouse research, in this

paper an ontological approach to automate the evolution of a data warehouse schema is proposed. This

method assists the data warehouse designer in handling evolution at the ontological level based on which

decision can be made to carry out the changes at the physical level. We evaluate the proposed ontological

approach with the existing method of manual adaptation of data warehouse schema.

KEYWORDS

Data Warehouse Evolution, Multidimensional Schema Evolution, Data Warehouse Schema Changes

1. INTRODUCTION

Business analysts increasingly rely on data warehouse for making strategic decisions for their

organization. The data warehouse is populated from several operational sources using extraction,

transformation and loading (ETL) operations [8]. In order to discover trends and critical factors

in business, the data warehouse provides multidimensional view of the data which is used by

Online Analytical Processing (OLAP) and other reporting tools [3]. A retail organization for

example, analyzes purchases by its customers to come up with products of likely interest to the

customer. The analytical results generated by these tools need to be accurate and reliable. Hence

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

34

the management of such data warehouse system is rather difficult when compared to traditional

operational systems.

The common assumption is that once created the DW remains static. However, due to changes in

business needs, the DW needs to evolve. Evolution in a DW can be generated by two different

causes: (i) a change in the source schema or (ii) a change in the DW requirements [19]. An

inherent feature of source schema is their evolution in time with respect not only to their contents

(data) but also to their structures (schemas). In addition to this, the business processes in which

the analyst is involved are subject to frequent changes. These changes in business processes are

reflected in the analysis requirements. New types of queries that require different data become

necessary. The new query requirements lead to changes in the DW schema [9]. These changes

need to be propagated to the data warehouse system in order to provide accurate in-sight of the

business data.

Considering the importance of the evolution problem in the data warehouse domain, some

existing works have addressed this issue. In the literature, the DW evolution can be classified

into three different approaches namely schema evolution [1] [2] and schema versioning [14] [15]

[17]. Schema evolution consists in replacing old schema into a new schema as well transferring

old data from old schema and updating it in a new schema. Schema versioning consists in

keeping the history of all versions by temporal extension or by physical storing of different

versions.

Existing works to the data warehouse evolution problems mainly concentrated on handling the

DW schema changes at the physical level. As a consequence, the DW administrator is

responsible for complex maintenance task either for schema evolution approach or versioning

approach. The proposed work gives a different perspective for data warehouse evolution. It helps

the data warehouse designer to give an insight of how the requirement or source changes can be

propagated to the data warehouse schema using ontology. Hence, the designer can make a choice

of propagating the changes to the physical level.

2. LITERATURE SURVEY

In [15] the authors proposed an approach based on versioning called MVTDW (Multiversion

Trajectory Data Warehouse) in order to handle structural changes of the DW. They defined a set

of constraints that need to be guaranteed by the real versions and alternative versions maintained

by the MVTDW. Moreover they proposed some algorithms that can be applied in case of schema

and instance changes on the TDW versions. For MVTDW to answer the queries the user needs to

define the correct version. If data required by a query exists in different versions, it is necessary

provide a data mapping between them. In this paper [17] the authors proposed the metadata

model for a multi-version data warehouse. The metadata is used to describe the data warehouse

schema versions at logical level, their storage in the relational database at physical level,

information about reports defined by users on schema versions, and semantics of data stored in

the data warehouse. The proposed data warehouse evolution framework enables the user to

construct report based on desirable terms and term versions from the semantic metadata. In this

paper [1] the authors formally defined the data warehouse model supporting extended hierarchies.

Different features such as multiple hierarchies, non-covering hierarchies, non-onto hierarchies,

and non-strict hierarchies are explained. They use Uni-level Description Language (ULD) and

multilevel dictionary definition (MDD) in order to model the constructs. In this paper [4] the

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

35

authors developed the multi-version data warehouse (MVDW) approach to manage DW

evolution. Since in MVDW fact and dimension data are physically distributed among multiple

DW versions, the authors proposed a multi-version join index (MVJI) technique. The MVJI has

an upper level for indexing attributes and a lower level for indexing DW versions. The paper also

presents the theoretical upper bound analysis of the MVJI performance characteristic with respect

to I/O operations. In [18] the authors proposed a framework for DW evolution based on

requirements. The framework consists of Requirement level; which keep tracks of changes in

requirements, Change Management level; keeps track of changes in source, Design level; to

perform the required changes in the data warehouse schema, and View level; to define and

generate customized reports and views. In this paper [2] the authors proposed a Rule-based Data

Warehouse (R-DW) model to support data warehouse evolution. They follow a user-driven

approach in order to update the data warehouse schema. Based on users’ knowledge the

aggregated data is represented in the form of “if-then” rules. Using these aggregation rules the

granularity of the dimension are defined dynamically.

3. BACKGROUND

The following sections describe about the multidimensional model for data warehouse and the

basics of ontology and its applicability in data warehouse domain.

3.1. Multidimensional Model

Data within the data warehouse is represented as Multidimensional model. This “cube” structure

representation makes more compatible logical data representation suitable for On-Line Analytical

Processing (OLAP) and data management. The advantages of dimensional modelling are: (i) To

produce database structures that are easy for end-users to understand and write queries against,

and (ii) To maximize the efficiency of queries. The basic concepts of dimensional modelling are:

facts, dimensions and measures [10]. A fact is a collection of related data items, consisting of

measures and context data. In general it represents business items or business transactions of a

particular domain. A dimension is a collection of data that describe one business dimension. It

determines the contextual background for the facts and they are the parameters over which we

want to perform OLAP operations. A measure represents the numeric attribute of a fact which

provides the performance or behaviour of the business relative to the dimensions. There are two

basic models that are used in dimensional modelling: Star model and Snowflake model [3]. The

basic structure for a dimensional model is the star model. It has one large central table (fact table)

and a set of smaller tables (dimensions) arranged in a radial pattern around the central table as

shown in Figure 1. The Figure 1 represents the star schema the sales domain. The snowflake

model is the result of decomposing one or more of the dimensions. There exist many-to-one

relationships among sets of attributes of a dimension which can separate new dimension tables,

forming a hierarchy as shown in Figure 2. The decomposed snowflake structure visualizes the

hierarchical structure of dimensions very well.

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

36

Figure 1. Star Schema

Figure 2. Snow Flake Schema

3.2. Ontology Basics

A relational database is a structured, formal representation of a set of data; in the same way,

ontology is a structured, formal representation of an area of knowledge. It defines and restricts

what can be said about that area of knowledge. Ontology is most commonly defined as “a formal,

explicit specification of a shared conceptualization” [7]. Ontology describes the knowledge in a

domain in terms of classes and properties, as well as relationships between them”[7]. Basic

building blocks of ontology design include: classes or concepts, properties of each concept

describing various features and attributes of the concept, restrictions on slots (facets). Classes

(Concepts) are abstract groups, sets, or collections of objects. Concepts in the ontology should be

close to objects (physical or logical) and relationships in the domain of interest. The decision in

using an ontology-based approach for data warehouse, instead of using another technology for

example a UML-based approach, lies in the fact that ontology provides an elegant way to

represent concepts using Web Ontology Language (OWL) format. The OWL is an international

standard for encoding and exchanging ontologies [16]. The reason for choosing the OWL is that,

it provides the system with the means of not only representing information but also for automatic

processing of that information.

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

37

4. PROPOSED APPROACH

The objective of the work described in this paper is to propose a methodology that supports an

automatic adaptation of the multidimensional schema when the requirements and source evolves.

Our main idea for the data warehouse evolution is that the whole system is specified at the

conceptual level. Any changes at the source or requirements are propagated to the data warehouse

schema at the ontological level. Hence the proposed approach analyses the impact of a given

change at the logical level, before it is propagated to the data warehouse schema at the physical

level.

In our work we represent the data source, requirements and data warehouse using ontology. The

ontological representation of these entities helps us to automate the evolution task. As the data

source schema changes, the data warehouse schema need to evolve. Any changes at the original

source or requirements are obtained and these are updated at the source and requirement

ontology. Depending on the type of change, the changes are propagated over the data warehouse

ontology. Based on the evolved data warehouse ontology the DW administrator can make a

decision to carry the changes at the physical level. Following are the phases of our methodology:

1. Formalizations of inputs

2. Defining Evolution operators

3. Update change in requirements or source ontology

4. Extract Data Warehouse schema change

5. Propagate change to Data Warehouse schema

6. Check consistency of Data Warehouse schema

4.1. Formalization of Inputs

In this section, we formalize the proposed method in order to standardize and to ensure the

correctness of the DW evolution process. We use OWL ontology to describe the semantics of

different entities involved in our methodology. The reason for using OWL as the utility, instead

of XML, UML or others, is that OWL supports the semantic reasoning, and is better for future

extensions of this work, such as, reasoning-based DW schema evolution. We describe the data

source, requirements and DW schema by ontology.

We illustrate our approach using TPC-H [5] and Star Schema Benchmark (SSB) [12] schemas.

TPC-H is a decision support benchmark which represents our source. The Star Schema

Benchmark is a variation of the TPC-H benchmark, which models the data warehouse for the

TPC-H schema. The following sections describe our approach in detail.

4.1.1. Ontology for data sources

Data sources may contain different types of structures. Hence these sources are mapped to a local

ontology which will express the semantic of the data sources. Following are the rules to map a

database to ontology:

• The database table is mapped to an ontology class.

• If a database table is related to another, then the two tables are mapped to classes with

parents-child relationship.

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

38

• If a database table is related to two tables, then the table is divided into two transferred

classes.

• The primary key is mapped to a data type property of the ontology. The foreign key

would be mapped to an object property of the ontology.

• The attributes of a table are mapped to properties of the equivalent class.

In the case that source data is extract from distributed data sources, more than one initial

ontologies could be generated. Ontology merging [11] is used to merge different initial ontology

together to represent a single integrated source. Figure 3 represents the ontology for the TPC-H

schema. Formally, the data source ontology (DSO) to be used by our approach can be defined:

DSO = {C,DP,OP}

 - C is a set of OWL classes representing the tables

 - DP is a set of data type properties representing the table attributes

 - OP is a set of object type properties representing the relationship between tables

Figure 3. Data Source Ontology

4.1.2. Ontology for Requirements

Requirements play a major role in DW design. We assume that a requirement analysis has been

carried out earlier and the corresponding requirement specification is available for the business

domain. Here we explain the process for constructing the DW requirements ontology (DWRO)

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

39

for semantically describing the requirement glossaries. DWRO is based on the i* framework [6]

for the modelling of goals and information requirements for DWs. The DWRO should be capable

to model the following type of information: i) Strategic goals: These are the main objectives of

the business process (for example, ‘‘increase sales”); ii) Decision goals: They attempt to answer

the question: ‘‘how can a strategic goal be achieved?” (for example, ‘‘determine some kind of

promotion”); iii) Information goals: They attempt to answer the question: ‘‘how can decision

goals be achieved in terms of information required” (for example, ‘‘analyze customer purchases”

or ‘‘examine stocks”). Information requirements for decision makers are derived from

information goals. The multidimensional elements are the process measures under analysis

(Measure stereotype), and context of analysis (Context stereotype). Figure 4 represents the

requirement ontology based on TPC-H benchmark schema. Formally, the DWRO can be defined:

DWRO = {S, I, D, IR, BP,M,C}, where:

- S is a set of OWL classes representing the strategic goals

- I is a set of OWL classes representing the information goals

- D is a set of OWL classes representing the decision goals

- IR is a set of OWL classes representing the information requirements

- BP is a set of object properties representing business process

- M is a set of data type properties representing measures

- C is a set of OWL classes representing the contexts

Figure 4. Data Warehouse Requirement Ontology

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

40

4.1.3. Ontology for Data Warehouse

The SSB data warehouse schema for the TPC-H source schema is given in Figure 5. DW schema

can be formally defined using DWO as given below:

DWO = {F,FP,M,D,DP,RP}

- F is a set of OWL classes representing the fact

- FP is a set of OWL classes representing the fact properties

- M is a set of data type properties representing the measures of the fact

- D is a set of OWL classes representing the dimensions

- DP is a set of data type properties representing the dimension properties

- RP is a set of object properties representing the relationship between facts and

dimensions

Figure 5. Data Warehouse Ontology

4.2. Defining Evolution Operators

In this section we present the set of evolution operators to represent the type of change and

concept changed. The three possible changes that occur are addition, deletion and rename. The

DW elements such as Fact, Dimension, Measures etc., are subject to change. Their equivalent

ontology concepts in DWO need to be changed accordingly. Performing a change over the DWO

may require additional changes to be executed over the ontology. For example, addition of a new

dimension i.e., class to the DWO requires addition of its data property and object property. The

type of change, element changed and additional changes are given in Table 1.

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

41

Table 1. Evolution Operators

Type of

Change
DW Schema Elements

Equivalent

Ontology

Concept

Changed

Elementary Changes

Addition

Table

(Fact, Dimension)
Class

Add Data Property

Add Object Property

Attributes

(Measures, Descriptive)
Data Property

Add Property Domain

Add Property Range

Relationship

(Primary Key, Foreign Key)
Object Property

Add Property Domain

Add Property Range

Deletion

Table

(Fact, Dimension)
Class

Delete Data Property

Delete Object Property

Attributes

(Measures, Descriptive)
Data Property

Delete Property Domain

Delete Property Range

Relationship

(Primary Key, Foreign Key)
Object Property

Delete Property Domain

Delete Property Range

Rename

Table

(Fact, Dimension)
Class

Rename Class

 (If required)

Attributes

(Measures, Descriptive)
Data Property

Rename Data Property

(If required)

Relationship

(Primary Key, Foreign Key)
Object Property

Rename Object Property

 (If required)

4.3 Update Change in Requirements or Source Ontology

Given the changes in source schema or business requirements, the next step is to update them in

the corresponding ontology. Using an ontology editor such as protégé [13] the changes can be

directly applied over the ontology. When there is change in the business requirements, before the

change is propagated over the DWO, the DSO need to be verified for the existence of the

particular concept. Algorithm 2 SearchOntology verifies the existence of the concept. Steps 1-6

verifies for class existence, steps 7-12 verifies for data property existence, steps 8-17 verifies for

object property existence. If concept not found the business requirements need to be refined.

Figure 6. Algorithm Search Ontology

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

42

For our TPC-H domain a new decision goal “Increase Revenue through promotions” has been

added in the requirement ontology. “Study Revenue by Customer Promotions” is the information

goal and the corresponding information requirement is “Analyse Revenue based on Customer for

a given Promotions”. The context for the new information requirement is “Customer” and

“Promotions”. The measures for analyzing Revenue are “ExtendedPrice” and “Discount”. Figure

7 highlights the new requirement added to the requirement ontology.

Table 2 represents the details changes of a new table/class “Promotions” and its corresponding

attributes/data properties that have been added to the TPC-H source schema ontology and other

changes such as rename and deletions.

Figure 6. Data Warehouse Requirement Ontology after Updation

Table 2. Change Details.

Data Source

Change

Data Source Ontology

Change

Entity Changed

ADDITION

Table Class Promotion

Attribute Data Property Promotion _p_id

Attribute Data Property Promotion _p_name

Attribute Data Property Promotion _p_category

Attribute Data Property Promotion _p_subcategory

Attribute Data Property Promotion _p_cost

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

43

Attribute Data Property Promotion _p_begdate

Attribute Data Property Promotion _p_enddate

Attribute Data Property Promotion _p_total

RENAME

Attribute Data Property OldName:Customer_c_comment ,

NewName:Customer_c_feedbac

k
Attribute Data Property OldName:Part_p_category,

 NewName: Part_p_model

DELETION

Attribute Data Property Customer_c_mktsegment

Attribute Data Property Part_p_container

4.4. Extract Data Warehouse Schema Change

If change type is addition then it is necessary to find the multidimensional element type of the

concept. Figure 7 represents the Algorithm to propagate change. It is used for finding the

multidimensional element. The inputs for Algorithm 3 are DSO, change information,

multidimensional element list available in DWO.

First the algorithm checks whether the concept added is a class and identifies it as a fact or a

dimension or a level. To find whether the class ci is a fact, the range class of ci is obtained. If the

range class exists in DSO and it belongs to a dimension in DWO, ci is likely to be a fact. The data

properties of ci is derived and checked whether it contains enough numerical properties to qualify

as a fact. If ci has n:1 relationship with range class then it is identified as fact (steps 2-16). To

find whether ci is a dimension, the domain class of ci is obtained. If the domain class cj belongs

to a fact in DWO then ci is likely to be a dimension. If the domain class ci has 1:n relationship

with fact then ci is identified as dimension (steps 17-21). To find whether ci is a level, the domain

class of ci is obtained. If the domain class cj belongs to a dimension or level in DWO then ci is

identified as a level (steps 18-24).

Next the algorithm checks whether the concept added is a data property and identifies it as a fact

or a dimension or a level property. The domain d of dpi is obtained. If d is a fact then concept

added is identified as fact property. If d is a dimension then concept added is identified as

dimension property. If d is a level then concept added is identified as level property.

Finally, the algorithm checks whether the concept added is an object property and identifies it as

a fact or a dimension or a level relation. The domain d and range r of opi is obtained. If d is a fact

and r is a dimension then concept added is identified as fact-dimension relation. If d is a

dimension and r is a fact then concept added is identified as dimension-fact relation. If d is a

dimension and r is a level then concept added is identified as dimension-level relation.

In Table 2 the changes related to addition has been listed for the TPC-H domain. By using

Algorithm multidimensional type we are able to identify the multidimensional element type for

the class “Promotions” and its data properties. Table 3 gives the details of data warehouse

multidimensional type of the change that need to be propagated to DWO.

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

44

Figure 7. Algorithm Multidimensional Type

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

45

Table 3. Multidimensional Type of Addition Change.

Data Source Ontology

Change

Entity Changed Multidimensional Type

Class Promotions Dimension Class

Data Property Promotion _p_id Dimension Data Property

Data Property Promotion _p_name Dimension Data Property

Data Property Promotion _p_category Dimension Data Property

Data Property Promotion _p_subcategory Dimension Data Property

Data Property Promotion _p_cost Dimension Data Property

Data Property Promotion _p_begdate Dimension Data Property

Data Property Promotion _p_enddate Dimension Data Property

Data Property Promotion _p_total Dimension Data Property

4.5. Propagate Changes to Data Warehouse

To apply the changes over the DWO, we use different algorithms depending on the type of

change. If the type of change is addition the multidimensional element is identified using the

previous step. For propagating the addition change we apply Algorithm Apply Change Addition

given in Figure 8. If the concept type is a class then we retrieve the list of data properties and

object properties for the class to be added. The new class is added to the DWO and for each data

property its range and domain is included. Similarly, for each object property its range and

domain is included. If the concept type is data property, the new data property is added to the

class in DWO and its range and domain are included accordingly. If the concept type is object

property, the new object property is added to the class in DWO and its range and domain are

included accordingly.

Figure 8. Algorithm Apply Change Addition

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

46

For propagating the deletion change we apply Algorithm Apply Change Deletion given in Figure

9. If the concept type is a class then we delete the class. The corresponding data properties and

object properties for the class is also deleted. If the concept type is data property or object

property it can be directly deleted from the given class.

 Figure 9. Algorithm Apply Change Deletion

For propagating the rename change we apply Algorithm Apply Change Rename given in Figure

10. If the concept type is a class or data property or object property for the old concept is deleted

and the new concept name is included in the ontology.

Table 4 presents the changes that are propagated over the DWO. For adding the dimension class

“Promotions”, its domain, range and data properties are added. For adding a dimension data

property say, “Promotion _p_id”, its corresponding domain and range are included in the DWO.

For renaming the Customer dimension data property say, “Customer_c_comment”, its old name

is deleted and new name is added as “Customer_c_feedback”. And for deleting the Customer

dimension data property say, “Customer_c_mktsegment”, its domain and range are deleted from

the DWO. Figure 11 represents the final DWO after the changes are applied.

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

47

Figure 10. Algorithm Apply Change Rename

Table 4. Change Propagation

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

48

Figure 11. Updated Data Warehouse Ontology

4.6. Check the Consistency

This step is used to check the consistency of DWO after the changes are applied. Ontology

reasoner available in protégé [13] is used in order to check the consistency of the given ontology.

Following are the steps used check consistency:

• Load the DWO

• Load the reasoner

• Using the loaded reasoner check the consistency of the ontology

Using the DW designer suggestions any inconsistency can be resolved for the DWO. The

modified DWO can be kept as a new version of DW schema.

5. EVALUATION OF THE PROPOSED APPROACH

In order to evaluate the efficiency of our approach we examine the cost of manually handling

evolution at the physical level with respect to our ontological approach for handling evolution.

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

49

The manual effort comprises of detection, inspection and where necessary the rewriting of

affected activities by an event.

Human effort for manual handling of schema evolution for a change c, over an event e, is

expressed as:

Where,

 AX = no. of changes c, affected by event e, that is manually detected

 RX = no. of changes c, which must be manually updated to event e

For a set of evolution operators O, in an activity A, the overall cost of manual adaption to the

change c, for an event e is given as:

Automatic handling of schema evolution using the proposed ontological approach is quantified as

a sum of no. of changes imposed on the DW schema CS and cost of manually discovering and

adjusting activities AMC that escape the automation Ad, The latter cost AMC is expressed as:

The overall cost of automated adoption is given by,

CAA = CS + AMC

The set of evolution operations occurred in the TPC_H source schema included addition of

attributes and table renaming of attributes and table, deletion of attributes and table. A total

number of 849 evolution operations where encountered and the distribution of occurrence per

kind of operation is shown in Figure 12.

Figure 12. Distribution of occurrence per kind of evolution operations

∑ ∑
∈ ∈

=

Oc Ae

e

c

d

MC AMC

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

50

In Table 4, we summarize our results for different kinds of events. First, we note that most of the

activities were affected by attribute additions and renaming, since these kinds of operations were

the most common in our scenarios. Most important, we can conclude that our framework can

effectively adapt activities to the examined kinds of operations. Figure 13 and Figure 14 shows

the comparison of no. of entities affected and that are corrected by using the proposed approach

by taking the evolution operators along the x-axis and of no. of entities along the y-axis.

Table 4. Affected and Corrected operations.

Evolution Event

Type Total Affected Total Corrected

Attribute Addition 210 206

Attribute Deletion 189 189

Attribute Rename 196 194

Table Addition 98 95

Table Deletion 84 83

Table Rename 72 69

Figure 13. No. of Attributes Affected and Corrected Status

Figure 14. No. of Tables Affected and Corrected Status

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

51

From the Figure15 it is found that the cost of automated adaptation (CAA) for the proposed

approach is comparatively less than that of manual cost of adoption (CMA) in the existing

approach.

Figure 15. Comparison of Adaptation cost for existing and proposed approach

6. CONCLUSIONS

The data warehouse is considered as the core component of the modern decision support systems.

As the information sources and business requirements from which the data warehouse is derived

frequently change, it may have its impact on the data warehouse schema. The existing works on

DW evolution such as schema versioning and schema evolution mainly concentrate on changing

the schema structure at the physical level. The proposed approach handles evolution of the data

warehouse schema at the ontological level. The ontological representation of the data source,

requirements and data warehouse schema helps us to provide automation (semi-automation) of

evolution task. The impact that the evolution has brought over the data warehouse schema are

analyzed and the designer is left with the choice of carrying the changes over the existing

physical schema of the data warehouse. Compared to existing approaches of manually handling

the evolution task the proposed ontological approach provides minimal adaptation cost.

REFERENCES

[1] Banerjee, S., & Davis, K. C. (2009). Modeling data warehouse schema evolution over extended

hierarchy semantics. In Journal on Data Semantics XIII (pp. 72-96). Springer Berlin Heidelberg

[2] Bentayeb, F., Favre, C., & Boussaid, O. (2008). A user-driven data warehouse evolution approach for

concurrent personalized analysis needs. Integrated Computer-Aided Engineering, 15(1), 21-36.

[3] Chaudhuri, S., & Dayal, U. (1997). An overview of data warehousing and OLAP technology. ACM

Sigmod record, 26(1), 65-74.

[4] Chmiel, J., Morzy, T., & Wrembel, R. (2009). Multiversion join index for multiversion data

warehouse. Information and Software Technology, 51(1), 98-108.

[5] Council, T. P. P. (2008), TPC-H benchmark specification.[Online] www.tpc.org/tpch/ (Accessed 20

May 2014).

[6] Glorio, O., Pardillo, J., Mazón, J. N., & Trujillo, J. (2008, September). Dawara: An eclipse plugin for

using i* on data warehouse requirement analysis.In International Requirements Engineering, 2008.

RE'08. 16th IEEE (pp. 317-318). IEEE.

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

52

[7] Gruber, T. R. (1993). A translation approach to portable ontology specifications.Knowledge

acquisition, Vol. 5 No. 2, pp. 199-220.

[8] Inmon, W. H. (2005). Building the data warehouse. John wiley & so Golfarelli, M., Maio, D., &

Rizzi, S. (1998). The dimensional fact model: Aconceptual model for data warehouses. International

Journal of CooperativeInformation Systems, 7(02n03), 215-247.

[9] Janet, E., Ramirez, R., Guerrero, E.: A Model and Language for Bi-temporal Schema Versioning in

Data Warehouses. (2006). In Proceedings of the 15th International Conference on Computing (CIC

'06). IEEE Computer Society, 309-314.

[10] Kimball, Ralph, The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling, New

York, NY: John Wiley and Sons, Inc., 2002. 436pp.

[11] Noy, N. F., & Musen, M. A. (2000, August). Algorithm and tool for automated ontology merging and

alignment. In Proceedings of the 17th National Conference on Artificial Intelligence (AAAI-00).

Available as SMI technical report SMI-2000-0831.

[12] O’Neil, P., O’Neil, E. J., & Chen, X. (2007). The star schema benchmark [Online]

http://www.cs.umb.edu/∼poneil/StarSchemaB.PDF (Accessed 20 May 2014).

[13] Ontology, P. (2007). Knowledge Acquisition System. See [Online] http://protege. stanford. edu.

(Accessed 12 November 2013).

[14] Oueslati, W., & Akaichi, J. (2010). A survey on Data warehouse evolution. International Journal of

Database Management Systems (IJDMS), 2(4), 11-24.

[15] Oueslati, W., & Akaichi, J. (2011). A Multiversion Trajectory Data Warehouse to Handle Structure

Changes. International Journal of Database Theory & Application, 4(2).

[16] Smith, M. K., Welty, C., & McGuinness, D. L. (2004). OWL Web OntologyLanguage Guide. W3C.

[online] http://www.w3.org/TR/owl-guide/. (Accessed 12 November 2013).

[17] Solodovnikova, D., & Niedrite, L. (2011). Evolution-Oriented User-Centric Data Warehouse. In

Information Systems Development (pp. 721-734). Springer New York.

[18] Thakur, G., & Gosain, A. (2011). DWEVOLVE: a requirement based framework for data warehouse

evolution. ACM SIGSOFT Software Engineering Notes,36(6), 1-8.

[19] Wrembel, R. (2011). On Handling the Evolution of External Data Sources in a Data Warehouse

Architecture.

AUTHORS

M.Thenmozhi received her B.Tech in Computer Science and Engineering from Pondicherry University and

M.E in Computer Science and Engineering from Anna University. She is currently pursuing her Ph.D in

Computer Science and Engineering, from Pondicherry Engineering College affiliated to Pondicherry

University. Presently she is working as Assistant Professor in Department of Computer Science and

Engineering, Pondicherry Engineering College. Her research interest includes Data warehousing, Data

Modeling, Data mining and Ontology.

Dr.K.Vivekanandan received his B.E from Bharathiyar University, M.Tech from Indian Institute of

Technology, Bombay and Ph.D from Pondicherry University. He has been the faculty of Department of

Computer Science and Engineering, Pondicherry Engineering College from 1992. Presently he is working

as Professor in the Department of Computer Science and Engineering. His research interest includes

Software Engineering, Object Oriented Systems, Information Security and Web Services. He has

coordinated two AICTE sponsored RPS projects on “Developing Product Line Architecture and

Components for e-Governance Applications of Indian Context” and “Development of a framework for

designing WDM Optical Network”. He has published more than 60 papers in International Conferences

and Journals.

