
International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

DOI : 10.5121/ijdms.2014.6306 85

GLAP: A GLOBAL LOOPBACK ANOMALY

PREVENTION MECHANISM FOR MULTI-LEVEL

DISTRIBUTED TRANSACTIONS

Yousef J. Al-Houmaily

Department of Computer and Information Programs,

Institute of Public Administration, Riyadh, Saudi Arabia

ABSTRACT

The multi-level/hierarchical distributed transaction execution model is currently the model specified in the

database standards and practiced in the implementations of commercial database management systems. In

this model, a transaction may execute more than one subtransaction with different origins at a

participating site, causing the same transaction to appear more than once at the participating site. This

system state is well recognized in the literature and is commonly known as a “loopback”. When a loopback

occurs at a site, certain types of anomalies may arise. The effects of these anomalies on the system

behaviour vary depending on the type of the anomaly. In an extreme case, a loopback anomaly may lead to

non-serializable executions of transactions, sacrificing the consistency of the entire distributed database

system. Thus, it is imperative to characterize the different types of loopback anomalies and to provide a

practical and efficient solution to those that are most devastating on the system behaviour. This is the focus

of this article.

KEYWORDS

Atomic Commit Protocols, Database Recovery, Database infection, Database Systems, Distributed

Transaction Processing, Two-Phase Commit, Voting Protocols

1. INTRODUCTION

In the multi-level/hierarchical distributed transaction execution model, each transaction is

decomposed, depending on its own data access requirements, into a number of subtransactions

executing at different database sites. When a subtransaction executes at a participating site, the

site may decompose its assigned subtransaction further into a number of subtrasnactions and

launches them to execute at other participating sites. Thus, the execution of each distributed

transaction can be represented by a tree hierarchy with a root node, representing the originating

site of the transaction, and a number of intermediate and leaf nodes, representing the different

participating sites.

When a transaction executes only one subtransaction at each participating site, the resulting

execution hierarchy can be represented by a spanning tree. However, in general, the resulting

execution tree of a transaction may contain cycles. The presence of a cycle indicates that the

transaction is executing more than one subtransaction at a site, each of which with a different

originating site. This latter execution behaviour of multi-level/hierarchical transactions is well

recognized in the literature and is commonly called a loopback [1, 2].

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

86

Regardless of whether the execution tree of a transaction is a spanning tree or not, when the

transaction finishes its execution across all participating sites, the root node initiates an atomic

commit protocol (ACP) such as the basic two-phase commit (2PC) [3, 4] or one of its variants [5,

6]. This is to ensure a consistent termination state for the transaction (i.e., to either commit or to

abort) across all participating sites.

In the absence of loopbacks, transaction management is relatively simpler than in their presence.

This is because each system component within a participating site can uniquely identify the

transaction without any possible ambiguity. In contrast, this is not generally the case in the

presence of loopbacks. Thus, loopbacks may introduce certain types of anomalies that negatively

affect the system behaviour such as causing a transaction to deadlock with itself at a participating

site or causing an ACP violation that prohibits the transaction from reaching a final termination

state.

A Loopback may also introduce an execution infection, a devastating system behaviour which

may result in a non-serializable execution of transactions. An execution infection may occur

whenever a transaction executes operations that are associated with deferred consistency

constraints or deferred triggers and, at the same time, the system implements an ACP

optimization designed around the early release of read locks [7, 8]. Unlike other types of

loopback anomalies, this latter anomaly cannot be captured by each site independently and

requires a global, inter-site synchronization mechanism for its prevention.

As loopback anomalies are imminent in the currently adopted transactional execution model,

there is an absolute necessity to characterize the different types of loopback anomalies and to

discuss their currently available solutions. Besides that, there is a need to provide an effective and

efficient solution to those types of anomalies that require global, inter-site coordination among

the participating sites for their prevention.

The rest of this paper is structured as follows: Section 2 describes the details of the adopted

distributed transaction execution model and some background material. Section 3 discusses the

different types of loopback anomalies. Section 4 characterizes the different types of loopback

anomalies into local loopback anomalies and global loopback anomalies. This characterization is

based on whether a loopback anomaly requires only static, locally available transaction

management control information for its prevention or also requires dynamic, remotely available

transaction management control information. Section 5 proposes GLAP, a mechanism designed

for the prevention of global loopback anomalies. Section 6 discusses two closely related works

that were proposed to tackle execution infections while Section 7 summaries the paper and

includes some concluding remarks.

2. SYSTEM MODEL AND BACKGROUND

A distributed transaction represents a single logical unit of work that accesses data stored at

different database sites interconnected via a communication network. Each database site consists

of a transaction manager (TM), one or more resource managers (RMs), and a communication

manager (CM).

A TM at a site is responsible for different management and coordination activities. These include

assigning identifiers to transactions, monitoring their progress, supervising their completion, and

coordinating failure recovery.

RMs are responsible about performing the actual work on data. A RM could be any system that

manages shared data and maintains (local) data consistency even in the case of failures. In this

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

87

article, a RM is assumed to be a relational database management system although it could be any

other transactional system such as a transactional queue or a transactional file system.

A CM at a site facilitates inter-site data communication by incorporating a communication

protocol and providing a local view of remote sites. It allows locally executing transactions,

depending on their own data access requirements, to extend their execution to remote sites. A CM

at a site also allows the local TM to perform its transaction management and coordination

responsibilities in collaboration with remote TMs.

Figure 1 A typical multi-level/hierarchical transaction execution tree

2.1. Execution of Distributed Transactions

Once a distributed transaction starts executing at a site, it needs to register itself with its local TM

before it can submit any work to any RM. When the TM (at the originating site of a transaction)

registers a transaction, it assigns the transaction a system-wide unique identification number

(TxID). The TM, at the originating site of the transaction, also informs all local RMs about the

start of the transaction. In this way, the local TM and all local RMs are aware of the existence of

the transaction. Alternatively, a RM could have the ability to dynamically register itself, as a

participant in the execution of the transaction, with its local TM once it receives some database

operation(s) for execution from the transaction [9]. In this latter case, there is no need for the TM

to inform such a RM about the start of the transaction once it begins executing at the site.

After registering itself with the local TM, a transaction can execute at any of the local RMs in

accordance to the request/response processing paradigm. That is, when a transaction submits

work for execution to a RM, it waits until the work is executed and acknowledged before it

submits any new work to any RM. Depending on the data access requirements of the transaction,

it may also initiate work at remote sites. In this latter case, the local TM has to be aware, in

advance, of each new work to be initiated at any remote site.

Once the local TM becomes aware of the new remote work to be initiated, it creates a new

execution branch with a unique BranchID for the transaction at the remote site. Then, the new

work, using the newly created branch, is submitted through the CM for execution to the remote

site. Similarly, the newly initiated work, after registering with the TM at the remote site on behalf

of the transaction, may initiate other new works at other remote sites, and so on. Thus, a

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

88

transaction execution tree, similar to the one depicted in Figure 1, is formed for each distributed

transaction whereby the TM at each participating site is aware of all locally controlled RMs that

participate in the execution of the transaction as well as all neighbouring remote TMs.

After a transaction finishes its execution and indicates its termination point to its local TM,

through a commit primitive, the TM initiates an ACP such as 2PC or one of its commonly known

variants. This is to synchronize the termination of the transaction, in a consistent manner (i.e., to

either commit or abort the transaction), across all involved participants.

2.2. The Two-Phase Commit Protocol

In 2PC, each transaction is associated with a designated TM called the coordinator which is

usually the TM at the site where the transaction is first initiated. Each of the other participants in

the execution of the transaction is either an intermediate node representing a remote TM or a leaf

participant representing a RM. If the participant is a remote TM, it is called cascaded coordinator

because it acts as a participant with respect to its direct ancestor, in the transaction execution tree,

and a coordinator with respect to its direct descendant(s). For example, in Figure 1, TM1 is the

coordinator of the transaction tree whereas the rest of the TMs are cascaded coordinators. In the

figure, TM2 is an example to a cascaded coordinator which acts as a participant with respect to (its

direct ancestor) TM1, and a coordinator with respect to (its direct descendants) TM4 and RM2,1.

At commit point of a transaction (i.e., when the transaction issues its final commit request), 2PC

synchronizes for a consistent final termination state for the transaction across all participants

though two consecutive phases. Each of these two phases consists of one round-trip of messages

and the first phase is called the voting phase; whereas, the second phase is called the decision

phase. The purpose of the first phase is to gather the votes of all participants, for decision making,

at the coordinating TM; whereas, the purpose of the second phase is to propagate the final

decision to the participants and to gather their acknowledgments, allowing the coordinating TM

to forget fully acknowledged transactions. These two phases, in 2PC, guarantee that (1) a

transaction is committed only if all participants agree to commit the transaction, and (2) all

participants receive the (same) final decision.

To ensure resilience to failures, each participant is required to write specific log records at certain

points during the progress of the protocol. These log records guarantee that, regardless of the

frequency and the number of site and communication failures, the protocol will deterministically

reach its end. In 2PC, all log records, except for the end records that indicate the termination of

the protocol at the coordinator and cascaded coordinators, are written in a forced manner.

A forced log write of a log record means that the information contained in the log record is

essential for the recovery purposes of the protocol after a system failure. Consequently, the log

record has to be stored onto a stable storage medium that can sustain system failures before the

protocol can proceed in its progress. On the other hand, a non-forced log write of a log record

means that the information contained in the log record can be reacquired, when necessary, as part

of the recovery procedure of the protocol after a system failure. Hence, it suffices to store the log

record in the log buffer (in main memory) without having to propagate it to a stable storage

medium. Thus, a forced log write is much more costly, from performance point of view on the

protocol, than a non-forced log write. This is because the former type of log writes suspend the

protocol for a considerable amount of time until the access to the stable storage medium is

completed; whereas, the latter type of log writes does not cause the protocol to be suspended for

such a considerable time.

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

89

Figure 2 The coordination messages and log writes in the multi-level/hierarchical two-phase

commit protocol.

Figure 2 depicts the sequence of coordination messages and log writes, encountered in 2PC, for a

transaction executing at two sites: Sitei and Sitej. In the figure, TMi is the coordinator of the

transaction whereas TMj is a cascaded coordinator. RMi,w and RMj,x are the two resource managers

that performed actual work on data for the transaction before it had reached its termination point

and the 2PC was initiated.

2.2.1. The Read-Only Optimization

As the number and the sequential nature of messages and forced log writes in any ACP consume

a substantial amount of each transaction execution time, there is a continuing research interest in

developing ACPs and optimizations around reducing these metrics. Most notable type of

optimizations currently available and widely implemented in commercial database management

systems is the type in which an optimization is designed around the early release of read locks. In

such an optimization, the read locks held by a transaction are released at certain participating sites

before the transaction has fully terminated across all participants. One such optimization is the

read-only optimization [5]. This optimization is currently part of the database standards [9] and is

adopted by the majority of commercial database management systems.

The read-only optimization significantly reduces the cost of 2PC for read-only transactions. This
is because any exclusively read-only participant, a participant that has not performed any updates
to data at its site on behalf of a transaction, is excluded from the decision phase of the transaction.
More specifically, when a read-only participant receives a vote-request (i.e., prepare) message, it
simply releases all the locks held by the transaction and responds with a “read-only” vote (instead
of a “yes” vote which indicates its readiness to commit the transaction). This “read-only” vote
means that the transaction has read consistent data and the participant does not need to be
involved in the second phase of the protocol because it does not matter whether the transaction is
finally committed or aborted. Consequently, this optimization allows each read-only participant to
terminate the transaction and to release all the resources held by transaction, including the read-
locks, earlier than the update participants and without having to write any log records. This
represents the essence of the traditional read-only optimization [5].

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

90

Given that the majority of executing transactions in any general database management system are
read-only, the significance of the read-only optimization is much more pronounced with multi-
level transactions. This is because, in multi-level transactions, entire transaction execution
branches could be read-only. Consequently, these read-only branches are excluded from the
second phase of 2PC, a significant enhancement to the commit processing cost of transactions.

Figure 3 A transaction execution tree with a loopback

3. LOOPBACKS

In the absence of loopbacks, all work submitted by a transaction to a participating site originates

from one ancestor site in the transaction execution tree. This work is executed at the participating

site as a single logical unit of work commonly called a subtransaction. Hence, in the absence of

loopbacks, each distributed transaction executes one subtransaction per each participating site.

A loopback occurs whenever the work submitted by a transaction to a participating site originates

from more than one site in the transaction execution tree. This makes the same transaction

appears as more than one subtransaction at the executing site. Figure 3 depicts an example to a

transaction execution tree with a loopback. In the figure, Site3 is executing work for the

transaction and some of the work is originating from Site1 while the rest of the work is originating

from Site4. This makes the transaction appears as two subtransactions at Site3: one originating

from Site1 and another originating from Site4.

3.1. Loopback Complications

In the absence of loopbacks in a transaction execution tree, all system components at a

participating site (i.e., the TM, the CM and each RM) can uniquely identify the transaction and its

originating site without any possible ambiguity. Not only that, but when a site sends its vote to its

direct ancestor, during commit processing, it means that the site will never receive any further

work for the same transaction from any other site. This is not the case in the presence of

loopbacks as: (1) a system component at a site may be unable to uniquely identify each of the

subtransactions pertaining to the same transaction or its originating site, or (2) a participating site

may receive further work for a transaction after the site has already voted. Hence, loopbacks

complicate transaction management, requiring special attention. Otherwise, unpredictable system

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

91

behaviour may arise and, possibly, a destructive one that jeopardizes the consistency of the entire

distributed database system. Thus, there is a need to clearly characterize the different types of

possible loopback anomalies and to shed light on their currently available solutions. Besides that,

there is a need to provide a practical and an efficient solution for those loopback anomalies that

are currently left unhandled in the database research literature.

3.2. Types of Possible Loopback Anomalies

Loopback anomalies could be classified along the lines of three types as explained in the next

three sections.

3.2.1. Deadlock Anomaly

This type of anomalies occur whenever one RM (at a site) handles the different subtransactions,

pertaining to the same transaction, independently. In this case, the subtransactions may conflict

with each other over their access to data causing the transaction to deadlock with itself at the RM.

This occurs when one subtransaction holds data required by another subtransaction and the

holding subtransaction cannot release its held data for the other subtransaction until commit time

of the (whole) transaction (i.e., when all subtransactions are executed across all participating

sites). The following example demonstrates this type of anomalies.

Example 1: In Figure 3, if RM3,1 at Site3 executes the work submitted by Site1 and the work

submitted by Site4 as two independent subtransactions and the two subtransactions conflict over

their access to data, one of them has to wait, indefinitely, for the termination of the other. This is

because the subtransaction that holds the data cannot be terminated until the termination of the

(whole) transaction (including the waiting subtransaction) and the waiting subtransaction cannot

access its required data until the holding subtransaction terminates.

3.2.2. ACP Violation Anomaly

This type of anomalies may arise in two different forms: (1) whenever a cascaded coordinator (at

a site) does not recognize all its TM ancestors in the transaction tree during commit processing

whereby it interacts with some TM ancestors and does not interact with the other TM ancestors,

and (2) whenever a participant (whether it is a cascaded coordinator or a leaf participant) receives

new work for a transaction after the transaction has been prepared by the participant.

The following two examples respectively explain these two forms of ACP violation anomalies.

Example 2: As all work executing on behalf of a transaction at a site represents a single logical

unit of work regardless of the number of subtransactions performing the work at the site, if a

cascaded TM does not recognize all its direct TM ancestors during commit processing, an ACP

violation occurs. This is because some of the TM ancestors are left dangling. For example, in

Figure 3, if Site3 considers only Site1 during commit processing and ignores Site4, Site4 is left

dangling, resulting in an ACP violation.

Example 3: After a transaction has submitted all its work to all required sites and the root

coordinator initiated commit processing, a site may prepare the transaction and sends a “yes” vote

and later on receives a new work for the same transaction to validate a deferred consistency

constraint or to execute a commit–time trigger. Validating deferred consistency constraints and

executing commit-time triggers represent works performed at commit time of a transaction (i.e.,

when a site receives a prepare to commit message for the transaction during commit processing).

Deferred consistency constraints are currently part of the SQL (Structured Query Language)

standards [10] but commit-time triggers (i.e., deferred triggers) are not although some

implementations support them (e.g., PostgreSQL [11]).

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

92

For example, in Figure 3, if Site1 submits work to Site3 during the execution phase of the

transaction while Site4 submits work to Site3 during the commit processing phase of the

transaction (i.e., when Site4 receives the prepare message) to validate a deferred consistency

constraint or to execute a commit-time trigger at Site3, it is possible for Site3 to respond with a

“yes” vote to the vote-request message of Site1, assuming that the work submitted by Site1 can be

committed at Site3. After that, when Site3 receives the work from Site4, for the same transaction,

to validate the deferred constraint or to execute the commit-time trigger, an ACP violation at Site3

occurs. This is because Site3, according to 2PC and its commonly known variants, should never

receive any new work for the transaction after it has already voted.

3.2.3. Execution Infection Anomaly

This type of anomalies may occur in the presence of deferred work that needs to be performed at

commit time of a transaction and, at the same time, the transaction is read-only at some

participating sites. The following example demonstrates this type of anomalies.

Example 4: Assume that Site1 has submitted read-only work for the transaction T1, shown in

Figure 3, to be executed at Site3. Furthermore, assume that Site4 has executed work for the same

transaction and the work requires the validation of a deferred consistency constraint at Site3. At

commit time of T1, Site3 receives a prepare message from Site1, but Site4 does not receive its

prepare message until some later time. When Site3 receives the prepare message from Site1, it

responds with a “read-only” vote. Then, according to the read-only optimization, Site3 releases the

data held by T1 and forgets the transaction. Meanwhile, a subtransaction pertaining to another

transaction T2 starts executing at Site3 and modifies the data released by T1 as well as the data

associated with the consistency constraint that is supposed to be checked, at commit time, by the

work of T1 that executed at Site4. Then, T2 commits at Site3. After that, the delayed prepare

message of T1 arrives at Site4. At that time, Site4 launches a new work to check the data associated

with the deferred consistency constraint at Site3. Site3 executes the new work and affirmatively

acknowledges the completion of the work. Then, Site3 receives a prepare message from Site4 and

responds with a “yes” vote. Commit processing continues until T1 is committed across all sites,

including Site3.

The result of the above scenario represents an example to a non-serializable global execution of

transactions with the following cyclic serialization order: (T1 → T2 → T1). This anomaly could

occur even if each RM at each site deploys strict two-phase locking (S2PL) for concurrency

control, the one that guarantees serializability in distributed database systems and the de facto

concurrency control mechanism in the industry. The reason behind that is due to the read-only

optimization that is implemented as part of the ACP.

A similar scenario could also occur even if the deferred consistency constraint to be validated is

located within the same site that executed the work associated with the deferred constraint (i.e.,

Site4 in our example). Not only that but deferred triggers are also a source to similar scenarios

when the adopted ACP implements an optimization designed around the early release of read

locks. In fact, any optimization that is designed around the early release of read locks of

transactions at certain participants before transactions are fully terminated across all participants

is a source of possible transaction execution infections [7, 8].

4. HANDLING LOOPBACK ANOMALIES

A loopback anomaly could be characterized as either a local loopback anomaly or a global

loopback anomaly. This characterization depends on whether the loopback anomaly requires only

static, locally available transaction management control information for its prevention or also

requires dynamic, remotely available transaction management control information.

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

93

4.1. Handling Local Loopback Anomalies

For a local loopback anomaly, it is sufficient for each system component, within a site, to

uniquely identify each transaction and its executing subtransactions within the site besides the

origin of each subtransaction. This can be accomplished by utilizing the mechanisms provided by

the database standards through specific system calls.

For example, a RM at a site can identify whether any newly initiated subtransaction is part of an

ongoing transaction, a transaction that is already executing other subtransactions at the RM,

during the (required) registration process of the newly initiated subtransaction with the local TM.

If the TM indicates to the RM that the newly initiated subtransaction is part of a previously

initiated work for the same transaction, the RM executes the subtransaction within the scope (i.e.,

context) of the previous work of the transaction. In this way, the RM executes the different

subtransactions pertaining to the same transaction, including the newly initiated subtransaction, as

a single logical unit of work, avoiding any possible deadlock for the transaction with itself at the

RM. In the standards, this mode of execution is called tightly-coupled [9].

The standards also allow for the execution of the different subtransactions that pertain to the same

transaction to execute in an independent manner as if they belong to different transactions. This

mode is defined in the standards to meet the requirements of certain application systems and is

called loosely-coupled [9]. When a transaction uses this latter mode, there is no guarantee for the

transaction to execute in a deadlock-free manner when more than one of its subtransactions

execute at a RM. Hence, ensuring deadlock-free executions of subtransactions that pertain to the

same transaction at a RM, in this mode, is left as part of the application developer responsibilities.

Another example to local loopback anomalies is the one where a TM responds to one of its

ancestor TMs and leaving the others dangling. This can be detected and resolved using the unique

identification numbers of transactions and the unique identification numbers of their branches.

Using these unique numbers, a TM can unambiguously identify all the subtransactions pertaining

to the same transaction and their originating sites. Hence, the TM can deal with each

subtransaction, during commit processing, independently. This is even in the presence of more

than one subtransaction that pertain to the same transaction executing at its site.

4.2. Handling Global Loopback Anomalies

Unlike local loopback anomalies, global loopback anomalies can neither be detected nor

prevented using only static, locally available transaction management control information. This is

because the execution behaviour of a transaction at one site may change at any time and affect

other sites, causing a global loopback anomaly. That is, the presence of this type of anomalies

cannot be predicted so long as a transaction is still executing and their presence may not be

confined to a specific site but may span more than one. Thus, there is a need for a practical and

efficient mechanism that enables for the prevention of global loopback anomalies. This is the

essence of the global loopback anomaly prevention (GLAP) mechanism which is introduced in

the next section.

5. GLOBAL LOOPBACK ANOMALY PREVENTION

GLAP is an inter-site synchronization mechanism designed to prevent global loopback anomalies.

It is based on the piggybacking of transaction management control information, in a dynamic

manner, among the participating sites during the execution phase of transactions. Specifically,

when a site executes work that requires the execution of further work at commit time of a

transaction, the site executing the work has to inform the coordinator of the transaction about this

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

94

transaction execution behaviour. Based on the received information, the coordinator informs all

the other participants about this expected transaction execution behaviour. In this way, the other

participants can cooperate with the coordinator to prevent any possible global loopback anomaly.

This is accomplished by not terminating the transaction at any participating site before the final

decision is made by the coordinator and is received by the participants. That is, all resources,

including the read-locks, are held at each participant until the transaction is fully terminated

across all sites. This includes the deferred work that is expected to cause the global loopback

anomaly and regardless of whether the transaction is read-only or not at any given participant.

To inform the coordinator of a transaction about work that requires the initiation of further work

at commit time of a transaction, the site executing the work sets a potential loopback anomaly

(PLA) flag that indicates this expected execution behaviour in the acknowledgment message of

the successful execution of the work. When the coordinator receives such an acknowledgment

message, the coordinator becomes aware of a possible global loopback anomaly. Based on that,

the coordinator informs the other participants about the possibility of the global anomaly. This is

accomplished during the first phase of the ACP.

During the voting phase, the coordinator includes a PLA flag in the prepare message that it sends

to each of its direct descendents. When a descendent receives the message, it also becomes aware

of the possible anomaly and informs its direct descendents (if it has ones) accordingly. In this

way, all participants in the transaction execution tree become aware of the possible global

anomaly.

When a participant receives a prepare to commit message with a PLA flag, the participant

continues to hold all the resources, including the read-locks, on behalf of the transaction until the

decision phase. This is even if the participant is an exclusively read-only participant. That is, each

participant follows the ACP as if it does not incorporate the read-only optimization within its

implemented ACP. Not only that, but each of the other participants should be ready to accept any

new work for the same transaction, even after the participant had (affirmatively) voted, and to

execute the work within the same run-time scope of the previously executed work for the

transaction.

Using GLAP, when the coordinator receives the (“yes”) votes of all the participants, the

coordinator is guaranteed that all the work pertaining to the transaction has been terminated,

across all participants, and no participant has released the resources acquired during the execution

of the transaction. Not only that, but the coordinator is also guaranteed that all the work submitted

to a participant, regardless of its origin, has been executed within one run-time scope at the

participant. Hence, when the coordinator makes the final (commit) decision, it is not possible for

the transaction to be involved in any global loopback anomaly.

To demonstrate the effectiveness of the proposed mechanism, reconsider Example 3 (Section

3.2.2) and Example 4 (Section 3.2.3).

In Example 3, when Site4 executes the work associated with the deferred constraint or the

commit-time trigger, using GLAP, it informs the coordinator about the deferred work that it needs

to perform at commit time of the transaction. This is accomplished by setting the PLA flag in the

acknowledgment message of the successful execution of the work. Based on that, the coordinator

becomes aware of a potential global loopback anomaly. Consequently, it informs all the other

participants, including Site3, during the first phase of commit processing. When Site3 becomes

aware of the potential global loopback anomaly, it will continue to hold all the resources acquired

by the transaction even after it has sent a “yes” vote to Site1. Not only that, but Site3 will be ready

to accept any new work for the transaction. This is regardless of the origin of the new work that it

may receive. When Site3 receives the commit-time work from Site4, it will execute the new work

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

95

within the same run-time scope of the previously executed work for the transaction. For commit

processing, Site3 will treat the new branch, using the unique BranchID, independently from the

previous branch of the transaction. Thus, using GLAP, the possible ACP violation, in this

example, is eliminated through modifying the ACP such that a participating site does not consider

the transaction terminated, in the presence of a possible global loopback anomaly, until it receives

the final decision from the coordinator.

In Example 4, when Site4 executes the work that is associated with the deferred constraint for T1,

using GLAP, Site4 informs the coordinator about the deferred work that it needs to perform at

commit time of the transaction. This is accomplished by setting the PLA flag in the

acknowledgment message of the successful execution of the work. Based on that, the coordinator

becomes aware of a potential global loopback anomaly. Consequently, it informs all the other

participants, including Site3, during the first phase of commit processing. When Site3 becomes

aware of the deferred work that is to be executed at Site4 and its potential global loopback, it will

vote “yes” instead of “read-only” and will continue to hold the resources acquired by T1 including

the read locks. Thus, T2 will be blocked awaiting T1 to release its held read locks. When Site4

sends the deferred work to Site3, Site3 will execute the work within the same run-time scope of the

previously submitted work by T1 even though Site3 has already voted. Thus, T2 will not be able to

interfere with the execution of T1 causing a non-serializable execution. Hence, using GLAP, the

possible execution infection, in this example, is eliminated through modifying the ACP such that

a participating site does not use the read-only optimization, in the presence of a possible global

loopback anomaly, and executing any new work that it receives within the same run-time scope

of the previously submitted work by the same transaction.

6. DISCUSSION

As mentioned in Example 4 (Section 3.2.3), a transaction execution infection could occur even if

the deferred consistency constraint to be validated is located within the same site that executed

the work associated with the deferred constraint. However, this specific type of transaction

execution infections is considered, according to our characterization, as a local loopback

anomaly. This is because it could be prevented using only static, locally available transaction

management control information. One simple way to prevent this type of execution infection

anomalies is to acquire all the locks needed for the validation of a deferred constraint during the

execution of the operation that is associated with the consistency constraint and postponing the

actual validation of the constraint until commit time of the transaction [8]. In this way, other

transactions are prohibited from interfering with the transaction and producing a non-serializable

execution. However, this is not the most appropriate mechanism for handling deferred constraints

as it forces the system to acquire the locks associated with deferred constraints, unnecessarily, for

long periods of time, depriving the system from potential concurrency among executing

transactions.

The unsolicited deferred consistency constraints validation (UDCCV) [8] and the timestampped

two-phase commit (T2PC) [7] are two mechanisms that were designed to avoid any release of

locks prematurely, prohibiting the occurrence of the above special case of execution infections.

Similar to GLAP, UDCCV piggybacks control information in the acknowledgment messages of

individual operations to inform the coordinator and, subsequently, the other participants about

any potential execution infections. In this way, the coordinator and all the participants are forced

to hold all the locks until the commit time of a transaction, prohibiting any possible execution

infections. This is accomplished on a per transaction basis and only in the presence of a potential

execution infection. However, UDDCV was not designed for the prevention of global loopback

anomalies, the ones demonstrated in Example 3 (Section 3.2.2) and Example 4 (Section 3.2.3).

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

96

T2PC was also designed for the same purpose as UDCCV but in a rather different way. T2PC is

based on timestamps as a method for knowing when the participants are terminated from

executing a transaction. That is, each participant, in T2PC, sends the time range during which a

transaction must commit or else aborted along with its vote (and not during the execution phase

of the transaction). Thus, the coordinator of a transaction is also responsible about determining

the time range that satisfies the requirements of all the participants, if the transaction is to be

committed, or else aborting the transaction.

As T2PC incorporates the concept of time, it significantly complicates the simplicity of the 2PC

protocol. Not only that, but clock divergence among individual database sites introduces another

problem into the protocol. Besides that, and as UDCCV, T2PC was designed in the context of the

two-level distributed transaction execution model. Hence, it does not solve the problems of

loopback anomalies that exist in the multi-level distributed transaction execution model.

7. SUMMARY AND CONCLUSIONS

When distributed transactions execute according to the multi-level/hierarchical transaction

execution model, a transaction may appear at a participating site more than once. This is called a

“loopback”. Loopbacks require special database management attention. Otherwise, certain

anomalies may occur causing unexpected system behaviour, including non-serializable

executions of transactions. This motivated the characterization of loopback anomalies into two

types: local loopback anomalies and global loopback anomalies. The characterization of both

types is based on the needed transaction management control information for their prevention:

static and local versus dynamic and remote. Whereas local loopback anomalies can be prevented

using the currently available mechanisms provided by the database standards, global loopback

anomalies cannot, requiring new mechanisms for their detection or their prevention. This led to

the design of the GLAP (Global Loopback Anomaly Prevention) mechanism.

GLAP is based on the piggybacking of transaction management control information among

participating sites, in a dynamic manner, as transactions progress in their executions. That is,

GLAP exposes the execution behaviour of a transaction at a participating site that may cause a

global loopback anomaly to all the other participating sites. Hence, allowing for their cooperation

to effectively and efficiently prevent any possible global loopback anomaly

The GLAP mechanism shows that piggybacking of transaction management control information

can be used not only for the design of highly efficient ACPs, as it is customary the case, but also

for solving some subtle transaction management problems that cannot be captured locally at each

individual database site.

REFERENCES

[1] C. Mohan, K. Britton, A. Citron, and G. Samaras, “Generalized Presumed Abort: Marrying Presumed

Abort and SNA’s LU 6.2 Commit Protocols,” IBM Research Report RJ8684, IBM Almaden Research

Center, 1992.

[2] Kshemkalyani, A., G. Samaras and A. Citron, “Context Management and its Applications to

Distributed Transactions,” Distributed Systems Engineering, Vol. 5, No.1, pp. 1-11, 1998.

[3] Gray, J. “Notes on Database Operating Systems,” in Bayer, R., R.M. Graham and G. Seegmuller,

(Eds.), Operating Systems: An Advanced Course, LNCS, Vol. 60, pp.393–481, Springer-Verlag,

1978.

[4] Lampson, B. “Atomic Transactions,” in Lampson, B., M. Paul and H.J. Siegert, (Eds.): Distributed

Systems: Architecture and Implementation – An Advanced Course, Vol. 105, pp.246–265, Springer-

Verlag, 1981.

International Journal of Database Management Systems (IJDMS) Vol.6, No.3, June 2014

97

[5] Mohan, C., B. Lindsay and R. Obermarck, “Transaction Management in the R* Distributed Data Base

Management System,” ACM TODS, Vol. 11, No. 4, pp. 378-396, 1986.

[6] Al-Houmaily, Y., “Atomic Commit Protocols, their Integration, and their Optimisations in Distributed

Database Systems,” Int’l J. of Intelligent Information and Database Systems, Vol. 4, No. 4, pp. 373-

412, 2010.

[7] Lomet, D., “Using Timestamping to Optimize Two Phase Commit,” in Proc. of the 2nd Parallel and

Distributed Information Systems, 1993.

[8] Al-Houmaily, Y., “On Deferred Constraints in Distributed Database Systems,” Int’l Journal of

Database Management Systems, Vol. 5, No. 6, December 2013.

[9] X/Open Company Limited, “Distributed Transaction Processing: The XA Specification,” (X/Open

Doc. No. XO/CAE/91/300), 1991.

[10] ISO, “Information Technology - Database Languages - SQL - Part 2: Foundation (SQL/Foundation),”

ISO/IEC 9075-2, 2008.

[11] The PostgreSQL Global Development Group, “PostgreSQL 9.2.4 Documentation,” 2013.

AUTHOR

Yousef J. Al-Houmaily received his BSc in Computer Engineering from King Saud

University, Saudi Arabia in 1986, MSc in Computer Science from George Washington

University, Washington DC in 1990, and PhD in Computer Engineering from the

University of Pittsburgh in 1997. Currently, he is an Associate Professor in the

Department of Computer and Information Programs at the Institute of Public

Administration, Riyadh, Saudi Arabia. His current research interests are in the areas of

database management systems, mobile distributed computing systems and sensor

networks.

