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ABSTRACT 

The paper attempts to handle failures effectively, while reaching agreement, in a distributed transaction 

processing system. The standard protocols such as BFTDC [3], Zyzzyva [4] and PBFT [5] handle the 

problem to a greater extent. However, the limitation with these protocols is that they incur increased 

message overhead as well as large latency. Moreover, the nodes are evacuated from the transaction 

system after being declared faulty. We propose a novel proactive based agreement which identifies the 

tentative failures in the system. To improve the failure resiliency with minimum execution overhead, we 

also propose an optimized reactive view change mechanism. Both mechanisms have been analyzed and 

compared. The dynamic analysis of the protocol reflects that, in a faulty scenario, the proactive 

approach is computationally more efficient with reduced latency as compared to reactive one. Moreover, 

unlike PBFT and BFTDC, our agreement protocol runs in two phases, which leads to reduced message 

overhead and total execution time. The protocol treats the fail-silent (i.e. crashed) nodes in the system.                    
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1. INTRODUCTION 

Transaction processing is a basic application of distributed computing. Like other applications, 

fault tolerance is a major concern in transaction processing also. Moreover, the transaction 

handling protocols should maintain atomicity, i.e., either all operations of the transaction 

commit, or none of the operations is carried out, i.e. the transaction aborts. The standard 

commit protocol for distributed transaction is two-phase commit protocol, popularly referred as 

2PC [1, 2], which works correctly in presence of benign faults only. The present work aims at 

designing an efficient agreement algorithm that successfully handles the fail-silent faults. In 

addition, it significantly reduces the time taken to complete the transaction. Two protocols, one 

based on proactive and the other on reactive approach, has been presented and analyzed. Both 

the protocols achieve increased system availability and enhanced throughput.     

There has been an explosive growth in the number of connected hosts in recent times 

[3]. Also, the network hosts and servers are exposed to the public access through online 

transactions. It results in a number of lead chances of transactions have become the first mode 

of communication  Traditional Byzantine fault tolerant protocols such as BFTDC [5] and 

Zyzzyva [6] deal with failures in a reactive manner, i.e., they rely on the specification of the 

faults to initiate view change. In a particular view, one of the replicas is chosen as primary and 

other replicas work as backups. In the middle of agreement, if time out occurs for current view 

because of delay in message propagation or the primary is found faulty then view change 

occurs. The proactive approach, on contrary, is designed to minimize the transaction 

discontinuity and latency while ensuring stability as well as availability of replicas through 
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failure notifications in advance. Towards this goal, we build a system model to analyze the 

failure resiliency of our protocol under both reactive and proactive approaches.  

1.1 Motivation 

As the large scale distributed computing systems are more prone to failures, our protocol runs 

agreement on every request without involving the clients. It makes the protocol faster in the 

presence of increased number of faults and makes it more useful for large networks. In most of 

the contemporary works, the protocol replaces the replica from the system when it is diagnosed 

as faulty. This leads to increased message overhead for the overall execution of the protocol. 

Although, the protocols produce desired result, they incur latency in order to initiate the view 

change mechanism which results in short-lived (i.e., transient) halts during the transaction 

processing. We have attempted to devise a technique which is able to detect, in advance, the 

tentative fault in the system.  The protocol fulfills all the requirements that are agreement, 

validity, and termination. We use a Transaction Manager, which itself is assumed to be trusted 

and fault free.    

1.2 Organization of the paper 

The section 2 describes the related work existing in the literature succeeded by system model 

and problem definition in section 3. Section 4 presents the analysis of the reactive and 

proactive view change protocol. A detailed discussion of optimized agreement protocol is given 

in section 5. In section 6, simulation results are shown followed by conclusion in section 7.     

2. RELATED WORK 

The Byzantine faults [4] are extremely challenging to tolerate, especially for long-running 

systems. Hence, although considerable amount of literature exist in this field, researchers have 

still interest. After many years of diligent work, Castro and Liskov [5] came up with three 

phase Byzantine agreement algorithm. Further, based on their approach, Zhao [6] introduced 

BFTDC protocol. These protocols handle the problem to a greater extent; however, they incur 

increased message overhead as well as large latency. We give a brief account of other 

noteworthy agreement protocols in the following section.   

2.1 Zyzzyva: Speculative Byzantine Fault Tolerance [7] 

The protocol uses speculation to reduce the message count and simplify the design of Byzantine 

fault Tolerant state machine replication. In Zyzzyva, the replicas optimistically adopt the 

decision proposed by the primary and respond immediately to the client’s request without 

running an expensive three-phase commit protocol to reach agreement. As a result, correct 

replicas’ states may diverge, and faulty replicas may send contradictory responses to clients. 

Nonetheless, the applications at client site observe the traditional and powerful abstraction of a 

replicated state machine that executes requests in a linearizable order. The replies carry with 

them sufficient history information for clients to determine whether the replies and history are 

stable and are guaranteed to be eventually committed. If a speculative reply and history are 

stable, the client uses the reply. Otherwise, the client waits until the system converges on a 

stable reply and history. The challenge in Zyzzyva is to ensure that the responses to correct 

clients become consistent. In fact, the replicas are responsible for ensuring that all requests 

from a correct client complete eventually. 
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2.2 An Optimistic Commit Distributed Transaction Protocol for Management [8] 

The work is an improvement over traditional two phase commit protocol, popularly known as 

2PC algorithm. Silberschatz-Korth’91, proposed a family of protocols, which eliminated the 

major disadvantage of potential unbounded delay in 2PC protocol that the transactions may 

have to endure if certain failures occur. By using compensating transactions, they proposed a 

revised 2PC protocol that overcomes these difficulties. In the revised protocol, locks are 

released as soon as a site votes to commit a transaction, thereby solving the indefinite blocking 

problem of 2PC. Finally, if the transaction is to be aborted, then its effects are undone 

semantically using a compensating transaction. Therefore, semantic, rather than standard, 

atomicity is guaranteed. Accordingly, a correctness criterion was proposed that was most 

appropriate when atomicity is given up for semantic atomicity. The protocols restricted only 

global transactions, and did not incur extra messages other than the standard 2PC messages. 

However, these protocols were not meant to handle any type failures in the system. 

2.3 HQ Replication: A Hybrid Quorum Protocol for Byzantine Fault Tolerance [9] 

HQ is also a state machine replication protocol designed to handle deterministic as well as 

arbitrary operations. The protocol employs best features of two categories of protocols, namely, 

the agreement based BFT and quorum based protocols. It uses query/update (Q/U) method in 

the absence of contention and BFT method, in case, contention occurs. In the normal case of no 

failures and no contention, write operations require two phases to complete while reads require 

just one phase. In the first phase, the client requests for a grant from each replica. If it receives 

2f+1 matching replies it uses the same as certificate to approve the agreement decision to the 

replicas in second phase. However, if various replicas have granted the same sequence number 

to different clients, there would be write contention. In such case, BFT will be employed. Thus, 

it performs well in the absence of contention because of its speed. However, in real time 

situations, where contention is common, the protocol takes more time than BFT in decision 

making. 

2.4 Commit Barrier Scheduling [10] 

Commit barrier scheduling is a concurrency control protocol that allows the system to 

guarantee correct behavior while achieving high concurrency in the presence of Byzantine 

faults. The protocol constrains the order in which queries are sent to replicas in order to prevent 

conflicting schedules, while preserving most of the concurrency in the workload. Additionally, 

it ensures that users see only correct responses for transactions that commit, even when some of 

the replicas are Byzantine faulty. This scheme requires neither any modification to any database 

replica software nor does it require any additional software to run on any machine hosting a 

replica database. 

2.5 Scaling Byzantine Fault-Tolerant Replication to Wide Area Networks [11] 

The work extended the Byzantine fault tolerance to wide area networks. It uses hierarchical 

Byzantine fault-tolerant replication architecture, which confines the effects of any malicious 

replica to its local site, reduces message complexity of wide area communication, and allows 

read-only queries to be performed locally within a site for the price of additional hardware. 

Byzantine fault-tolerant protocol is employed within each site and a lightweight benign fault-

tolerant protocol among wide area sites. Each site, consisting of several potentially malicious 
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replicas, is converted into a single logical trusted participant. To order the operations locally, 

Byzantine agreement protocol is run within the site, and they agree upon the content of any 

message leaving the site for the global protocol. The protocol also eliminates the ability of 

malicious replicas to misrepresent decisions that take place in their site. Towards this goal, the 

messages between servers at various sites carry a threshold signature attesting that the sufficient 

number of servers at the originating site agreed with the content of the message. 

3. SYSTEM MODEL 

We assume a 2-tier architecture between the coordinator replicas and the participants. The 

protocol is started for a transaction when a commit/abort request is received from the initiator. 

To ensure safety and liveness properties, certain synchrony has been assumed among the 

replicas. As Byzantine faults are considered, only at the coordinator site, participants are not 

replicated. There are 3f +1 coordinator replicas, among which at most f can be faulty during a 

transaction. We assume a Transaction Manager TM, which itself is trusted and possesses the 

power to diagnose and replace the faulty coordinator as well as the faulty replicas. Each 

coordinator replica is assigned a unique id i, where i varies from 0 to 3f. The id is required to 

identify the primary in a particular view and also for verification of the replica during message 

transmission. Fig 1 illustrates the schematic view change architecture where the replica labeled 

P is primary and replicas labeled R are backups. The rounded-corner rectangle represents the 

semantic view of Transaction Manager, TM.   

The agreement for initial transaction request starts from view 0. After the first phase 

(prepare), the coordinator and replicas execute the agreement protocol. Subsequently they send 

their decision to coordinator replica and enter into the second phase (commit). Our view change 

mechanism is run by the Transaction Manager under both, reactive and proactive, approaches. 

Thus, agreement and view change protocols run in the interleaved manner. 
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Fig.1. The schematic view change architecture 
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3.1 Problem Definition 

Consider a protocol wherein a primary replica, say P, is activated for a particular transaction 

request by receiving a commit/abort message from among the population of clients. The 

message is propagated to rest 3f replicas for their proposed decision. Now, the agreement 

protocol among the replicas is run. The three basic properties that an agreement protocol must 

satisfy are agreement, validity, and termination. 

Agreement: Any two non-faulty replicas that decide on a value (commit/abort) for a particular 

id, i, must decide on the same value. More specifically, a faulty replica, if any, is 

computationally infeasible to alter the decision of two non-faulty replicas. 

Validity: If all non-faulty replicas have been activated on a given id, i, with the same initial 

value, then all non-faulty replicas that decide must decide on this value. 

Termination: All non-faulty replicas eventually decide. 

At the end of agreement protocol, all the replicas send their decision to the clients. This 

starts the commit phase. A client waits for f+1 matching messages before taking commit 

decision on transaction. After receiving the required number of matching replies, the client 

commits the transaction. 

4. THE APPROACH 

This section elaborates, in detail, the reactive and proactive approach to view change 

mechanism. 

4.1 The Proactive Approach 

In this approach, in a particular view, one of the replicas is chosen as primary and other replicas 

work as backups. During the initial phase of registration, all replicas register themselves to the 

Transaction Manager, TM with their unique id’s. Following this, the TM assigns the 

responsibility of the coordinator to the lowest id replica and designates it as primary, P. The 

current view message that contains the current view number v, primary replica P and 

transaction id i, is then broadcast to each participating replica. Finally, if 3f +1 replicas respond 

with an acknowledgement of current view, the TM sends a begin-transaction message to 

primary P in order to start the transaction processing.  

The proactive approach depends mainly on two entities, namely ping_time and 

status_flag. The ping_time has been used to implement, essentially, a time out mechanism. It is 

an additional message that is attached only in the message field of the primary (coordinator) 

replica. Now, the coordinator replica is bound to declare its status to the TM within ping_time. 

It works as a failure detector in order to detect crash failure with the required level of accuracy. 

Although, for byzantine faulty replica, the failure detector has to know the semantic of the 

protocol as it may send some spurious messages to other replicas. However, the ping_time 

corresponds to failure detector that helps to ensure completeness in the protocol rather than 

accuracy. This would help to detect if primary P would be able to successfully participate in 

further transaction processing. 
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Pseudo code for proactive view change 
At Replica site 
Replica_id-Registration ( ) 

{ 

 Sends Registration Request in form of Join-Request to TM 

 If Receives 2f+1 matching Join-Approved then 

  Registration completes; 

 Else 

  Failure; 

} 

At Transaction manager site 
Nearest replica-Search ( ) 

{ 

 Store every replica by unique Id;  

Select primary, P = lowest (Id); 

 Sends Current view (v, P, i) to every replica;  

 If 3f+1 matching View-ACK received then 

  Send Begin-Agreement to P; 

 Else 

  Failure; 

} 

Proactive view-change ( ) 

{ 

 Declare ping_time and status_flag;  

 For message = = Begin-Agreement to P,   

  Set P(ping_time) = 1000ms    

 For backups R,  

Set R(status_flag) = alive;   

If P fails to report TM with defined ping_time, 

TM sets primary, P = faulty; 

Else  

Switch (Agreement); 

} 

If status (P) = faulty, 

 Proactive view change occurs; 

 Reinitiates registration phase ( ); 

                New primary, P = Id+1; 

 Send new member-notification ( );  

} 

 New member-notification ( ) 

{ 

 Send New View to all replica nodes (v+1, P, i+1); 

 If 3f+1 matching View-ACK received then 

  Send Begin-Agreement to New primary, P; 

} 

At client side 
Notification-Acknowledgement ( ) 

{ 

 Sends acknowledgement for notification; 

} 

 

Fig.2. Proactive View Change Approach 

Each of the backup replicas has a special state variable status_flag, which represents 

the status of the replica. If the replica is non-faulty then it would set its status_flag as alive. 

However, any other value assumed by status_flag is considered to be don’t care value. Initially, 
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all replicas’ status_flag value has been assumed to be alive. After the completion of each 

transaction round, the backup replicas inform their status to the TM. The transaction proceeds 

further, only, if the status of backup replica is alive; otherwise, it is suspected as a faulty. A call 

for new view change is initiated and the faulty replica is removed at an early stage. Otherwise, 

the faulty replica would have been detected after executing some rounds. The pseudo code for 

view change approach is shown in the Fig 2.   

To this end, both of the above entities play key role in detecting failures, proactively, in 

a transaction processing system.  

4.2 The Reactive Approach 

In this approach, a faulty replica is treated only when it is identified and informed using time 

out mechanism. In a sense, this approach restricts the faulty replica to deviate from the 

specified behavior as any message, further, passed by faulty replica is not accepted by other 

nodes. The reactive approach works as follows.  
 Pseudo code for reactive view change 

At replica site 
Node_id-Registration ( ) 

{ 

 Sends Registration Request in form of Join-Request to TM 

 If Receives 2f+1 matching Join-Approved then 

  Registration completes; 

 Else 

  Failure; 

} 

At Transaction manager site 
Nearest replica-Search ( ) 

{ 

 Browse & Store every Node by Id; 

Select primary = lowest (Id); 

 Sends View- Message to every replica;   

 If 3f+1 matching View-ACK received then 

  Send Begin-Agreement to primary; 

 Else 

  Failure; 

} 

Reactive view-change ( ) 

{ 

 If (timeout)    

    TM replace primary; 

  New primary = Id + 1; 

  Assign it T and proceed;  

  Assign transaction log to new replica;    

} 

 New member-notification ( ){ 

 Send New View to all replica nodes; 

 If 3f+1 matching View-ACK received then 

  Send Begin-Agreement to New primary; 

 } 

At client side 
Notification-Acknowledgement ( ){ 

 Sends acknowledgement for notification; 

} 

Fig.3. Reactive View Change Approach 
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Initially, all participating replicas register themselves to the Transaction Manager, TM with 

their id’s. Afterwards, one of the replicas, the replica with lowest id, is selected to serve as the 

primary, say P. The current view is then broadcasted to everyone involved in the transaction 

processing. 

 The message format of current view contains the current view number v, primary P, 

transaction id i, and with a predefined timeout T to run the protocol. If TM receives the 

acknowledgement, in response to the current view message, from 3f +1 replicas, it allows 

primary P to begin transaction processing. While running agreement, if timeout occurs for 

current view because of delay in message propagation or the primary is found faulty then view 

change occurs. If f + 1 replicas inform to TM that the view change is due to fault in primary 

then the TM decides the new timeout to be T (i.e., timeout for previous view), 2T otherwise. 

Thus, it keeps same timeout for each view change in case of primary being suspected as faulty. 

Now, the transaction proceeds to reach an atomic decision commit or abort. For the 

understanding of reactive view change approach, the pseudo code is given in Fig 3. 

Both of the view change approaches, proactive and reactive, are designed to minimize 

the discontinuity in the transaction processing. The comparative analysis of the performance of 

both mechanisms brings out the potential benefits of proactive over reactive in terms of 

latency, message overhead, and throughput.    

5. SIMULATION RESULTS 

We have conducted simulation in order to evaluate the performance of reactive and proactive 

view change mechanism on the execution time (i.e., latency). Also, the agreement protocol is 

run and simulated to evaluate the performance of two-phase agreement over the standard three-

phase agreement. We have used BFTSim [12]. It uses a back-end simulator which is based on 

ns-2 [13]. The front-end uses a declarative overlog language P2. Fig 4 shows latency-

throughput curves for the protocols with proactive and reactive view change mechanism.   

As we have used exponential distribution of faults, when the number of faults is less, 

both approaches deliver comparative performance in terms of latency. However, with the 

increase in number of faults, the latency gradient is significantly less in proactive approach. 

 

 
 

Fig.4. Latency vs. Throughput Curve for Reactive and Proactive Approach 
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6. CONCLUSION 

The major contribution of this paper is the novel solution to view change mechanism. Our 

method uses a Transaction Manager, TM, to proactively detect the crash of the primary as well 

as backup replicas. To compare the performance, we also presented a reactive approach to view 

change mechanism. Both approaches have also been analyzed and experimentally evaluated. 

The proactive approach always exhibits the better performance in a faulty scenario that makes 

it suitable for long-lived applications. The proposed approach dramatically reduces the latency 

of the protocol and leads to enhanced throughput. In the end, the proposed agreement protocol 

reduces the overall message overhead as well as total execution time to a greater extent.              
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