
International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

DOI : 10.5121/ijdps.2011.2106 73

FAVQCHOKE: TO ALLOCATE FAIR BUFFER TO A

DYNAMICALLY VARYING TRAFFIC IN AN IP

NETWORK

K.Chitra
1
 and Dr.G.Padmavathi

2

1
Department of Computer Science, D.J.Academy for Managerial Excellence,

Coimbatore, India
chitrakandaswamy@yahoo.com

2
Department of Computer Science, Avinashilingam University for Women, Coimbatore,

India

ABSTRACT

In IP networks, AQM attempts to provide high network utilization with low loss and low delay by

regulating queues at bottleneck links. Many AQM algorithms have been proposed, most suffer from

instability of queue, bursty packet drop, require careful configuration of control parameters, or slow

response to dynamic traffic changes and unfairness. The deployment of active queue management

techniques such as RED based is used that results in increased bursty packet loss and unfairness caused

by an exponential increase in network traffic. The inherent problem with these queue management

algorithms is that they all use queue lengths as the indicator of the severity of congestion. In order to

solve this problem, a new active queue management algorithm called FAVQCHOKe is proposed. In this

paper, arrival rate at the network link is maintained as a principal measure of congestion to improve the

transient performances of the system and ensures the entire utilization of link capacity. In addition this

proposed algorithm uses queue length and flow information that enhances fairness. This characteristic is

particularly beneficial to real-time multimedia applications. Further, FAVQCHOKe achieves the above

while maintaining high link utilization and low packet loss. This paper discusses about the inherent

weaknesses of current techniques and how the proposed algorithm overcomes the weaknesses and

ensures high degree of effectiveness in the performance of the system.

KEYWORDS

Congestion, Dynamic Traffic, IP Network, Fairness, Load

1. INTRODUCTION

Internet congestion occurs when the aggregate demand for a resource (e.g., link bandwidth)

exceeds the available capacity of the resource. Thus resulting effects of such congestion include

long delays in data delivery, wasted resources due to lost or dropped packets, and even possible

congestion collapse, in which all communication in the entire network comes to an end. It is

therefore obvious that in order to maintain good network performance, certain mechanisms must

be provided to prevent the network from being congested for any noteworthy period of time.

Two approaches to handling congestion are congestion control and congestion avoidance. The

former is reactive in which congestion control typically comes into play after the network is

overloaded, that is, congestion is detected. The latter is proactive in that congestion avoidance

comes into play before the network becomes overloaded, that is, when congestion is expected.

In general and throughout this article, the term congestion control is used to denote both

approaches.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

74

Congestion control involves the design of algorithms to statistically limit the demand-capacity

mismatch, or dynamically control traffic sources when such a mismatch occurs. Currently,

usage of the Internet is dominated by transmission control protocol (TCP) traffic such as remote

terminal, FTP, Web traffic, and electronic mail. Although these applications can tolerate either

packet delay or packet losses rather gracefully, congestion remains a major problem that leads

to poor performance. Internet is still evolving as a high-performance network providing

ubiquitous services, including real time voice/video. Accordingly, many congestion control

approaches have been proposed. However, current Internet congestion control methods results

in unsatisfactory performance including multiple packet losses and low link utilization as the

number of users and the size of the network increases. Active Queue Management (AQM),

network algorithms executed by network components such as routers, detect network

congestion, packet losses, or incipient congestion, and inform traffic sources either implicitly or

explicitly.

The first AQM algorithm RED detects congestion by observing the queue state. In RED [1]

packet drop probability is linearly proportional to queue length. The AQM algorithm RED

drops packets before a queue becomes full. This reduces the number of packets dropped. RED

and its variant uses queue length as a congestion indicator that results in certain drawbacks. In

order to overcome the difficulty of relying only on queue length to identify the level of

congestion various other AQMs are introduced with different congestion indicators.

To overcome the problems with RED, REM [2] was proposed. This AQM scheme attempts to

make user input rates equal to the network capacity. In case of high congestion, sources are

indicated to reduce their rates. In contrast to RED, REM decouples congestion measure from

performance measure which stabilizes the queue around its target independent of traffic load

leading to high utilisation and low delay. AQM schemes like GREEN [3], AVQ [4] also depend

on arrival rate to control the congestion in the router. AVQ uses only the traffic input rate for

the measure of congestion. This provides early feedback of congestion.

Another AQM scheme BLUE [5] does not use queue length as a congestion metrics. BLUE uses

packet loss and link utilization as a congestion indicator. In LRED [6] packet loss ratio is used

to design more adaptive and robust AQM. It uses the instantaneous queue length and packet loss

ratio to calculate the packet drop probability.

AQMs that used only the congestion metric faced the problem of unfairness in handling the

different types of traffic. To overcome this problem, FRED [7] was proposed that improved

uniformity by constraining all flows to occupy loosely equal shares of the queue’s capacity. To

overcome the shortcomings of the FRED, CHOKe [8] was designed. This paper considers the

advantages of the queue-based, load-based and flow-based algorithms to combine into an

improvised AQM algorithm. This improvised AQM algorithm called Flow based AVQCHOKe

(FAVQCHOKe) tries to achieve its objective of improving overall performance

In the next section, a broad study of all possible AQM schemes is presented to identify the basic

schemes that exist and their classification based on congestion metric and flow information. In

section 3 the FAVQCHOKe algorithm is discussed to bring out the advantages of the proposed

algorithm.

 2. BACKGROUND

During the recent years research activities have come out with various congestion avoidance

mechanisms in Internet to improve Internet traffic. But each of these mechanisms is ineffective

especially in heavy traffic network. That has made research a continuous process in identifying

the best Active Queue Management algorithm. Congestion in routers results in high packet loss

leading to high cost that is reduced by the various existing AQM schemes.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

75

The existing schemes use various factors or metrics to detect congestion. These factors are used

to estimate congestion in the queue based on which various AQM algorithms are proposed in

the past few years. As discussed in [9], the schemes are based on congestion metrics like

Queue-length, Load, both Queue and Load, others like Loss rate. Further some of these

schemes also use flow information along with various congestion metrics like Queue-length,

Load, both Queue and Load, others like Loss rate metrics to analyze and control the congestion

in routers more accurately. Considering these factors AQM schemes are categorized based on

congestion metrics without flow information and with flow information as shown in Fig 1.

Figure 1 Classification of AQM Schemes

The first well known AQM scheme proposed is RED. It tries to avoid problems like global

synchronization, lock-out, bursty drops and queuing delay that exists in the traditional passive

queue management i.e Droptail scheme. In this AQM scheme, the dropping probability depends

on various parameters like minth, maxth, Qave and wq. These parameters must be tuned well for

the RED to perform better. However, it faces weaknesses such as accurate parameter

configuration and tuning. This becomes a major disadvantage for the RED algorithm. Though

RED avoids global synchronization but fails when load changes dramatically. Queue length

gives minimum information regarding the severity of congestion. RED does not consider the

packet arrivals from the various sources, which is also a very important measure for the

congestion indication. RED based AQMs like DSRED [10], MRED [11], AdaptiveRED [12]

tried to remove the problems of RED. DSRED, MRED showed better performance than RED.

AdaptiveRED tried to eliminate the problem of parameter tuning by adapting the parameters.

Though RED and its variant were simple to handle, the difficulty with it is the parameter tuning

problem. RED based AQMs are vulnerable to unresponsive flows dominating a routers queue.

To overcome this problem, FRED was proposed that improved uniformity by constraining all

flows to occupy loosely equal shares of the queue’s capacity. AQMs that used only congestion

metric and not flow information faced the problem of unfairness in handling the different types

of traffic. FRED is based on instantaneous queue occupancy of a given flow. It provides better

protection than RED for adaptive flows and isolating non-adaptive greedy flows. Combination

of Flow and congestion metric based AQMs like CHOKe, SFB [13], SFED [14], FABA [15],

StoRED [16] were proposed to allocate fair buffer between flows considering the effects of

misbehaving or non-responsive flows.

To remove the implementation cost of FRED, CHOKe (CHOose and Keep for responsive flows,

and CHOose and Kill for unresponsive flows) algorithm was designed that penalizes

misbehaving flows by dropping more of their packets. So CHOKe tries to bring fairness for the

flows that pass through a congested router. CHOKe provides much better fairness than FRED

Queue-based:
RED, DS-RED, MRED

AdaptiveRED, PD-RED, LRED

HRED, ARED, RED with AutoRED

Load-based:
Yellow, AVQ, SAVQ, EAVQ

Both Queue & Load based:
REM, SVB

Others

BLUE

Queue-based

FRED, CHOKe

SHRED, StochasticRED

Load-based:
SFED, FABA, LUBA

Others:
SFB

Active Queue Management

Congestion metric Without

Flow Information

Congestion metric With

Flow Information

Only Flow

Information

SRED

GREEN

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

76

but penalizes high bandwidth flows and does not handle unresponsive flows in case of few

packets. Flow based AQMs with congestion metric are able to discriminate responsive and non-

responsive flows. The malicious flows are identified which might cause congestion at the router.

AVQ [17] and YELLOW [18] used only input rate as the congestion indicator to demonstrate

that it performed well in terms of link utilisation and packet loss. In AVQ, the virtual queue is

updated, when a packet arrives at the real queue to indicate the new arrival of the packet. When

the virtual queue or buffer overflows, the packets are marked / dropped. The virtual capacity of

the link is modified such that total flow entering each link achieves a desired utilization of the

link. This is done by aggressive marking when the link utilization exceeds the desired utilization

and less aggressive when the link utilization is below the desired utilization.

REM used both input rate and queue length that illustrated very high utilization but very low

throughput compared to Queue based RED. This scheme stabilizes both the input rate around

link capacity and the queue around a small target independent of the number of users sharing the

link. BLUE used packet loss and link utilization as congestion indicator to give a very high

throughput and, high utilisation with low queue length stability.

3. PROPOSED ALGORITHM

The proposed algorithm is motivated by the need for a stable queue size and fair bandwidth

allocation irrespective of the varying traffic and congestion characteristics of the n flows. As

discussed in Introduction, some of the algorithms arrive at a stable queue size and some of them

bring in fairness when the shared link has n flows. The unstable queue size results in high queue

oscillation due to the parameter tuning problem in queue based AQMs. We are motivated to

identify a scheme that penalizes the unresponsive flows with the stable queue size.

The proposed algorithm - Flow based AVQCHOKe (FAVQCHOKe) involves both the

congestion factors - queue length and load factor including the flow information. As mentioned

in the previous section, queue length gives minimum information regarding the severity of

congestion. This proposed algorithm does consider the packet arrivals from the various sources,

which is also a very important measure for the congestion indication. Another problem that

exists with most AQMs is vulnerability to unresponsive flows resulting in dominating a routers

queue. FAVQCHOKe algorithm tries to remove this problem that exists in the other AQMs.

FAVQCHOKe in Fig. 2 uses a virtual queue and feeds the virtual queue sizes to the CHOKe

algorithm. In this proposed algorithm, the CHOKe algorithm reacts to the congestion level of

the virtual queue rather than the actual queue. The virtual queue is adjusted using the desired

link utilisation rather than the parameter using wq and maxp. This proposed algorithm adjusts the

incoming traffic according to the desired link utilization. As discussed in CHOKe, average

queue size and drop probability is calculated using wq and maxp respectively. This is removed in

this proposed algorithm. It also indicates two thresholds on the virtual queue, a minimum

threshold minth and a maximum threshold maxth. The virtual capacity of the virtual queue is

smoothened and calculated using the parameter alpha. alpha in Fig. 3 is a low-pass filter for

the calculation of actual capacity. The recommended value is 0.5 as discussed in [19]. The range

of processing is defined by the parameters: max_capacity and min_capacity. The value for the

max_capacity is chosen to be high to increase the capacity. The min_capacity can be chosen too

low as it does not affect the range of the actual capacity. Then the virtual capacity is updated

based on the max_capacity and min_capacity. The virtual queue size VQ is calculated based on

the serviced bytes. Then the queue size is calculated using the virtual queue size. The queue size

is compared with the two thresholds for every arriving packet.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

77

Figure 2 Pseudocode of FAVQCHOKe

Figure 3 Parameters in FAVQCHOKe

If queue size is less than minth, every arriving packet is queued. If queue size is greater than

maxth, every arriving packet is dropped. This results in queue size below maxth. When the queue

size is greater than minth, every arriving packet is compared with a randomly selected packet

from the virtual queue for their flow id. If they have the same flow id, both are dropped.

Otherwise the randomly selected packet is placed in the same position in the buffer. The

arriving packet is dropped with a probability depending on the virtual queue size.

Initialisation:

count = -1

last_measure = curr_time

prev_tx_bytes = bytes transmitted

For every packet arrival {

/* Calculate virtual queue size */

delta_time = curr_time – last measure

If delta_time > 1

 tx_bytes = bytes transmitted

 output_rate = (tx_bytes – prev_tx_bytes) * 8000 / delta_time

 prev_tx_bytes = tx_bytes

 /* Smoothen virtual capacity */

 v_capacity = alpha * output_rate * (1.0 – alpha) * v_capacity

 /* Update virtual capacity */

 v_capacity = MAX(MIN(max_capacity, v_capacity), min_capacity)

 serviced_bytes = v_capacity / 1000 / 8 * delta_time

 if VQ > serviced_bytes

 VQ = VQ – serviced_bytes

 Else

 VQ =0

 Q_time = curr_time

Last measure = curr_time

q_size = VQ /1500

if (q_size < minth)

 Forward the new packet

Else

Select randomly a packet from the queue for their flow id

Compare arriving packet with a randomly selected packet.

If they have the same flow id

 Drop both the packets

Else

 if (q_size ≥ maxth)
 Calculate the dropping probability pa

 Drop the packet with probability pa

 Else

 Drop the new packet

}

Variables:

pa : current packet-marking probability

pb : temporary marking probability

q_size : current virtual queue size

VQ : Virtual Queue size

Fixed parameters:

minth :minimum threshold for queue

maxth :maximum threshold for queue

min_capacity

max_capacity : Range of Processing capacity

alpha : loss-pass filter

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

78

To achieve good throughput and reasonable average queue length with RED based algorithm

requires careful tuning of both wq and maxp. Adapting maxp controls the relationship between

the average queue size and the packet drop probability and helps in maintains a steady average

queue size in the presence of varying traffic. In case if too small a value of wq, performance is in

terms of queuing delay and too large a value leads to decreased throughput. These problems do

not exist with this proposed algorithm as these two parameters are not used. This algorithm tries

to achieve good throughput, reasonable average queue length resulting in reduced packet drop

and minimised queuing delay. In addition, FAVQCHOKE is also able to isolate non-adaptive

greedy traffic more effectively.

FAVQCHOKe queue size ODE is modeled with M/D/1 assumption that brings out the main

characteristic of the FAVQCHOKe algorithm which is deterministic service time. While actual

queue size ODE is modeled with M/M/1 assumption for RED. The following ODEs are used to

model RED, AVQRED and FAVQCHOKe and the details are available in [19], [20], [21] and

[22].

Variables

 Parameters

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

79

To compute the marking probability, either q in case of RED or s when AVQRED or

FAVQCHOKe is given to the following equation:

,

0, 0 min

min
() max min max

max min

1, max

th

th
p th th

th th

th

x

x
p x x

x

 ≤ ≤

−

= ≤ ≤
−

 ≤

FAVQCHOKe considers input rate that provides early feedback of congestion resulting in good

link utilisation. In case of rate-based AQM, the queue length is less sensitive to the number of

connections. So queue length stability is provided by this algorithm. Routers with this AQM

will provide better protection than other AQMs for adaptive (fragile and robust) flows.

EXPERIMENTATION

In this section, we will use the packet-simulator ns-2 to simulate the FAVQQCHOKe algorithm.

In this simulation the network topology in Fig. 4 is with a single link of capacity 1Mbps that

drops packet according to the AQM algorithm. The congestion link is in between the two

routers R1 and R2. The link is shared by n TCP flows and n UDP flows. End hosts are

connected to the routers using a 10Mbps link. All links have a small propagation delay of 1ms

so that the delay introduced is by the buffer delay rather than the transmission delay. The TCP

flows are derived from FTP sessions which transmit large size files. The UDP hosts send

packets at a constant bit rate of 2 Mbps. In the simulation setup we consider 32 TCP flows and 1

UDP flow in the network. The minimum threshold minth in the FAVQQCHOKe scheme is set to

100 and the maximum threshold maxth to be twice the minth and the physical queue size is fixed

at 300 packets.

RED and other AQMs are unable to penalize unresponsive flows. As the packets dropped from

each flow over a period of time is almost the same. Consequently the misbehaving traffic like

UDP can take up a large % of the link bandwidth and starve out TCP friendly flows as in Fig 5.

FAVQCHOKe identifies and penalizes misbehaving flows effectively compared to the existing

AQMs as in Table 1 with the help of input rate and the flow information.

Fig.4 Network Topology

R

1
R

2

T

U
D

T

T

T

C

T

T

T

C

U

D

T

T

Source

s
Sinks

1 Mbps, 1ms

10 Mbps, 1ms 10 Mbps,1 ms

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

80

Fig 5 CBR and TCP Utilisation of other AQMs with FAVQCHOKe

Table 1 CBR and TCP Utilisation of other AQMs with FAVQCHOKe

In %

CBRutilisation TCPutilisation

VQ 96.9 1.2

REM 88.82 3.95

AutoREDwithRED 97.29 2.7

FAVQCHOKe 22 76

RED 97.16 2.35

CONCLUSIONS

A new rate-flow based AQM method, FAVQCHOKe is designed to improve the performance of

congested routers in IP networks. FAVQCHOKe requires the queue, load and flow information

to adapt the queue size with regard to the dynamics of traffic in routers. This algorithm

enhances the way virtual capacity is adapted to the varying traffic types in IP networks. This

AQM also protects adaptive flows from non-adaptive flows resulting in good service under

varying traffic. FAVQCHOKe algorithm considers the advantages of queue based, load based

AQMs and flow based algorithm to provide the QOS requirements of the IP networks. So the

algorithm improves the performance of AQM under heavy load and guarding the adaptive flows

from nonadaptive flows to achieve best QOS to all users by simulation.

REFERENCES

[1] S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance”,

IEEE/ACM Trans. Networking, vol. 1, pp. 397–413, Aug. 1993.

[2] S. Athuraliya, V. H. Li, S. H. Low, and Q. Yin, “REM: Active queue management,” IEEE

Network Mag., vol. 15, pp. 48–53, 2001

[3] Wu-chun Feng, Apu Kapadia , Sunil Thulasidasan,, “GREEN: Proactive Queue Management

over a Best-Effort Network”, IEEE GlobeCom, Taipei, Taiwan, November 2002

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

81

[4] S. Kunniyur, R.Srikant, “Analysis and design of an adaptive virtual queue (AVQ) algorithm for

active queue management”, Proceedings of ACM SIGCOMM, San Diego, 2001

[5] W. Feng, D.D. Kandlur, D. Saha, D. Saha, “The Blue active queue management algorithms”,

IEEE/ACM Transactions on Networking 2002

[6] C.Wang, J. Liu, B. Li, K. Sohraby, Y. H. Lou, “LRED: A Robust and Responsive AQM

Algorithm Using Packet Loss Ratio Measurement ”, January 2007, vol. 18 no. 1
[7] D.Lin, R.Morris, “Dynamics of Random Early Detection”. Proceedings of ACM SIGCOMM

October 1997.

[8] Pan R., Prabhakar.B, and Psounix.k, “CHOKe, a Stateless Active Queue Management Scheme

for Approximating Fair Bandwidth Allocation”, IEEE INFOCOMM, Feb 2000

[9] K.Chitra, G. Padmavathi, “Classification and performance of AQM-based Schemes”,

International Journal of Computer Science and Information Security, Vol 8, No. 1, 2010

[10] Bing Zheng, Mogammed Atiquzzaman, ”DSRED: An Active Queue Management Scheme for

Next Generation Networks” Proceedings of 25th IEEE conference on Local Computer Networks

LCN 2000,November 2000

[11] Jahoon Koo., Byunghun Song., Kwangsue Chung., Hyukjoon Lee., Hyunkook Kahng.,”MRED:

A New Approach To Random Early Detection” 15th International Conference on Information

Networking, February 2001

[12] S.Floyd., R.Gummadi,S.Shenkar and ICSI, ”Adaptive RED: An algorithm for Increasing the

robustness of RED’s active Queue Management”, Berkely,CA [online]

http:www.icir.org/floyd/red.html

[13] Wu-chang Feng, Dilip D. Kandlur, Debanjan Saha, Kang G. Shin, “Stochastic Fair Blue: A

Queue Management Algorithm for Enforcing Fairness”, IEEE INFOCOM 2001

[14] A. Kamra, S. Kapila, V. Khurana, V. Yadav, H.Saran, S.Juneja, R.Shorey, “SFED: a rate

control based based active queue management discipline”, IBM India Research Laboratory

Research report # 00A018, November 2000.

[15] A. Kamra., Huzur Saran., Sandeep Sen., Rajeev Shorey, “Fair Adaptive Bandwidth allocation: a

rate control based active queue management discipline”, Computer Networks, July 2003

[16] S. Chen, Zhen Zhou,, Brahim Bensaou., “Stochastic RED and its applications” ICC 2007

[17] S. Kunniyur, R.Srikant, “Analysis and design of an adaptive virtual queue (AVQ) algorithm for

active queue management”, Proceedings of ACM SIGCOMM, San Diego, 2001

[18] Chengnian Long., Bin Zhao., Xinping Guan., Jun Yang., ”The Yellow active queue management

algorithm”, Computer Networks, November 2004

[19] D. J. Byan, J.S. Baras, “A new rate based active queue management: Adaptive Virtual Queue

RED”, Fifth Annual Conference on Communication Networks and Services Research, 2007

[20] P. Kuusela, P. Lassila, J. Virtamo, P.Key, “Modeling RED with Idealised TCP sources”, 9
th

 IFIP

cinference on Performance Modelling ad evaluation of ATM & IP networks 2001

[21] P. E. Lassila, J. T.Virtamo, “Modeling the dynamics of the RED algorithm”, in Proceedings of

QofIS’00, pp 28-42, September 2000

[22] V.Misra, V.Gong, and D. Towsley, “A fluid-based analysis of a network of AQM routers

supporting TCP flows with an application to RED”, in Proceedings of ACM SIGCOMM,

August 2000.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.1, January 2011

82

Authors

K.Chitra received her B.Sc (C.Sc) from Women Christian College, Chennai

and M.Sc from Avinashilingam University for Women, Coimbatore in 1991

and 1993 respectively. And, she received her M.Phil degree in Computer

Science from Bharathiar University, Coimbatore in 2005. She is pursuing her

PhD at Avinashilingam University for Women. She is currently working as a

Lecturer in the Department of Computer Science, D.J.Academy for Managerial

Excellence, Coimbatore. She has 12 years of teaching experience. Her

research interests are Congestion Control in Networks and Network Security.

Dr. Padmavathi Ganapathi is the Professor and Head of the Department of

Computer Science, Avinashilingam University for Women, Coimbatore. She has

21 years of teaching experience and one year Industrial experience. Her areas of

interest include Network security and Cryptography and real time

communication. She has more than 80 publications at national and International

level. She is a life member of many professional organizations like CSI, ISTE,

AACE, WSEAS, ISCA, and UWA. She is currently the Principal Investigator

of 5 major projects under UGC and DRDO

