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Abstract 
 

Running parallel applications requires special and expensive processing resources to obtain the required 

results within a reasonable time. Before parallelizing serial applications, some analysis is recommended 

to be carried out to decide whether it will benefit from parallelization or not. In this paper we discuss the 

issue of speed up gained from parallelization using Message Passing Interface (MPI) to compromise 

between the overhead of parallelization cost and the gained parallel speed up. We also propose an 

experimental method to predict the speed up of  MPI applications. 
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1. INTRODUCTION  

Execution time reduction is one of the most challenging goals of parallel programming. 

Theoretically, adding extra processors to a processing system leads to a smaller execution time 

of a program compared with its execution time using a fewer processors system or a single 

machine[9]. Practically, when a program is executed in parallel, the hypothesis that the parallel 

program will run faster is not always satisfied. If the main goal of parallelizing a serial program 

is to obtain a faster run then the main criterion to be considered is the speedup gained from 

parallelization.  

Speed up is defined as the ratio of serial execution time to the parallel execution time [2], it is 

used to express how many times a parallel program works faster than its serial version used to 

solve the same problem. Many conflicting parameters such as parallel overhead, hardware 

architecture, programming paradigm, programming style may negatively affect the execution 

time of a parallel program making its execution time larger than that of the serial version and 

thus any parallelization gain will be lost. In order to obtain a faster parallel program, these 

conflicted parameters need to be well optimized.  

Various parallel programming paradigms can be used to write parallel programs such as 

OpenMP [7], Parallel Virtual Machine (PVM) [21], and Message Passing Interface (MPI) [23].  

MPI is the most commonly used paradigm in writing parallel programs since it can be 

employed not only within a single processing node but also across several connected ones. MPI 

enables the programmer to control both data distribution and process synchronization. MPICH2 

[22] is an MPI implementation that is working well on a wide range of  hardware platforms and 

also supports using of C/C++ and FORTRAN programming languages. 

In this paper we discuss some of the parameters that affect the parallel programs performance 

as a parallelization gain issue and also propose an experimental method to predict the speed up 

of MPI applications. We focus on the parallel programs written by MPI paradigm using 



International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.2, March 2011 

15 

 

MPICH2 implementation. This may be considered as a guide to decide before parallelizing 

serial applications, whether it will benefit from parallelization or not.  

The paper is organized as follows: section 2 includes the related work. Section 3 covers the 

MPI parallelization methodologies. In section 4, we present some different parameters that 

affect parallel programs performance. Section 5 focuses on the performance limitations of MPI 

programs. In section 6, we propose an experimental method to predict the speed up of MPI 

programs. 

 

2. RELATED WORK  

Reducing program execution time is one of the advantages that application programmers hope 

to achieve. Converting sequential programs into parallel ones is a costly duty; it requires special 

hardware and software equipments. It is preferable to virtually anticipate the speed up gained 

from parallelism before executing the application on a real parallel environment.  

Several systems have been developed for analyzing the performance of parallel programs. 

These systems are either model or trace based. 
Petrini et al. [8] introduced a model based system to predict the performance of programs on 

machines prior to their construction, and to identify the causes of performance variations from 

the predictions. These methods pick up the slight variations in a program execution that arise at 

runtime that cannot be modeled by examining the static code.   

Vampir [10] and Dimemas [18] are two trace based analysis tools that predict parallel programs 

performance. These models use a trace file and the user’s selection of network parameters that 

is used in the communication model to simulate the program execution.  
MPE (Multi-Processing Environment) library and jumpshot [1] that are distributed with 

MPICH [22] implementation provide graphical performance analysis for message passing 

interface programs.   

In this paper we introduce an experimental approach to predict the speed up of message passing 

programs. Our approach is based on executing the parallel program several times on a single 

physical processor with different numbers of virtual MPI processes. 

 

3. PARALLELIZATION WITH MPI  

In message passing paradigm, several separate processes used to complete the overall 

computation. In this scheme, many concurrent processes are created, and all of the data 

involved in the calculation is distributed among them using different ways. There is no shared 

data; when a process needs data held by another one, the second process must send it to the first 

process. An MPI message passing protocol describes the internal methods and policies an MPI 

implementation employs to accomplish message delivery. There are two common message 

passing protocols, eager and rendezvous [13], [17]. Eager protocol is an asynchronous protocol 

that allows a send operation to complete without acknowledgement from a matching receive. 

Rendezvous protocol is a synchronous protocol which requires an acknowledgement from a 

matching receive in order to complete the send operation. Since MPI enables the programmer to 

control both data distribution and process synchronization, problem decomposition and inter 

process communication represent two challenges in writing MPI parallel programs. Unless they 

are coded carefully, program performance will be negatively affected. 

 

3.1 Problem decomposition 
 

 

The first challenge in writing MPI programs is how to divide the concerned problem into 

smaller sub problems. Problem decomposition has two types, data parallelism and task 

parallelism.  



International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.2, March 2011 

16 

 

Data partitioning challenge concerns with the manner in which the data can be divided among 

the available processors. Data are divided into pieces of approximately the same size and then 

mapped to different processors or MPI processes depending on the process ID. Each 

processor/process then operates only on the portion of the data that is assigned to it. This 

strategy can be efficiently used in solving the iterative problems in which processors can 

operate independently on large portions of data, communicating only the much smaller data 

pieces at each iteration. The processes may need to communicate periodically in order to 

exchange data. This approach implies that the program needs to keep track of date pieces 

required by a process at any time instance.  

Task parallelism focuses on the computation that is to be performed rather than on the data 

manipulated by the computation. The problem is decomposed according to the work that must 

be done. Each task then performs a portion of the overall work.  

 

3.2 Processes Communication 
 

Inter process communication challenge concerns with the manner in which the running 

processes can be fully controlled. This implies that explicit send and receive data operations 

must be executed whenever data needs to move from one process to another. Two approaches 

can be used to implement data distribution and communication activities among processors, 

namely, “point-to-point communication” and “collective communication”. 

 

3.2.1 Point-to-Point Communication 
 

MPI point-to-point operations enable message passing between only two different MPI 

processes. In this scheme, one process performs the message send operation and the other one 

performs the matching receive operation. Send and receive operations work in two modes, 

blocking and non-blocking. In blocking mode, A blocking send routine will only return after it 

is safe to modify the application send buffer. This implies a handshaking with the receive 

process to confirm a safe send. A blocking receive only returns after the data has arrived and is 

ready for use by the program. In case of  non-blocking mode, both send and receive routines 

return immediately and do not wait for any communication events to complete, such as message 

copying from user memory to system buffer space or the actual arrival of message. In this 

mode, non-blocking operations request the MPI library to perform the operation when it is able. 

It is unsafe to modify the application buffer until the requested non-blocking operation was 

actually performed by the library. There are "wait" routines used to do this task. Non-blocking 

communications are primarily used to overlap computation with communication and exploit 

possible performance gains [20].  

 

3.2.2 Collective Communication 
 

In general, all data movement among processes can be accomplished using MPI send and 

receive routines. More over, a set of standard collective communication routines [20] are 

defined in MPI. Each collective communication routine has a parameter called a communicator, 

which identifies the group of participating processes. The collective communication routines 

allow data movement among all processors or just a specified set of processors. 

The function MPI_Barrier blocks the caller processes until all members in the communicator 

call the routine. The function MPI_Bcast broadcasts a message from the root process to all 

processes in the communicator. The routines MPI_Gather and MPI_Gatherv allow each process 

in the communicator to send data to one process, while MPI_Scatter allows one process to send 

a different message to each other process. The routines MPI_ Allgather and MPI_Allgatherv 

gather fixed and variable sized information, respectively, from all processes and puts the results 

to all processes. The function MPI_Alltoall is a generalization of MPI_Allgather, it allows 

different messages to be sent to different processes. The most general form of all-to-all 

communication is MPI_Alltoallv, which allows general many-to-many or one-to-many 
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communications to be performed by carefully selecting the input arguments. Finally, 

MPI_Reduce performs global reduction operations using an operation, such as sum, maximum 

or minimum, which is then sent to the root process [4].  

 

4. PERFORMANCE METRICS  

Three metrics are commonly used to measure the performance of MPI programs, execution 

time, speedup and efficiency. Several factors such as the number of processors used, the size of 

the data being processed and inter-processor communications influence parallel program's 

performance 

 

4.1 Execution time   
 

A parallel program's execution time is a common performance indicator. It is defined as the 

time elapsed from that instance at which the first processor starts program execution to that 

instance at which the last processor completes it. MPI enables the programmer to measure the 

execution time of his code or a part of it by calling the function MPI_wtime( ). This function 

call returns the wall clock time in seconds represented as double precision value on the calling 

processor. The part of code to be timed is enclosed between two timing calls, the difference 

between the two time values that generated from timing calls is the execution time of this part 

of code. The execution time T is given by: 

         idleCommComp TTTT ++=                (1) 

where CompT  is the computation time, CommT  is the communication time consumed by processor 

to send and/or receive messages, and idleT  is  the time a process spends waiting for data from 

other processors.  

       

4.2 Speed up and Efficiency 
 

Considering execution time only as a performance metric may be insufficient, specially if we 

need to study how the number of processors and problem size can affect a program 

performance.  

Speed up is another performance metric that takes processors number p, and problem size n, 

into account. In terms of problem size and processors number, the total parallel execution time 

of a program that solves an n size problem on p processors is given by: 

),(
)(

)( pn
p

n
nTparallel κ

ϕ
σ ++=                (2) 

Where )(nσ  is the program’s serial part execution time, )(nϕ is the program’s parallel part 

execution time, and ),( pnκ is the communication time. 

Speed up is the ratio of the time taken to solve a problem on a single processor to the time 

required to solve the same problem on a parallel computer with multiple processors [24]. The 

speedup metric for solving an n-size problem using P processors is expressed by:  

                   
parallel

serial

T

T
pn ≤),(ψ                           (3) 

Amdahl's Law [7] is one way of predicting the maximum achievable speedup for a given 

program. The law assumes that a fraction f of a program's execution time was infinitely 

parallelizable with no overhead, while the remaining fraction, 1-f, was totally serial [15]. 

According to this law, the speedup of n-size problem on p processors is governed by  
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≤ψ  , 10 ≤≤ f              (4) 
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Amdahl's law treats problem size as a constant and hence the execution time decreases as 

number of processors increases. Gustafson law [12] gives another formula for predicting 

maximum achievable speedup which is described by  

            spppn )1(),( −+≤ψ                    (5) 

where s is the fraction of total execution time spent in serial code. The two laws ignore the 

communication cost ; they overestimate the speed up value [3].  

Efficiency is the ratio of speed up obtained to the number of processors used [2]. It measures 

processors utilization. Parallel system efficiency of solving an n-size problem on P processors is 

given by    

1
),(

),(0 ≤≤≤
p

pn
pn

ψ
ε                         (6) 

 

5. PERFORMANCE LIMITATIONS OF MPI PROGRAMS 

Several factors affect the performance of parallel MPI programs. The application programmer 

have to adapt these variables to achieve the optimal performance.  
 

5.1 Effect of problem decomposition 
 

When dividing the data into processes the programmer have to pay attention to the amount of 

load being processed by each processor. Load balancing is the task of equally dividing work 

among the available processes. This is easy to be programmed when the same operations are 

being performed by all the processes on different pieces of data. Irregular load distribution 

leads to load imbalance which cause some processes to finish earlier than others. Load 

imbalance is one source of overhead, so all tasks should be mapped onto processes as evenly as 

possible so that all tasks complete in the shortest amount of time to minimize the processors’ 

idle time which lead to a faster execution as equation 1 indicates. 
 

5.2 Effect of communication pattern 
 

The cost of communication in the execution time can be measured in terms of latency and 

bandwidth. Latency is the time taken to set up the envelope for communication, where 

bandwidth is the actual speed of transmission. Regardless of the network hardware architecture 

the communication pattern affects the performance of MPI programs. Using collective 

communication pattern is more efficient than using of  point-to-point communication pattern 

[23], so the application programmer have to avoid using of the latter one as much as possible, 

specially for large size problems, for the following reasons: 

1. Although point-to-point pattern is a simple way of specifying communication in parallel 

programs; its use leads to large program size and complicated communication structure, 

which negatively affect the program performance. 

2. Send-receive does not offer fundamental performance advantages over collective 

operations. The latter offer efficient implementations without changing the applications. 

3. In practice, using the non-blocking versions of send-receive, MPI_Isend and MPI_Irecv, 

often lead to slower execution than the blocking version because of the extra 

synchronization. 

 

5.3 Effect of message size 
 

Message size can be a very significant contributor to MPI application performance. The effect 

of message size is also influenced by latency, communication pattern and number of processors 

used as described in equation 2 and equation 3. To achieve an optimal performance, the 

application programmer should take the following considerations into account:  



International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.2, March 2011 

19 

 

1. In most cases, increasing the message size will yield better performance. For 

communication intensive applications, the smaller message size reduces MPI application 

performance because latency badly affects short messages..  

2. for smaller message size with less number of processors, it is better to implement 

broadcasting in terms of non-blocking point-to-point communication whereas for other 

cases broadcasting using MPI_Bcast saves time significantly. 

5.4 Effect of message passing protocol 
 

MPI message passing protocols affect the program performance. The performance is 

implementation dependent. So the application programmer has to consider the following 

circumstances: 

1. In case of  eager protocol, the receiving process is responsible for buffering the message 

upon its arrival, specially if the receive operation has not been posted [13]. This operation 

is based upon the implementation's guarantee of a certain amount of available buffer space 

on the receive process. In this case, the application programmer has to pay attention to the 

following requirements to achieve a reasonable performance  

a. message sizes must be small. 

b. avoid using of intensive communication to decrease the time consumed by the 

receive process side to pull messages from the network and/or copy the data into 

buffer space.  

2. If the receiving process buffer space can't be allocated or the limits of the buffer are 

exceeded rendezvous protocol is used. In this protocol, sender process sends message 

envelope to destination process which receives and stores that envelope. When buffer 

space is available, destination process replies to sender that requested data can be sent, 

hence sender process receives reply from destination process and then sends data [17]. In 

this case, the application programmer has to pay attention to the following requirements to 

achieve a reasonable performance 

a. message sizes must be large enough to avoid the time consumed for handshaking 

between sender and receiver.  

b. Using non-blocking sends with waits/tests to prevent program from blocking while 

waiting for  a receiving confirmation from receive process. 

 

5.5 Effect of processors’ number 
 

Adding extra processors to the system reduces the computation time but increases the 

communication time as described in equation 3. The increase in communication time may be 

larger than the decrease in computation time which leads to a dramatic decreasing of  

performance. Equation 4 assures that the speedup is usually less than the number of processors. 

In practice, speed up does not increase linearly as the number of  processors increases but tends 

to saturate and accordingly the efficiency drops as the number of processors increases [12].  

The effect of processor’s number is also influenced by the problem size. Speedup and 

efficiency increase as the problem size increases on the same number of processors. If 

increasing the number of processors reduces efficiency, and increasing the problem size 

increases efficiency, the application programmer should be able to keep efficiency constant by 

increasing both simultaneously. 

 

5.6 Effect of processes’ number 
 

MPI implementations allow the programmer to run his application using arbitrary number of 

processes and processors. The number of processes may be less than, equal to, or greater than 

the number of processors. It is common to develop parallel applications with a small number of 

processes on a single processor. As the application becomes more fully developed and stable, 
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larger testing runs can be conducted on actual clusters to check for scalability and performance 

bottlenecks. 

The number of processes per processor affects the application performance so the application 

programmer has to be aware of the following considerations: 

1. In general, maximum performance is achieved when each process has its own processor. 

When the number of processes is less than or equal to the number of processors, the appli-

cation will run at its peak performance. Since the total system is either underutilized (there 

are unused processors) or fully utilized (all processors are being used), the application is 

not hindered by several parameters such as context switching, cache misses, or virtual 

memory thrashing caused by other local processes [14]. 

2. running too many processes, the processors will thrash, continually trying to give each 

process its fair share of run time.  

3. running too few processes may not enable the programmer to run meaningful data through 

his application, or may not cause error conditions that occur with larger numbers of 

processes. 
 

 

6. EXPERIMENTAL SPEED UP PREDICTION 

In some cases, the predicted performance may differs from that achieved experimentally. In this 

section we present an experimental method to predict the speed up of MPI applications as a 

performance measure. The proposed method is summarized in the following steps: 

 

1. Execute the serial version of  MPI application on a single processor machine. 

2. Record the serial execution time, sT . 

3. Execute the parallel MPI application on the same single processor machine repeatedly 

using arbitrary number of MPI processes, 1,2,3,…,n. 

4. Record the parallel execution times, nTpTpTp ,....,, 21 , for each run. 

5. Graph the obtained results as a two dimensional graph. The X-axis for MPI processes 

number and the Y-axis for the parallel execution times, nTpTpTp ,....,, 21 . 

6. If the parallel execution time is rapidly increases as the number of MPI processes 

increases, this implies that the MPI application will exhibit a poor speed up if it is run in 

parallel on multiple physical processors. 

7. If the parallel execution time remains constant or  slowly increases as the number of MPI 

processes increases, this implies that the MPI application will exhibit a linear speed up if it 

is run in parallel on multiple physical processors. 

 

We applied the proposed method on two MPI applications. The first one solves the concurrent 

wave equation and  the second finds the number of primes and also the largest prime number 

within an interval of integers. The two applications are also executed in parallel on multiple 

physical processors. The recorded serial execution time, sT  for both applications is used to find 

out their experimental speed up to be compared with the predicted ones. 

 

6.1 Experimental setup 
 

Since modern parallel machines are very costly and not easy to be access, we used an 

experimental system consists of 8 DELL machines. Each of these machines consists of  Intel 

i386 based  P4-1.6GHz processor with 512MB memory running on Microsoft Windows XP 

Professional Service Pack 2. These machines are connected via a Fast Ethernet 100Mbps 

switch. These machines are not as powerful as the recent cluster machines in terms of the 

hardware and  performance but they can reasonably perform for testing purposes and also for 
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solving small and middle size parallel problems. The experiments programs was written in 

Fortran 90 using MPICH2 version 1.0.6p1, as a message passing implementation. 

 

6.2 Experimented Problems  

 

6.2.1 Problem 1: Concurrent wave equation 
 

The concurrent wave equation [6] is the partial differential equation that describes the 

propagation of waves. The one-dimensional wave equation that represents a flexible vibrating 

string stretched between two points on the x-axis is expressed by 
2

2
2

2

2

x

u
c

t

u

∂

∂
=

∂

∂
, where, c is 

the speed of the wave’s propagation and ),( tpuu
v

=  describes the wave’s amplitude at position 

p
v

 at time t . 

The numerical solution of this equation can be given by :  

 

u(i,t+1) = (2.0 * u(i,t)) - u(i,t-1) + (c *(u(i-1,t)-(2.0*u(i,t))+u(i+1,t)))         (8) 

 

where i is the position index along the x axis at the time t. Equation 8 implies that the amplitude 

at each position index i and time t+1 depends on the previous time steps (t, t-1) and neighboring 

points (i-1, i+1).This means that the parallel solution requires interprocess communication. The 

parallel solution is based on  dividing the vibrating string into points. Each processor is 

repeatedly responsible for updating the amplitude of a number of points over time. At each 

iteration, each processor exchanges boundary points with their nearest neighbors. The parallel 

algorithm that solve this equation is summarized as follows:  

 

 

  1. Initialize MPI environment. 

  2. Determine number of MPI processes and identities. 

  3. Determine left and right neighbors. 

  4. If  Process_id=master then  

  5.      obtains input values from user.  

  6.      broadcast time advance parameter, total points and time steps  

  7. else 

  8.       receive input values from master  

  9. endif  

10.calculate initial values based on sine curve 

11.  calculate new values using wave equation 

12.  update their points a specified number of times   

13.  update values for each point along string 

14.  exchange data with "left-hand" neighbor 

15.  exchange data with "right-hand" neighbor 

16.  If  Process_id <> master then  

17.       send the updated values to the master  

18.   else 

19.       receives results from workers and prints 

20.   endif 

21. Finalize MPI environment 

22. End  

Figure 1. Wave equation parallel algorithm solution 

 

 



International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.2, March 2011 

22 

 

6.2.2 Problem 2: Prime numbers generator  
 

There is no general "formula" for generating prime numbers. However there are some 

approximations and theorems predicting the number of prime numbers less than a particular 

upper bound [11]. Brute-force algorithm [5], shown in figure 2, which is also called “naïve” 

algorithm can be used in primality test .  
 

  1. Naïve (n:integer,prime:logical) 

  2. /*  Assume first four primes are counted  

  3.  if n > 10 then   

  4.     squareroot = int( n ) 

  5.     do i=3,squareroot,2 

  6.            if n % i = 0 then 

  7.               prime = false 

  8.               return 

  9.            endif 

10.     enddo 

11.     prime = true 

12.     return  

13. else  

14.     prime =false 

15.     return 

16.  endif 

17. End naïve 

Figure 2. Naïve and Sieves algorithm 
 

The simplest primality test for a given number n, is to check whether any integer m from 2 to 

n − 1 divides n. If n is divisible by any m then n is composite, otherwise it is prime. Rather than 

testing all m up to n − 1 ,  “naïve and sieves” algorithm [16] tests only  m up to n ,  if n is 

composite then it can be factored into two values, at least one of which must be less than or 

equal to n . The algorithm efficiency can also be improved by skipping all even m except 2. 

A pseudo serial version and also the corresponding MPI parallel version that use this algorithm 

to find the number of primes and also the largest prime number within an interval of integers 

are shown in figure 3 and figure 4 respectively.  

 

 

  1. Determine the upper LIMIT of integers interval. 

  2. prime_counter = 4 

  3. do n =11, LIMIT, 2 

  4.         call naïve(n, prime) 

  5.            if  (prime) then 

  6.                   prime_counter = prime_counter + 1  

  7.                   prime_value = n 

  8.            endif 

  9.    Enddo 

10. print  prime_value, prime_counter  
11. End 

 

Figure 3. Serial primes generator pseudo code. 
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 1. Initialize MPI environment. 

 2. Determine number of MPI processes, ntasks, and Identities, rank. 

 3. Determine the upper LIMIT of integers interval. 

 4.  mystart = (rank*2) + 1; stride = ntasks*2 

 5. prime_counter = 0; prime_value = 0 

 6. do n=mystart, LIMIT, stride 

 7.         call naïve(n, prime) 

 8.         if  (prime) then 

 9.                prime_counter = prime_counter + 1  

10.               prime_value = n 

11.        endif 

12. enddo 

13. Reduce(pc,pcsum,MPI_SUM,master) 

14. Reduce(prime_value, maxprime, MPI_MAX , master) 

15. If  Process_id=master then 

16.      print  maxprime,pcsum-4 

17.  endif  

18. Finalize MPI environment 

19. End 

 

Figure 4. Parallel MPI primes generator pseudo code. 
 

6.3 Predicted versus experimental results  
 

The parallel MPI applications that solve both wave equation and prime numbers generator 

problems were executed on the hardware architecture described in section 5.1. Serial execution 

time , parallel execution time on a single processor using multiple number of processes and also 

parallel execution time on multiple processors for both problems are shown in table 1. 
 

Table 1. Serial and parallel execution times for  

Wave Equation and Primes Generator  

Problem 

Serial 

execution 

time 

Parallel execution 

Single physical 

processor 

Multiple physical 

processors 

MPI 

processes 

Execution 

time 

Physical 

processors 

Execution 

time 

Problem 1 

Wave 

Equation 

0.80216 

1 1.3561 1   1.3561 

2 3.6942 2   4.0952 

3 6.3833 4   1.2112 

4 9.4002 8 11.4501 

5 12.5629   

6 15.301   

7 18.1778   

8 21.5001   

9 24.1733   

10 27.3349   

Problem 2 

Primes 

Generator 

55.625 

2 55.5887 1 57.625 

4 55.464 2 32.6704 

8 54.9653 4 17.38331 

10 55.5158 6 11.58861 

16 55.1428 8   8.2103 

20 55.9213   
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Applying the proposed speed up prediction method to wave equation problem using 10 MPI 

processes on a single physical processor we predicted that the application will exhibit a poor 

speed up if it is executed in parallel using multiple physical processors.  

Our prediction is based on that the execution time is rapidly increases as the number of MPI 

processes as shown in figure 5. To prove that our prediction was true, we executed the same 

MPI code on 8 physical processors. Knowing the execution time of the serial code version, the 

experimental speed up was calculated. Figure 6 shows that the maximum speed up achieved by 

8 physical processors was only 0.66228534 and hence our prediction was true. 
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Figure 5. Execution time using 10 processes on a single CPU  for problem 1 
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Figure 6. Experimental speed up for problem 1 

 

To be unbiased, we also re-executed the same parallel code using different number of processes 

on the same 8 physical processors. Figure 7 shows that the execution time was negatively 

affected as the number of MPI processes increases except in case of running a small number of 

MPI processes using 8 physical processors. The experimental results shows that there is no 

significant speed up improvement as shown in figure 8. This also proves that our prediction was 

true. 

Applying the proposed method to prime numbers generator problem using 20 MPI processes on 

a single physical processor, we predicted that the application will exhibit a linear speed up if it 

is executed in parallel using multiple physical processors.  
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Figure 7.   Effect of  processes number on execution time using 8 CPUs  for problem1 
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Figure 8. Experimental vs. ideal speed up for problem 1 

 
Our prediction is based on that the execution time is slowly increases or seems to be constant as 

the number of MPI processes as shown in figure 9. Running the same MPI code on 8 physical 

processors achieved a linear speed up as shown figure 10 and hence our prediction was also 

true. 

 

0

15

30

45

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of  Processes

E
x

e
x

c
u

tio
n

 T
im

e
 (

s
e

c
o

n
d

s
)

 
 

Figure 9. Execution time using 20 processes on a single CPU  for problem 2 
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Figure 10. Experimental speed up for problem2 

 

7. CONCLUSION 

Concerning the issue of speed up gained from parallelization, the decision making to parallelize 

or not to parallelize the serial application is not a trivial task.  

In this paper we studied the conflicting parameters that affect the parallel programs 

performance, specially MPI applications, showing some recommendations to be followed to 

achieve a reasonable performance. The problem nature is one of the most important factors that 

affect the parallel program speed up. If The problem can be divided into independent subparts 

and no communication is required, except to split up the problem and combine the final results, 

then there is a great parallelization opportunity, and the resultant parallel program will exhibit a 

linear speed up. If the same instruction set are applied to all data and processes communication 

is synchronous , speed up will be directly proportional to the computation -communication 

ratio. If there are different instruction sets to be applied to all data to solve a specific problem 

and the inter-process communication is asynchronous, this will reduce the parallelization 

opportunity. Speed up of the resultant parallel application will be negatively affected with extra 

communication overhead. 

We also proposed an experimental method that aids in speed up prediction. The proposed 

method is based on running the MPI applications with several MPI processes using only one 

single processor machine. It gives an indication about the speed up behavior of MPI 

applications without using extra parallel hardware facilities, so it is recommended to be applied 

to MPI applications before running them on real powerful cluster machines or an expensive 

parallel systems. The proposed method was applied to predict the speed up of MPI applications 

that solve wave equation and prime numbers generator problems. The predicted speed up was 

as the same as experimental speed up achieved when using multiple physical processors for 

both applications.  
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