
International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.2, March 2011

DOI : 10.5121/ijdps.2011.2202 14

TO PARALLELIZE OR NOT TO

PARALLELIZE, SPEED UP ISSUE

Alaa Ismail El-Nashar

Faculty of Science, Computer Science Department, Minia University, Egypt

Assistant professor, Department of Computer Science, College of Computers and

Information Technology, Taif University, Saudi Arabia

email: nashar_al@yahoo.com

Abstract

Running parallel applications requires special and expensive processing resources to obtain the required

results within a reasonable time. Before parallelizing serial applications, some analysis is recommended

to be carried out to decide whether it will benefit from parallelization or not. In this paper we discuss the

issue of speed up gained from parallelization using Message Passing Interface (MPI) to compromise

between the overhead of parallelization cost and the gained parallel speed up. We also propose an

experimental method to predict the speed up of MPI applications.

Key words

Parallel programming, Message Passing Interface, Speed up

1. INTRODUCTION

Execution time reduction is one of the most challenging goals of parallel programming.

Theoretically, adding extra processors to a processing system leads to a smaller execution time

of a program compared with its execution time using a fewer processors system or a single

machine[9]. Practically, when a program is executed in parallel, the hypothesis that the parallel

program will run faster is not always satisfied. If the main goal of parallelizing a serial program

is to obtain a faster run then the main criterion to be considered is the speedup gained from

parallelization.

Speed up is defined as the ratio of serial execution time to the parallel execution time [2], it is

used to express how many times a parallel program works faster than its serial version used to

solve the same problem. Many conflicting parameters such as parallel overhead, hardware

architecture, programming paradigm, programming style may negatively affect the execution

time of a parallel program making its execution time larger than that of the serial version and

thus any parallelization gain will be lost. In order to obtain a faster parallel program, these

conflicted parameters need to be well optimized.

Various parallel programming paradigms can be used to write parallel programs such as

OpenMP [7], Parallel Virtual Machine (PVM) [21], and Message Passing Interface (MPI) [23].

MPI is the most commonly used paradigm in writing parallel programs since it can be

employed not only within a single processing node but also across several connected ones. MPI

enables the programmer to control both data distribution and process synchronization. MPICH2

[22] is an MPI implementation that is working well on a wide range of hardware platforms and

also supports using of C/C++ and FORTRAN programming languages.

In this paper we discuss some of the parameters that affect the parallel programs performance

as a parallelization gain issue and also propose an experimental method to predict the speed up

of MPI applications. We focus on the parallel programs written by MPI paradigm using

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.2, March 2011

15

MPICH2 implementation. This may be considered as a guide to decide before parallelizing

serial applications, whether it will benefit from parallelization or not.

The paper is organized as follows: section 2 includes the related work. Section 3 covers the

MPI parallelization methodologies. In section 4, we present some different parameters that

affect parallel programs performance. Section 5 focuses on the performance limitations of MPI

programs. In section 6, we propose an experimental method to predict the speed up of MPI

programs.

2. RELATED WORK

Reducing program execution time is one of the advantages that application programmers hope

to achieve. Converting sequential programs into parallel ones is a costly duty; it requires special

hardware and software equipments. It is preferable to virtually anticipate the speed up gained

from parallelism before executing the application on a real parallel environment.

Several systems have been developed for analyzing the performance of parallel programs.

These systems are either model or trace based.
Petrini et al. [8] introduced a model based system to predict the performance of programs on

machines prior to their construction, and to identify the causes of performance variations from

the predictions. These methods pick up the slight variations in a program execution that arise at

runtime that cannot be modeled by examining the static code.

Vampir [10] and Dimemas [18] are two trace based analysis tools that predict parallel programs

performance. These models use a trace file and the user’s selection of network parameters that

is used in the communication model to simulate the program execution.
MPE (Multi-Processing Environment) library and jumpshot [1] that are distributed with

MPICH [22] implementation provide graphical performance analysis for message passing

interface programs.

In this paper we introduce an experimental approach to predict the speed up of message passing

programs. Our approach is based on executing the parallel program several times on a single

physical processor with different numbers of virtual MPI processes.

3. PARALLELIZATION WITH MPI

In message passing paradigm, several separate processes used to complete the overall

computation. In this scheme, many concurrent processes are created, and all of the data

involved in the calculation is distributed among them using different ways. There is no shared

data; when a process needs data held by another one, the second process must send it to the first

process. An MPI message passing protocol describes the internal methods and policies an MPI

implementation employs to accomplish message delivery. There are two common message

passing protocols, eager and rendezvous [13], [17]. Eager protocol is an asynchronous protocol

that allows a send operation to complete without acknowledgement from a matching receive.

Rendezvous protocol is a synchronous protocol which requires an acknowledgement from a

matching receive in order to complete the send operation. Since MPI enables the programmer to

control both data distribution and process synchronization, problem decomposition and inter

process communication represent two challenges in writing MPI parallel programs. Unless they

are coded carefully, program performance will be negatively affected.

3.1 Problem decomposition

The first challenge in writing MPI programs is how to divide the concerned problem into

smaller sub problems. Problem decomposition has two types, data parallelism and task

parallelism.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.2, March 2011

16

Data partitioning challenge concerns with the manner in which the data can be divided among

the available processors. Data are divided into pieces of approximately the same size and then

mapped to different processors or MPI processes depending on the process ID. Each

processor/process then operates only on the portion of the data that is assigned to it. This

strategy can be efficiently used in solving the iterative problems in which processors can

operate independently on large portions of data, communicating only the much smaller data

pieces at each iteration. The processes may need to communicate periodically in order to

exchange data. This approach implies that the program needs to keep track of date pieces

required by a process at any time instance.

Task parallelism focuses on the computation that is to be performed rather than on the data

manipulated by the computation. The problem is decomposed according to the work that must

be done. Each task then performs a portion of the overall work.

3.2 Processes Communication

Inter process communication challenge concerns with the manner in which the running

processes can be fully controlled. This implies that explicit send and receive data operations

must be executed whenever data needs to move from one process to another. Two approaches

can be used to implement data distribution and communication activities among processors,

namely, “point-to-point communication” and “collective communication”.

3.2.1 Point-to-Point Communication

MPI point-to-point operations enable message passing between only two different MPI

processes. In this scheme, one process performs the message send operation and the other one

performs the matching receive operation. Send and receive operations work in two modes,

blocking and non-blocking. In blocking mode, A blocking send routine will only return after it

is safe to modify the application send buffer. This implies a handshaking with the receive

process to confirm a safe send. A blocking receive only returns after the data has arrived and is

ready for use by the program. In case of non-blocking mode, both send and receive routines

return immediately and do not wait for any communication events to complete, such as message

copying from user memory to system buffer space or the actual arrival of message. In this

mode, non-blocking operations request the MPI library to perform the operation when it is able.

It is unsafe to modify the application buffer until the requested non-blocking operation was

actually performed by the library. There are "wait" routines used to do this task. Non-blocking

communications are primarily used to overlap computation with communication and exploit

possible performance gains [20].

3.2.2 Collective Communication

In general, all data movement among processes can be accomplished using MPI send and

receive routines. More over, a set of standard collective communication routines [20] are

defined in MPI. Each collective communication routine has a parameter called a communicator,

which identifies the group of participating processes. The collective communication routines

allow data movement among all processors or just a specified set of processors.

The function MPI_Barrier blocks the caller processes until all members in the communicator

call the routine. The function MPI_Bcast broadcasts a message from the root process to all

processes in the communicator. The routines MPI_Gather and MPI_Gatherv allow each process

in the communicator to send data to one process, while MPI_Scatter allows one process to send

a different message to each other process. The routines MPI_ Allgather and MPI_Allgatherv

gather fixed and variable sized information, respectively, from all processes and puts the results

to all processes. The function MPI_Alltoall is a generalization of MPI_Allgather, it allows

different messages to be sent to different processes. The most general form of all-to-all

communication is MPI_Alltoallv, which allows general many-to-many or one-to-many

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.2, March 2011

17

communications to be performed by carefully selecting the input arguments. Finally,

MPI_Reduce performs global reduction operations using an operation, such as sum, maximum

or minimum, which is then sent to the root process [4].

4. PERFORMANCE METRICS

Three metrics are commonly used to measure the performance of MPI programs, execution

time, speedup and efficiency. Several factors such as the number of processors used, the size of

the data being processed and inter-processor communications influence parallel program's

performance

4.1 Execution time

A parallel program's execution time is a common performance indicator. It is defined as the

time elapsed from that instance at which the first processor starts program execution to that

instance at which the last processor completes it. MPI enables the programmer to measure the

execution time of his code or a part of it by calling the function MPI_wtime(). This function

call returns the wall clock time in seconds represented as double precision value on the calling

processor. The part of code to be timed is enclosed between two timing calls, the difference

between the two time values that generated from timing calls is the execution time of this part

of code. The execution time T is given by:

 idleCommComp TTTT ++= (1)

where CompT is the computation time, CommT is the communication time consumed by processor

to send and/or receive messages, and idleT is the time a process spends waiting for data from

other processors.

4.2 Speed up and Efficiency

Considering execution time only as a performance metric may be insufficient, specially if we

need to study how the number of processors and problem size can affect a program

performance.

Speed up is another performance metric that takes processors number p, and problem size n,

into account. In terms of problem size and processors number, the total parallel execution time

of a program that solves an n size problem on p processors is given by:

),(
)(

)(pn
p

n
nTparallel κ

ϕ
σ ++= (2)

Where)(nσ is the program’s serial part execution time,)(nϕ is the program’s parallel part

execution time, and),(pnκ is the communication time.

Speed up is the ratio of the time taken to solve a problem on a single processor to the time

required to solve the same problem on a parallel computer with multiple processors [24]. The

speedup metric for solving an n-size problem using P processors is expressed by:

parallel

serial

T

T
pn ≤),(ψ (3)

Amdahl's Law [7] is one way of predicting the maximum achievable speedup for a given

program. The law assumes that a fraction f of a program's execution time was infinitely

parallelizable with no overhead, while the remaining fraction, 1-f, was totally serial [15].

According to this law, the speedup of n-size problem on p processors is governed by

pff
pn

/)1(

1
),(

−+
≤ψ , 10 ≤≤ f (4)

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.2, March 2011

18

Amdahl's law treats problem size as a constant and hence the execution time decreases as

number of processors increases. Gustafson law [12] gives another formula for predicting

maximum achievable speedup which is described by

 spppn)1(),(−+≤ψ (5)

where s is the fraction of total execution time spent in serial code. The two laws ignore the

communication cost ; they overestimate the speed up value [3].

Efficiency is the ratio of speed up obtained to the number of processors used [2]. It measures

processors utilization. Parallel system efficiency of solving an n-size problem on P processors is

given by

1
),(

),(0 ≤≤≤
p

pn
pn

ψ
ε (6)

5. PERFORMANCE LIMITATIONS OF MPI PROGRAMS

Several factors affect the performance of parallel MPI programs. The application programmer

have to adapt these variables to achieve the optimal performance.

5.1 Effect of problem decomposition

When dividing the data into processes the programmer have to pay attention to the amount of

load being processed by each processor. Load balancing is the task of equally dividing work

among the available processes. This is easy to be programmed when the same operations are

being performed by all the processes on different pieces of data. Irregular load distribution

leads to load imbalance which cause some processes to finish earlier than others. Load

imbalance is one source of overhead, so all tasks should be mapped onto processes as evenly as

possible so that all tasks complete in the shortest amount of time to minimize the processors’

idle time which lead to a faster execution as equation 1 indicates.

5.2 Effect of communication pattern

The cost of communication in the execution time can be measured in terms of latency and

bandwidth. Latency is the time taken to set up the envelope for communication, where

bandwidth is the actual speed of transmission. Regardless of the network hardware architecture

the communication pattern affects the performance of MPI programs. Using collective

communication pattern is more efficient than using of point-to-point communication pattern

[23], so the application programmer have to avoid using of the latter one as much as possible,

specially for large size problems, for the following reasons:

1. Although point-to-point pattern is a simple way of specifying communication in parallel

programs; its use leads to large program size and complicated communication structure,

which negatively affect the program performance.

2. Send-receive does not offer fundamental performance advantages over collective

operations. The latter offer efficient implementations without changing the applications.

3. In practice, using the non-blocking versions of send-receive, MPI_Isend and MPI_Irecv,

often lead to slower execution than the blocking version because of the extra

synchronization.

5.3 Effect of message size

Message size can be a very significant contributor to MPI application performance. The effect

of message size is also influenced by latency, communication pattern and number of processors

used as described in equation 2 and equation 3. To achieve an optimal performance, the

application programmer should take the following considerations into account:

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.2, March 2011

19

1. In most cases, increasing the message size will yield better performance. For

communication intensive applications, the smaller message size reduces MPI application

performance because latency badly affects short messages..

2. for smaller message size with less number of processors, it is better to implement

broadcasting in terms of non-blocking point-to-point communication whereas for other

cases broadcasting using MPI_Bcast saves time significantly.

5.4 Effect of message passing protocol

MPI message passing protocols affect the program performance. The performance is

implementation dependent. So the application programmer has to consider the following

circumstances:

1. In case of eager protocol, the receiving process is responsible for buffering the message

upon its arrival, specially if the receive operation has not been posted [13]. This operation

is based upon the implementation's guarantee of a certain amount of available buffer space

on the receive process. In this case, the application programmer has to pay attention to the

following requirements to achieve a reasonable performance

a. message sizes must be small.

b. avoid using of intensive communication to decrease the time consumed by the

receive process side to pull messages from the network and/or copy the data into

buffer space.

2. If the receiving process buffer space can't be allocated or the limits of the buffer are

exceeded rendezvous protocol is used. In this protocol, sender process sends message

envelope to destination process which receives and stores that envelope. When buffer

space is available, destination process replies to sender that requested data can be sent,

hence sender process receives reply from destination process and then sends data [17]. In

this case, the application programmer has to pay attention to the following requirements to

achieve a reasonable performance

a. message sizes must be large enough to avoid the time consumed for handshaking

between sender and receiver.

b. Using non-blocking sends with waits/tests to prevent program from blocking while

waiting for a receiving confirmation from receive process.

5.5 Effect of processors’ number

Adding extra processors to the system reduces the computation time but increases the

communication time as described in equation 3. The increase in communication time may be

larger than the decrease in computation time which leads to a dramatic decreasing of

performance. Equation 4 assures that the speedup is usually less than the number of processors.

In practice, speed up does not increase linearly as the number of processors increases but tends

to saturate and accordingly the efficiency drops as the number of processors increases [12].

The effect of processor’s number is also influenced by the problem size. Speedup and

efficiency increase as the problem size increases on the same number of processors. If

increasing the number of processors reduces efficiency, and increasing the problem size

increases efficiency, the application programmer should be able to keep efficiency constant by

increasing both simultaneously.

5.6 Effect of processes’ number

MPI implementations allow the programmer to run his application using arbitrary number of

processes and processors. The number of processes may be less than, equal to, or greater than

the number of processors. It is common to develop parallel applications with a small number of

processes on a single processor. As the application becomes more fully developed and stable,

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.2, March 2011

20

larger testing runs can be conducted on actual clusters to check for scalability and performance

bottlenecks.

The number of processes per processor affects the application performance so the application

programmer has to be aware of the following considerations:

1. In general, maximum performance is achieved when each process has its own processor.

When the number of processes is less than or equal to the number of processors, the appli-

cation will run at its peak performance. Since the total system is either underutilized (there

are unused processors) or fully utilized (all processors are being used), the application is

not hindered by several parameters such as context switching, cache misses, or virtual

memory thrashing caused by other local processes [14].

2. running too many processes, the processors will thrash, continually trying to give each

process its fair share of run time.

3. running too few processes may not enable the programmer to run meaningful data through

his application, or may not cause error conditions that occur with larger numbers of

processes.

6. EXPERIMENTAL SPEED UP PREDICTION

In some cases, the predicted performance may differs from that achieved experimentally. In this

section we present an experimental method to predict the speed up of MPI applications as a

performance measure. The proposed method is summarized in the following steps:

1. Execute the serial version of MPI application on a single processor machine.

2. Record the serial execution time, sT .

3. Execute the parallel MPI application on the same single processor machine repeatedly

using arbitrary number of MPI processes, 1,2,3,…,n.

4. Record the parallel execution times, nTpTpTp ,....,, 21 , for each run.

5. Graph the obtained results as a two dimensional graph. The X-axis for MPI processes

number and the Y-axis for the parallel execution times, nTpTpTp ,....,, 21 .

6. If the parallel execution time is rapidly increases as the number of MPI processes

increases, this implies that the MPI application will exhibit a poor speed up if it is run in

parallel on multiple physical processors.

7. If the parallel execution time remains constant or slowly increases as the number of MPI

processes increases, this implies that the MPI application will exhibit a linear speed up if it

is run in parallel on multiple physical processors.

We applied the proposed method on two MPI applications. The first one solves the concurrent

wave equation and the second finds the number of primes and also the largest prime number

within an interval of integers. The two applications are also executed in parallel on multiple

physical processors. The recorded serial execution time, sT for both applications is used to find

out their experimental speed up to be compared with the predicted ones.

6.1 Experimental setup

Since modern parallel machines are very costly and not easy to be access, we used an

experimental system consists of 8 DELL machines. Each of these machines consists of Intel

i386 based P4-1.6GHz processor with 512MB memory running on Microsoft Windows XP

Professional Service Pack 2. These machines are connected via a Fast Ethernet 100Mbps

switch. These machines are not as powerful as the recent cluster machines in terms of the

hardware and performance but they can reasonably perform for testing purposes and also for

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.2, March 2011

21

solving small and middle size parallel problems. The experiments programs was written in

Fortran 90 using MPICH2 version 1.0.6p1, as a message passing implementation.

6.2 Experimented Problems

6.2.1 Problem 1: Concurrent wave equation

The concurrent wave equation [6] is the partial differential equation that describes the

propagation of waves. The one-dimensional wave equation that represents a flexible vibrating

string stretched between two points on the x-axis is expressed by
2

2
2

2

2

x

u
c

t

u

∂

∂
=

∂

∂
, where, c is

the speed of the wave’s propagation and),(tpuu
v

= describes the wave’s amplitude at position

p
v

 at time t .

The numerical solution of this equation can be given by :

u(i,t+1) = (2.0 * u(i,t)) - u(i,t-1) + (c *(u(i-1,t)-(2.0*u(i,t))+u(i+1,t))) (8)

where i is the position index along the x axis at the time t. Equation 8 implies that the amplitude

at each position index i and time t+1 depends on the previous time steps (t, t-1) and neighboring

points (i-1, i+1).This means that the parallel solution requires interprocess communication. The

parallel solution is based on dividing the vibrating string into points. Each processor is

repeatedly responsible for updating the amplitude of a number of points over time. At each

iteration, each processor exchanges boundary points with their nearest neighbors. The parallel

algorithm that solve this equation is summarized as follows:

 1. Initialize MPI environment.

 2. Determine number of MPI processes and identities.

 3. Determine left and right neighbors.

 4. If Process_id=master then

 5. obtains input values from user.

 6. broadcast time advance parameter, total points and time steps

 7. else

 8. receive input values from master

 9. endif

10.calculate initial values based on sine curve

11. calculate new values using wave equation

12. update their points a specified number of times

13. update values for each point along string

14. exchange data with "left-hand" neighbor

15. exchange data with "right-hand" neighbor

16. If Process_id <> master then

17. send the updated values to the master

18. else

19. receives results from workers and prints

20. endif

21. Finalize MPI environment

22. End

Figure 1. Wave equation parallel algorithm solution

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.2, March 2011

22

6.2.2 Problem 2: Prime numbers generator

There is no general "formula" for generating prime numbers. However there are some

approximations and theorems predicting the number of prime numbers less than a particular

upper bound [11]. Brute-force algorithm [5], shown in figure 2, which is also called “naïve”

algorithm can be used in primality test .

 1. Naïve (n:integer,prime:logical)

 2. /* Assume first four primes are counted

 3. if n > 10 then

 4. squareroot = int(n)

 5. do i=3,squareroot,2

 6. if n % i = 0 then

 7. prime = false

 8. return

 9. endif

10. enddo

11. prime = true

12. return

13. else

14. prime =false

15. return

16. endif

17. End naïve

Figure 2. Naïve and Sieves algorithm

The simplest primality test for a given number n, is to check whether any integer m from 2 to

n − 1 divides n. If n is divisible by any m then n is composite, otherwise it is prime. Rather than

testing all m up to n − 1 , “naïve and sieves” algorithm [16] tests only m up to n , if n is

composite then it can be factored into two values, at least one of which must be less than or

equal to n . The algorithm efficiency can also be improved by skipping all even m except 2.

A pseudo serial version and also the corresponding MPI parallel version that use this algorithm

to find the number of primes and also the largest prime number within an interval of integers

are shown in figure 3 and figure 4 respectively.

 1. Determine the upper LIMIT of integers interval.

 2. prime_counter = 4

 3. do n =11, LIMIT, 2

 4. call naïve(n, prime)

 5. if (prime) then

 6. prime_counter = prime_counter + 1

 7. prime_value = n

 8. endif

 9. Enddo

10. print prime_value, prime_counter
11. End

Figure 3. Serial primes generator pseudo code.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.2, March 2011

23

 1. Initialize MPI environment.

 2. Determine number of MPI processes, ntasks, and Identities, rank.

 3. Determine the upper LIMIT of integers interval.

 4. mystart = (rank*2) + 1; stride = ntasks*2

 5. prime_counter = 0; prime_value = 0

 6. do n=mystart, LIMIT, stride

 7. call naïve(n, prime)

 8. if (prime) then

 9. prime_counter = prime_counter + 1

10. prime_value = n

11. endif

12. enddo

13. Reduce(pc,pcsum,MPI_SUM,master)

14. Reduce(prime_value, maxprime, MPI_MAX , master)

15. If Process_id=master then

16. print maxprime,pcsum-4

17. endif

18. Finalize MPI environment

19. End

Figure 4. Parallel MPI primes generator pseudo code.

6.3 Predicted versus experimental results

The parallel MPI applications that solve both wave equation and prime numbers generator

problems were executed on the hardware architecture described in section 5.1. Serial execution

time , parallel execution time on a single processor using multiple number of processes and also

parallel execution time on multiple processors for both problems are shown in table 1.

Table 1. Serial and parallel execution times for

Wave Equation and Primes Generator

Problem

Serial

execution

time

Parallel execution

Single physical

processor

Multiple physical

processors

MPI

processes

Execution

time

Physical

processors

Execution

time

Problem 1

Wave

Equation

0.80216

1 1.3561 1 1.3561

2 3.6942 2 4.0952

3 6.3833 4 1.2112

4 9.4002 8 11.4501

5 12.5629

6 15.301

7 18.1778

8 21.5001

9 24.1733

10 27.3349

Problem 2

Primes

Generator

55.625

2 55.5887 1 57.625

4 55.464 2 32.6704

8 54.9653 4 17.38331

10 55.5158 6 11.58861

16 55.1428 8 8.2103

20 55.9213

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.2, March 2011

24

Applying the proposed speed up prediction method to wave equation problem using 10 MPI

processes on a single physical processor we predicted that the application will exhibit a poor

speed up if it is executed in parallel using multiple physical processors.

Our prediction is based on that the execution time is rapidly increases as the number of MPI

processes as shown in figure 5. To prove that our prediction was true, we executed the same

MPI code on 8 physical processors. Knowing the execution time of the serial code version, the

experimental speed up was calculated. Figure 6 shows that the maximum speed up achieved by

8 physical processors was only 0.66228534 and hence our prediction was true.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11

Number of Processes

E
x
e
c
u
tio

n
 T

im
e
 (

s
e
c
o
n
d
s
)

Figure 5. Execution time using 10 processes on a single CPU for problem 1

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

Number of Processors

S
p
e
e
d

 u
p

Experimental

Ideal

Figure 6. Experimental speed up for problem 1

To be unbiased, we also re-executed the same parallel code using different number of processes

on the same 8 physical processors. Figure 7 shows that the execution time was negatively

affected as the number of MPI processes increases except in case of running a small number of

MPI processes using 8 physical processors. The experimental results shows that there is no

significant speed up improvement as shown in figure 8. This also proves that our prediction was

true.

Applying the proposed method to prime numbers generator problem using 20 MPI processes on

a single physical processor, we predicted that the application will exhibit a linear speed up if it

is executed in parallel using multiple physical processors.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.2, March 2011

25

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

Number of MPI Processes
E

x
e
c
u
tio

n
 T

im
e
 (

s
e
c
o
n
d
s
)

8 CPUs 4 CPUs

2 CPUs 1 CPU

Figure 7. Effect of processes number on execution time using 8 CPUs for problem1

0

2

4

6

8

10

12

1 3 5 7 9 11

Number of Processes

S
p
e

e
d
 U

p

Ideal 8 CPUs

4 CPUs 2 CPUs
1 CPU

Figure 8. Experimental vs. ideal speed up for problem 1

Our prediction is based on that the execution time is slowly increases or seems to be constant as

the number of MPI processes as shown in figure 9. Running the same MPI code on 8 physical

processors achieved a linear speed up as shown figure 10 and hence our prediction was also

true.

0

15

30

45

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Processes

E
x

e
x

c
u

tio
n

 T
im

e
 (

s
e

c
o

n
d

s
)

Figure 9. Execution time using 20 processes on a single CPU for problem 2

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.2, March 2011

26

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

Number of Processors

S
p

e
e

d
 u

p

Experimental

Ideal

Figure 10. Experimental speed up for problem2

7. CONCLUSION

Concerning the issue of speed up gained from parallelization, the decision making to parallelize

or not to parallelize the serial application is not a trivial task.

In this paper we studied the conflicting parameters that affect the parallel programs

performance, specially MPI applications, showing some recommendations to be followed to

achieve a reasonable performance. The problem nature is one of the most important factors that

affect the parallel program speed up. If The problem can be divided into independent subparts

and no communication is required, except to split up the problem and combine the final results,

then there is a great parallelization opportunity, and the resultant parallel program will exhibit a

linear speed up. If the same instruction set are applied to all data and processes communication

is synchronous , speed up will be directly proportional to the computation -communication

ratio. If there are different instruction sets to be applied to all data to solve a specific problem

and the inter-process communication is asynchronous, this will reduce the parallelization

opportunity. Speed up of the resultant parallel application will be negatively affected with extra

communication overhead.

We also proposed an experimental method that aids in speed up prediction. The proposed

method is based on running the MPI applications with several MPI processes using only one

single processor machine. It gives an indication about the speed up behavior of MPI

applications without using extra parallel hardware facilities, so it is recommended to be applied

to MPI applications before running them on real powerful cluster machines or an expensive

parallel systems. The proposed method was applied to predict the speed up of MPI applications

that solve wave equation and prime numbers generator problems. The predicted speed up was

as the same as experimental speed up achieved when using multiple physical processors for

both applications.

REFERENCES

[1] A. Chan D. Ashton, R. Lusk, and W. Gropp, Jumpshot-4 Users Guide, Mathematics

and Computer Science Division, Argonne National Laboratory July 11, 2007.

[2] A. Grama, A. Gupta, and V. Kumar, "Isoefficiency Function: A Scalability Metric for

Parallel Algorithms and Architectures", IEEE Parallel and Distributed Technology,

Special Issue on Parallel and Distributed Systems: From Theory to Practice, Volume 1,

Number 3, pp 12-21, August 1993.

[3] A. H. Karp and H. Flatt, “Measuring Parallel Processor Performance”, Communication

of the ACM Volume 33 Number 5, May 1990.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.2, March 2011

27

[4] A. Karwande, X. Yuan, and D. K. Lowenthal, “ CC-MPI: A Compiled Communication

Capable MPI Prototype for Ethernet Switched Clusters”, Journal of Parallel and

Distributed Computing, Volume 65, Number 10, pp 1123-1133, 2005.

[5] A. Mohammad , O. Saleh and R. A. Abdeen “Occurrences Algorithm for String

Searching Based on Brute-force Algorithm”, Journal of Computer Science, Volume 2,

Number 1, pp 82-85, 2006.

[6] C. Geoffrey, Fox et al “Solving problems on concurrent processors”, Prentice-Hall,

Inc. Upper Saddle River, NJ, USA, ISBN:0-13-823022-6 , 1988.

[7] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V.

Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L.

Graham, and T. S. Woodall, “Open MPI: Goals, Concept, and Design of a Next

Generation MPI Implementation”, In Proceedings, 11th European PVM/MPI Users’

Group Meeting, Budapest, Hungary, pp. 97–104, September 2004.

[8] F. Petrini, D. Kerbyson, and S. Pakin. The case of the missing supercomputer

performance: Achieving optimal performance on the 8,192 processors of ASCI Q. In

Proc. Supercomputing, Phoenix, AZ, Nov. 2003.

[9] G. M. Amdahl, “Validity of the Single Processor Approach to achieving Large Scale

Computing Capabilities”, In Proceedings of the AFIPS Spring Joint Computer

Conference, pp 483–485, April 1967.

[10] H. Brunst, M. Winkler, W. E. Nagel and H.-C. Hoppe, Performance Optimization for

Large Scale Computing: The Scalable VAMPIR Approach,, International Conference

on Computational Science (ICCS2001) Workshop on Tools and Environments for

Parallel and Distributed Programming, San Francisco, CA, May 2001.

[11] I. Aziz, N. Haron, L. Tanjung and W. W. dagang, “Parallelization of Prime

Number Generation Using Message Passing Interface”, WSEAS Transactions on

Computers, Volume 7, Number 4, pp 291-303, April 2008.

[12] J. Gustafson “Reevaluating Amdahl's Law”, Communications of the ACM,

Volume 31, Number 5, pp 532-533, 1988.

[13] J. Liu, A. Vishnu, and D. K. Panda “Building Multirail InfiniBand Clusters: MPI-

Level Design and Performance Evaluation”, In Proceedings of the ACM/IEEE SC2004

Conference, pp 33 – 33, Nov. 2004.

[14] J. M. Squyres , “Processes, Processors, and MPI”, Cluster World, MPI Mechanic

Volume 1 Number 2, pp 8-11, January 2004.

[15] M. D. Hill and M. R. Marty, “Amdahl’s Law in the Multicore Era”, IEEE Computer

Society, Volume 41, Number 7, pp 33-38, 2008.

[16] O. L. Atkin and D. J. Bernstein, "Prime sieves using binary quadratic forms",

Mathematics of Computation Volume 73, pp 1023–1030, 2004.

[17] R. Brightwell, K. D. Underwood, “Evaluation of an Eager Protocol Optimization for

MPI”,10th European PVM/MPI Users' Group Meeting, Venice, Italy, pp 327-334,

September 29 - October 2, 2003.

[18] R. M. Badia, J. Labarta, J. G., and F. Escal´e . DIMEMAS: Predicting MPI

applications behavior in grid environments. In Workshop on Grid Applications and

Programming Tools, 8th Global Grid Forum (GGF8), pages 50–60, Seattle, WA, June

2003.

[19] S. Gorlatch, “Send-Receive Considered Harmful: Myths and Realities of Message

Passing”, ACM Transactions on Programming Languages and Systems, Volume 26,

Number 1, pp 47–56, January 2004.

[20] The MPI Forum. The MPI-2: Extensions to the Message Passing Interface, July 1997.

Available at http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html.

[21] V. S. Sunderam, “PVM: A framework for parallel distributed computing”,

Concurrency: Practice & Experience, Volume 2, Number 4, pp 315–339, Dec. 1990.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.2, March 2011

28

[22] W. Gropp, “MPICH2: A New Start for MPI Implementations”, In Recent Advances in

PVM and MPI: 9th European PVM/MPI Users’ Group Meeting, Linz, Austria, Oct.

2002.

[23] Y. Aoyama J. Nakano “Practical MPI Programming”, International Technical Support

Organization, IBM Coorporation SG24-5380-00, August 1999.

[24] Y. Yan, X. Zhang, and Q. Ma, “Software Support for Multiprocessor Latency

Measurement and Evaluation”, IEEE Transactions on Software Engineering, Volume

23, Number1, pp 4-16, January 1997.

Author

Alaa I. Elnashar was born in Minia, Egypt, on November 5, 1967.

He received his B.Sc. and M.Sc. from Faculty of Science,

Department of Mathematics (Math. & Comp. Science), and Ph.D.

from Faculty of Science, Department of Computer Science, Minia

University, Egypt, in 1988, 1994 and 2005. He is a staff member in

Faculty of Science, Computer Science Dept., Minia University,

Egypt.

Dr. Elnashar was a postdoctoral fellow at Kanazawa University,

Japan. His research interests are in the area of Software

Engineering, Software Testing, Parallel programming and Genetic

Algorithms.

Now, Dr Elnashar is an Assistant professor, Department of Computer Science, College of

Computers and Information Technology, Taif University, Saudi Arabia

