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ABSTRACT 

Common Mobile IPv6 mechanisms, Bidirectional tunneling and Route optimization, show inefficient 

packet overhead when both nodes are mobile. Researchers have proposed methods to reduce packet 

overhead regarding to maintain compatible with standard mechanisms. In this paper, three mechanisms 

in Mobile IPv6 are discussed to show their efficiency and performance. Following discussion, a new 

mechanism called Improved Tunneling-based Route Optimization is proposed and due to performance 

analysis, it is shown that proposed mechanism has less overhead comparing to common mechanisms. 

Analytical results indicate that Improved Tunneling-based Route Optimization transmits more payloads 

due to send packets with less overhead. 
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1. INTRODUCTION 

Mobile IP is a technique enables nodes to maintain stay connected while they are moving 

through networks [1]. Due to Mobile IP protocol, a communication can be established between 

a Mobile Node (MN) and a Corresponding Node (CN) regardless to their locations. 

The Mobile IP protocol supports transparency above the network layer including transport layer 

which consists of the maintenance of active TCP connections and UDP port bindings, and 

application layer. Mobile IP is most often found in wireless WAN environments where users 

need to carry their mobile devices across multiple LANs with different IP addresses [2]-[4]. 

Mobile IP is implemented in IPv6 via two mechanisms called Bidirectional tunneling and route 

optimization [1] [8]. 

In order to enable mobility over IP protocols, network layer of mobile devices should send 

messages to inform other devices about location and network they are wandering. Original 

packets from the network upper layers are embedded in packets containing mobile routing 

headers. Reducing mobility overhead causes more data to be sent with each packet. Therefore 

some mechanisms are used to reduce mobility overhead. In this paper, a new mechanism is 

proposed to reduce mobility overhead by reusing address field of IP address twice. 

2. RELATED WORKS 

Some attempts have been performed to improve security and performance in Mobile IP. C. 

Perkins proposed a security mechanism in binding updates between CN and MN in [5]. C. Vogt 

et al. in [6] proposed a proactive address testing in route optimization. 

In other aspect, D. Le and J. Chang suggested reducing bandwidth usage due to use tunnel 

header instead of route optimization header when both MN and CN are mobile nodes [7]. 

It should be noted few papers focused on bandwidth reduction in Mobile IP while a lot of 

suggestions are proposed to solve issues in security and delay. In this paper, we are going to 

present a new technique to reduce bandwidth by diminishing overhead of packets when both 

MN and CN are mobile nodes. 
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3. MOBILE IPV6 

Discussing about Bidirectional and route optimization (standard mechanisms), we will talk 

about their advantages and disadvantages. Later a method in [7] is presented to cover some 

disadvantages in standard mechanisms. The evaluation of discussed method called Tunneling-

based Route Optimization is followed to show the improvement in bandwidth usage. 

3.1. Bi-directional Tunneling 

Based on idea of easily implementation of indirect mode in Mobile IPv4 [8], Bidirectional 

tunneling is presented in Mobile IPv6. In Bidirectional Tunneling, MN and HA are connected to 

each other via a tunnel, so signaling is required to construct a tunnel between MN and CN. 

Packets sent from CN to MN passes through HA before deliverance to MN. Intercepting all 

packets destined to MN, HA detects by Proxy Neighbor Discovery [9]. Since MN is not present 

in home network and assuming noticed tunnel is constructed, HA encapsulates each detected 

packet in a new packet addressed to MN’s new care-of address (CoA) and sends them through 

the tunnel [10]. At the end of the tunnel, the tunneled packet is de-capsulated by MN’s network 

layer before being surrendered to MN’s upper layers.  

Similar encapsulation is performed when MN sends packets. Encapsulated packets are tunneled 

to HA, that is called reverse tunneling, by adding 40 bytes as tunnel header, addressed from 

MN’s CoA to HA. Being de-capsulated by HA, tunneling header is removed and modified 

packet is sent to CN through the Internet. 

3.2. Route Optimization 

In Route Optimization mechanism, packets are transmitted between MN and CN directly [3]. 

Binding Update (BU) messages are sent not only to HA, but also to all connected CNs to bind 

MN’s current address to its HoA. Each CN has a table called Binding Cache to keep track of all 

corresponding MNs’ CoA and their HoA. Similar table is kept in MN to determine whether a 

CN uses Bidirectional tunneling or route optimization. Also it is important to update CNs’ 

binding cache by sending BU messages frequently. 

Route Optimization mechanism uses Home Address Option header extension to carry MN’s 

HoA when a packet is sent from MN to CN. Reversely when a packet is sent from CN to MN, 

another header extension called Type 2 Routing header is used.  

Route optimization reduces the delay mentioned in Bidirectional tunneling. Putting routing task 

on each node, HA can handle more mobile nodes compared to Bidirectional tunneling. 

In a scenario that both MN and CN are mobile nodes, route optimization can be implemented, 

too [1]. Since both MN and CN have HoA and CoA, packet routing requires both extension 

headers to carry enough information for the pair’s network layer. Therefore, to transmit a packet 

from MN to CN, not only Home Address Option header, but also Type 2 Routing header should 

be filled with appropriate addresses. Since each extension header is 24 bytes, total overhead to 

transmit a packet between two mobile nodes is 48 bytes.  

3.2. Tunneling-based Route Optimization 

As discussed before, in a scenario when both MN and CN are mobile nodes, total overhead to 

carry a packet between nodes is 48 bytes in route optimization. To reduce the overhead, D. le 

and J. Chang in [7] proposed a mechanism called Tunneling-based Route Optimization (TRO). 

Like standard route optimization, TRO construct a tunnel to transfer packets directly between 

MN and CN. But in their proposed method, a Tunnel Manager is controlling packets. Not only 

tunnel manager is in touch with binding cache, but also it manipulates packets importing and 

exporting from the network layer. 
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As long as MN’s transport layer create a packet from MN’s HoA destined to CN’s HoA, the 

packet is surrendered to MN’s tunnel manager before it is sent. Since tunnel manager is aware 

of CN’s mobility, it encapsulates the packet in a new packet addressed from MN’s CoA to CN’s 

CoA. Later the packet is sent through the tunnel to CN. At the other side of tunnel, CN’s tunnel 

manger de-capsulate the packet, extracting the original packet addressed from MN’s HoA to 

CN’s HoA. Then the packet is surrendered to transport layer which is still unaware of mobility. 

To maintain compatible with previous mechanisms, BU messages are changed. By using a flag 

called ROT, tunnel manager decides whether to use Tunneling-based Route Optimization or 

standard route optimization [7]. 

TRO mechanism benefits from using 40 bytes tunnel header instead of using 48 bytes extension 

header when standard route optimization is used. Result presented in [7] shows that TRO can 

increase performance in Mobile IP comparing to standard mechanisms. 

4. IMPROVED TUNNELING-BASED ROUTE OPTIMIZATION 

More reduction can be accessed in order to spend less header overhead in communication 

between MN and CN, when they are both mobile nodes. Each node constructs a binding cache 

to keep the address of the other, so there is no necessity to send HoA of the other pair via header 

extension because it can be obtained from binding cache by the help of CoA included in packet. 

In other words, header overhead is reduced by using IPv6 address fields twice, both for the 

Internet addressing and mobile addressing. Instead, a tunnel manager should be embedded not 

only to control binding cache, but also change the packet header. The tunnel manager should 

control whether IPv6 address header is used for Internet addressing or mobile addressing. Later 

in this section, we discuss about Improved Tunneling-based Route Optimization method. 

4.1. Protocol Model in End-Points 

Mobile IPv6 protocol should change a little to support overhead reduction. Both nodes should 

be devised with a tunnel manager which control and change all packets switched between MN 

and CN. Also the noticed tunnel manger should be allowed to access binding cache in order to 

find corresponding HoA of a node. Fig.1 depicts the protocol model in sender and receiver. 

4.2. Improved Tunneling-based Route Optimization Routing 

Below, we discuss two scenarios to explain our proposed method. It should be mentioned that a 

tunnel between MN and CN should be initiated at first. Also BU messages have been sent to 

construct binding cache in both CoA and HoA of the other pair. In a situation when CN is 

unaware of MN’s new location, same action done in route optimization, is performed. 

As long as MN wants to send a packet to CN, since  mobility is transparent to upper layers in 

nodes, MN’s network layer sets both source of the packet to MN’ HoA and destination to CN’s 

HoA. In the next step, when tunnel manager gets the packet, it updates the packet by changing 

both packet’s source and destination. Since MN is in a foreign network, it changes the source 

field from its HoA to its CoA. Later, searching binding cache (by the help of CN’s HoA), it 

finds CN’s corresponding CoA and then writes it in the destination address field. Altered packet 

is sent directly to CN through the tunnel. 

By reception of packet to the other side of the tunnel, CN’s tunnel manager manipulates the 

packet to make it ready for upper layers. First manipulation is performed by changing the 

packet’s destination from CN’ CoA to CN’s HoA. Next step is followed by searching binding 

cache with MN’s CoA to find corresponding HoA. Later, the CN’s tunnel manger then change 

packet’s source from MN’s CoA to what has just been found, MN’s HoA. As long as changes 

are finished, the updated packet is surrendered to upper layers. Due to Fig. 1, packets sent from 

MN to CN are addressed as shown in Fig. 2. 
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Figure 1. Protocol model for route optimization and packets passing between layers 

 

Figure 2. Improved tunneling-based route optimization packets due to Fig.1 

Same action is performed when a packet is sent from CN to MN. Since CN’s network upper 

layers are unaware of mobility, a packet is constructed which is addressed from CN’s HoA to 

MN’s HoA. As the packet is passed to CN’s tunnel manger, due to binding cache, the 

destination of the packet is changed from MN’s HoA to MN’s CoA. Since CN knows its CoA, 

tunnel manger updates the packet’s source from its HoA to CoA. Then the packet is tunneled to 

MN. 

Similarly, MN’s tunnel manager changes the packet’s destination from MN’s CoA to MN’s 

HoA. Later, searching binding cache, the packet’s source is also changed from CN’s CoA to 

CN’s HoA. 

4.3. Changing BU messages 

To maintain compatible with other MIPv6 mechanisms, binding messages should change. We 

propose to use two flags in order to distinguish three different mechanisms. Calling ROT0 and 

ROT1, these flags indicate whether route optimization or Tunneling-based Route Optimization 

or improved tunneling-based route optimization is used. Routing mechanisms due to ROT0 and 

ROT1 are listed in table 1. 

Table 1.  Routing mechanism due to ROT flags. 

Mechanism ROT1 ROT0 

Route Optimization 0 0 

Tunneling-based Route Optimization 0 1 

Improved Tunneling-based Route 

Optimization (proposed method) 
1 1 or 0 

 

5. EVALUATION 

Comparing to three other mechanisms, we evaluate our proposed method. Since Improved 

Tunneling-based Route Optimization mechanism intends to reduce header overhead, main 
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comparison metric is bytes consumed to establish mobile communication. We used relation 1 

proposed in [7] to calculate mobility overhead. It should be noted that mobility overhead is 

bytes used to establish mobility communication, and is different from overhead used to route 

packets through network layer. 

SizePacketOriginal

SizeAdditionMobility
ratiooverheadMobility

__

__
__ =  (1) 

Also as exception, comparing to Bidirectional tunneling mechanism, communicating time is 

also mentioned which is defined as total time for a packet to deliver from source to destination. 

Moreover, packets are assumed to be 1500 bytes that is maximum transmission unit size in 

Ethernet, containing IPv6 packets, extension header if needed and tunneling overhead. 

5.1. Comparing to Bidirectional tunneling 

As mentioned before, in Bidirectional tunneling, packets from CN should be tunneled from HA 

to MN and are replied in the same tunnel from MN to HA, called reverse tunneling. For each 

time a packet is tunneled, 40 bytes are used to route the packet to the other side of tunnel. As a 

packet is tunneled twice to reach to destination, 80 bytes are consumed in two different 

communications. Total bandwidth which is used to carry a packet from source to destination is 

calculated as follows: 

 

 

Figure 3. Comparing delay time for Bidirectional tunneling mechanism and route optimization 

based mechanisms 
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Also in Bidirectional tunneling, each routing elapses one Internet routing time [11] because each 

node can be anywhere in the Internet. Due to Fig.3, total delay consists of three Internet routing 

time that is calculated from: 

InternetCNHAHAHAHAMN TTTTTimeTotal
CNCNMNMN

×≅++=
→→→

3_  (3) 

In improved tunneling-based route optimization, since nodes are connected to each other 

through a tunnel, there is no obligation to tunnel packets twice between MN and HA. Also 
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address field of packet is used both for tunnel and IPv6 header. Therefore, reduction in both 

overhead and delay are sensible. Mobility Overhead Ratio is calculated as follows: 
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Also delay in proposed mechanism is computed from: 

InternetCNMN TTTimeTotal ≅=
→

_  (5) 

It means in Improved Tunneling-based Route Optimization mechanism s more efficient both in 

overhead and delay. 

5.2. Comparing to Route Optimization 

Although both route optimization and proposed mechanisms construct a tunnel to reduce delay 

and overhead regarded to communicate two mobile nodes, different overheads are used to route 

a packet in the constructed tunnel. In the situation when both nodes are mobile, route 

optimization uses Home Address Option and Type 2 routing extension headers as it is shown in 

Fig. 4. Since each extension header is 24 bytes in size, total mobility header added to IPv6 

packet is 48 bytes. So mobility overhead ratio is calculated as follows: 

 
Figure 4. Route optimization packets due to Fig.1 
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Since packets are tunneled directly to each node, one Internet time is needed for this 

communication due to Eq. 7. 

InternetCNMN TTTimeTotal ≅=
→

_  (7) 

Because Improved Tunneling-based Route Optimization uses address field of packet both for 

tunneling and IPv6 routing, as it calculated before, it uses 0% of total packet size. 

Using same tunnel, total delay time is same for both route optimization and proposed method. 

5.3. Comparing to Tunneling-based Route Optimization 

Tunneling-based Route Optimization is proposed not only to decrease communication delay, 

but also to reduce overhead. It benefits from both tunneling idea used in Bidirectional tunneling 

and connecting directly used in route optimization. Tunneling header which is 40 bytes is added 

to IPv6 packet duo to reduce 48 bytes of extension headers. Fig. 5 shows packets A and B due 

to Fig. 1 when Tunneling-based Route Optimization mechanism is used. Also, mobility 

overhead ratio is calculated as follows: 

 
Figure 5. Tunneling-based Route Optimization packets due to Fig.1 
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Same total delay is calculated in Tunneling-based Route Optimization, because same tunnel is 

used to carry packets.  

Comparing to Improved Tunneling-based Route Optimization mechanism, proposed method has 

no overhead in header used in mobile communication. And total delay is the same to route 

optimization mechanism. 

Listed in table 2, Mobile IPv6 mechanisms are compared to each other. All in all it is obvious 

that proposed method can reduce both delay and bandwidth used in mobile nodes’ 

communication. 

Table 2. Comparison between Mobile IPv6 mechanisms 

Mechanism 

Packet 

Overhead 

(%) 

Delay 

(Internet Time) 

Bidirectional Tunneling 6.6 3 

Route Optimization 3.3 1 

Tunneling-based Route Optimization 2.74 1 

Improved Tunneling-based Route 
Optimization (proposed method) 

0 1 

 

6. Conclusion 

In this paper, performance of both standard Mobile IPv6 routing mechanisms and Tunneling-

based Route Optimization are analysed. To reduce packet overhead, we proposed improved 

Tunneling-based Route Optimization mechanism. In order to maintain compatible with standard 

mechanisms, not only the tunnel manager should be changed, but also Binding Update messages 

must be altered. Comparing to Bidirectional tunneling, route optimization and tunneling-based 

route optimization shows that the packet overhead of proposed mechanism is reduced 

significantly. Therefore regarding to less overhead for each packet, more data can be transmitted 

through network via a Mobile IP communication. 
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