
International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

DOI :10.5121/ijdps.2010.1102 13

LOSS DIFFERENTIATION ALGORITHMS VS.

CONGESTION CONTROL SCHEMES: DYNAMICS

AND PERFORMANCE

Aleksandar Milenkoski
1
 and Biljana Stojcevska

1

1
School of Computer Science and Information Technology, University American

College, Skopje, Republic of Macedonia
{milenkoski,stojcevska}@uacs.edu.mk

ABSTRACT

This paper carefully analyzes the behaviour of different congestion control schemes when used in

combination with Loss Differentiation Algorithm. Three types of congestion schemes are discussed:

delay-based, bandwidth estimation and AIMD, with one TCP variant representing each congestion

scheme. We simulated two network scenarios with diverse link and traffic properties and evaluated the

congestion schemes with integrated Loss Differentiation Algorithm in each of them. The integrated Loss

Differentiation Algorithm is ideal, i.e. it makes no errors in its judgement. The behaviour of the schemes

is analyzed from aspect of: the properties of the employed mathematical functions, the effect of presence

or absence of additional network load (reverse and background traffic), and the achieved throughput.

The results show very diverse scene and pinpoint the importance of the careful and delicate design of the

congestion avoidance action when a non-congestion loss is detected.

KEYWORDS

Loss Differentiation Algorithms, Congestion avoidance, Congestion control scheme

1. INTRODUCTION

With the increasing popularity of wireless networks, a few problems of the standard TCP

implementation have become evident. Among them, the inability to cope with losses due to link

errors has proven to be one of the greatest obstacles [1] when it comes to high throughput

performance in networks with wireless links. Many TCP variants blindly reduce their

congestion window because their TCP schemes always suppose that any loss is caused by

network congestion. As a result, a great degradation in performance is noted.

As an answer to this problem, many Loss Differentiation Algorithms (referred to as LDAs from

this point) have been designed. Their primary goal is to make a two-way decision: is a packet

loss due to congestion, or due to corruption? It has been shown that losses due to link error can

be detected both in the transport [2] and the link layer [3]. These two approaches have been

accompanied by cross-layer designs [4], [5]. The varying efficiencies of the existing LDAs have

been observed by several LDA evaluation papers [6], [7], [8]. Their evaluation methods usually

include testing the LDA from aspect of accuracy and frequency of congestion loss prediction.

The excellent study presented in [6] goes further and defines metrics for misclassification rate,

stressing the possible effect on the performance of the protocol when the LDA makes

misclassifications. Additionally, the same paper outlines the performance of the protocols put

under evaluation in terms of throughput and fairness.

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

14

However, a certain trend has been noticed: very few papers explicitly define the way in which

the used LDA is integrated into the TCP congestion control scheme. In most cases, it can be

implicitly concluded that the undertaken action when a packet error loss is detected is simply

avoiding the original congestion control response.

To fill the gap, this paper closely investigates the relationship between the LDA and the

congestion control scheme in which it is integrated. Three different types of congestion schemes

are investigated: AIMD scheme, bandwidth estimation scheme and delay-based scheme. We

investigate the following representative protocols of these schemes: TCP NewReno [9], TCP

Westwood [10] and TCP Vegas [11] respectively. In each scheme we integrate ideal LDA with

zero misclassification rate. The performances of the protocols are compared in terms of

throughput and briefly on fairness. We observed very closely the dynamics of the protocols and

the impact of the way in which the LDA is implemented in the congestion scheme.

The paper is organized as follows: Section 2 contains the related work in this field. In Section 3

a brief overview of the underlying algorithms behind TCP NewReno, TCP Westwood and TCP

Vegas is given; in Section 4 we describe the structure of the LDA in use, while in Section 5 the

simulation environment is discussed. In Section 6 the performances and dynamics of the

schemes is elaborated, in Section 7 we present guidelines for future work, and finally in Section

8 we give our conclusions.

2. RELATED WORK

Although proposing loss differentiation solutions with high precision, many of the published

papers that present protocols aimed for operation in networks with high random loss do not

implement change in the standard congestion schemes. The most utilized actions when wireless

errors occur are no change at all or changing the reduction of the congestion window by a factor

smaller than 1/2. For instance, the authors of [12] clearly state that no congestion window

adjustment is needed when wireless errors are detected. Moreover, TCP Feno [13], based on its

predecessor TCP Veno [14], simply reduces the window by 1/5 for each recognized wireless

loss. The same action is undertaken by [15].

In contrary, [16] proposes congestion scheme designed for best efficiency when loss

differentiator is used and analyzes in detail the performance of the scheme with and without

error discriminator. The authors introduce congestion window cut policy in order to minimize

unnecessary congestions caused by error discriminator mismatches. Additionally, they draw

attention to the importance of designing adaptable and dynamic congestion schemes, suitable

for LDA integration. Similarly, [17] proposes efficient congestion action when multiple non-

congestion losses take place. The authors emphasize the possible harm to the network’s

performance caused by inadaptable congestion window actions combined with loss

differentiator. In addition, [18] closely observes the impact of LDA accuracy on the

performance of TCP. It concludes that accurate LDA and appropriate reaction to wireless loss is

often not enough for improved performance, but that the LDA information should be used even

in designing retransmission timeout recovery algorithms.

A proposal which implements flexible action triggered upon a detected wireless loss is

presented in [19]: a switching mechanism based on queuing delay is used to decide the

appropriate congestion action after a wireless loss. Normally, when wireless loss is detected the

window is kept unchanged. But, if big queuing delay is present, the protocol treats the wireless

loss as congestive and reduces the congestion window.

Following the arguments presented in [16] and [17], this research thoroughly analyzes the

consequences of simple and not dynamic reaction to packet drops due to wireless errors.

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

15

3. CONGESTION SCHEMES

In this section we briefly overview the mathematical model used by the congestion schemes of

TCP NewReno, TCP Westwood and TCP Vegas. The accent is put on the reaction of the TCP

modification when n consecutive duplicate acknowledgements are received; therefore we

closely observe the position where LDA is deployed.

3.1. TCP NewReno

TCP NewReno is an effective modification of the original congestion avoidance algorithm [20].

The modification is an improvement of the Fast Recovery phase. However, the congestion

avoidance scheme is still an AIMD scheme, since the congestion window is increased additively

and decreased in a multiplicative fashion.

When three duplicate acknowledgements are received by the sender, TCP NewReno halves the

congestion window along with the Slow Start threshold (Eq. 1 and Eq. 2).

2

WindowSize
ssthresh = (1)

2

WindowSize
WindowSize = (2)

ssthresh is the Slow Start threshold, while WindowSize is the size of the congestion window at

the moment of receiving three duplicate acknowledgements.

3.2. TCP Westwood

TCP Westwood uses bandwidth estimation in order to achieve admirable protocol performance

in mixed wired-cum-wireless networks. One of the key advantages of this protocol over TCP

NewReno is the adaptive adjustment of the congestion window. TCP Westwood estimates the

available link bandwidth, based on Eq. 3 and Eq. 4:

alAckdInterv

AckdSize
SampleBwe = (3)

 0476.0)(9047.0 ×++×= BweLastSampleBweBweBwe (4),

where AckdSize is the total size of the acknowledged windows, AckdInterval is the length of the

time slot between the last received acknowledgement and the moment of bandwidth estimation,.

Bandwidth estimation is performed at each received acknowledgement. Bwe is the new

estimated bandwidth, and LastSampleBwe is the previous SampleBwe.

Finally, the congestion action is defined in Eq. 5:

SegSize

RTTBwe
ssthresh

)(min×
= (5).

Only if the current window size is greater then the new Slow Start Threshold, new window size

is calculated (Eq. 6):

 ssthreshWindowSize = (6).

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

16

RTTmin is the minimal RTT observed during the connection and SegSize is the length of the TCP

segment, expressed in bits. It should be noted that TCP Westwood has successful mechanism

for handling delayed and cumulative acknowledgements.

3.3. TCP Vegas

Similarly to TCP Westwood, TCP Vegas differs greatly from the AIMD scheme. The

congestion avoidance actions in TCP Vegas can happen in two cases: one action takes place at

the moment when new acknowledgement is received. The congestion window linearly

decreases, increases or keeps its previous size. The pseudo code is given below.

 Actual sending rate = Last window size / RTT for the last window

 Expected = Current window size / minimalRTT

 Difference = Expected – Actual

 if (Difference < α) linearly increase window;

 if (Difference > β) linearly decrease window;

 else leave window unchanged;

minimalRTT is the minimal RTT observed during the connection.

The other action takes place when n duplicate acknowledgements are received. It manipulates

the window in more aggressive fashion: the window may be halved, set to three fourths of its

current size or directly set to size of 2. The way in which the congestion window will be

changed depends on the number of the retransmissions of the packet which is lost. The pseudo

code follows:

 if (Current window size <= 3) Current window size = 2;

 else if(Number of retransmissions > 1) Current window size = Current window size/2;

 else Current window size = Current window size*3/4;

When it receives three duplicate acknowledgements, TCP Vegas also readjusts its timeout

value: either it increases it two times when the number of transmissions is greater than one, or it

increases it by one eighth of its value in any other case. The timeout value is crucial for deciding

whether the sender should wait for three duplicate acknowledgements or retransmit the lost

packet immediately.

4. THE IDEAL LDA

It has been previously stated that this research uses ideal LDA algorithm. In this section we

briefly discuss the reasons for using such LDA and the way it is implemented.

There are two reasons for constructing an ideal LDA:

(a) it is the most appropriate way to investigate the congestion scheme – LDA relationship. Any

LDA clearly has a certain misclassification rate, which could seriously alter the final results.

Additionally, the architecture of each LDA invokes algorithm-specific inefficiencies. For

example, [6] concludes that two loss differentiation schemes have classification problems when

multiple streams share the same wireless link. The usage of ideal LDA guarantees a great deal

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

17

of “cleanliness” in the simulation scenario; it certainly eliminates the chances for classification

mistakes. Therefore, the advantages or disadvantages of integrated loss classification

mechanism are unbiased from misclassifications;

(b) an ideal LDA certainly represents the final goal of the LDA authors. Each LDA has been

designed with maximum classification rate in mind. Interestingly enough, this research clearly

shows that many congestion schemes would have achieved better performance if the employed

LDA made a certain number of mistakes. However, such improved performance may be safely

considered as unexpected behaviour of the protocol when compared with the final goal of the

creation of the loss differentiation scheme.

By the properties of the ideal LDA, it can be easily concluded that it does not use a specific

algorithm. The design of loss differentiation algorithm with perfect classification is still the

ultimate goal. The LDA which we use is implemented in two places of the ns-2 [21] code: the

first one is in the used error model code. At each detected drop event the LDA writes the packet

sequence number – flow id pair in a file. The written pair is chosen specifically to ensure

uniqueness of the record of the dropped packet. The second part of the ideal LDA is

implemented at the TCP sender’s side. It consists of a function which searches the specific

record file at each n duplicate acknowledgement event. If the combination of the acknowledged

sequence number which triggered the loss action and the appropriate flow id is found in the

record file, then the loss is classified as loss due to link error. Otherwise, the loss is considered

to be caused by network congestion. Inspired by the previously discussed LDA evaluation

papers, the action of the ideal LDA when loss due to corruption is detected is simply avoiding

the original congestion action when three duplicate acknowledgements are received. In that way

we observe the behaviour of the protocol in a situation when it does not activate its congestion

reaction (Section 2) when there is no real congestion event present.

The design of the ideal LDA has the disadvantage of many reading and writing actions to a file

which increases the time needed for a simulation set to finish. However, storing the sequence

number – flow id pair in the ns-2 code has proven to be unreliable. The great number of

simulation runs in order to achieve good statistical accuracy can easily drain the available

system memory. Additionally, the complexity of the code makes the transfer of the information

on the dropped packet from the error model to the TCP agent very hardly feasible. At the end,

the more time-consuming process was chosen, since reliability must be kept at high level.

5. SIMULATION ENVIRONMENT AND METHODOLOGY

In order to investigate the behaviour of the congestion schemes in realistic manner, we

simulated a number of different scenarios in ns-2 network simulator. We used tcp-eval [22] as

traffic and topology generator. In this section we give detailed explanation of the simulated

scenarios.

From aspect of general network congestion level, we created two different scenarios:

• Scenario 1 - Not congested network

o Number of forward long-lived flows: 1

o No reverse traffic

o No background traffic

• Scenario 2 - Congested network

o Number of forward long-lived flows: 20

o Number of reverse long-lived flows: 5

o Number of voice streaming flows: 5

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

18

o Number of forward video streaming flows: 5

o Number of reverse video streaming flows: 5

o Video streaming rate: 640 Kb/s

o Video streaming packet size: 840 bytes

o HTTP generation rate: 5 Kb/s

Scenario 1 was created to investigate the impact of LDA integration into the congestion scheme

when the number of packet loss due to congestion is low and when the protocol of the long-

lived flow does not compete with other flows. Therefore, all outside factors which could

possibly disturb the efficient performance of the congestion scheme put under evaluation were

eliminated. Scenario 2 represents more realistic scenario. Traffic in both directions is simulated,

accompanied by additional background CBR UDP flows and TCP short-lived, ON/OFF flows.

With this complex traffic scheme we create network situation which creates sudden congestion

and decongestion, ACK compression, delayed and out-of-order acknowledgements, and

eliminates possible traffic-phase effects [23].

Figure 1. Single-bottleneck topology

Figure 2. Multiple-bottleneck topology

The traffic scheme explained in Scenario 1 and Scenario 2 was deployed in different network

topologies with various link characteristics. We simulated two network topologies: single-

bottleneck (Fig. 1) and multiple-bottleneck topology (Fig. 2) for each traffic scenario. The

multiple-bottleneck topology was modelled with three bottlenecks. Additionally, two queuing

schemes were tested, FIFO and RED [24]. At the bottleneck queues a Bernoulli error model was

used to drop packets. We tested the congestion schemes in a packet error rate interval of 0.01 to

0.09. The bottleneck bandwidth was set to 10 Mbps and the queue length was equal to the

Bandwidth Delay Product (BDP). The non-bottleneck links had 1.5 × 10 Mbps bandwidth. The

achieved statistical precision is 5% with 95% confidence interval. The simulation time was set

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

19

0.00

20.00

40.00

60.00

80.00

1 2 3 4 5 6 7 8 9

Packet error rate (%)

T
h
ro

u
g
h

p
u
t
im

p
ro

v
e
m

e
n
t
(%

)

-40.00

0.00

40.00

80.00

120.00

160.00

1 2 3 4 5 6 7 8 9

Packet error rate (%)

T
h
ro

u
g
h
p

u
t
im

p
ro

v
e
m

e
n
t

(%
)

to 100 sec. Careful examination of the protocols’ dynamics showed that they reached stable

state after 100 sec of traffic generation.

6. THE OBSERVATIONS

In this section we present the observations of the congestion schemes dynamics specified in

Section 2. We compared the protocols’ achieved throughput when FIFO and RED queuing

schemes were deployed at the routers and concluded very similar results. Therefore, RED is not

thoroughly discussed in the following sections. We also measured and compared the fairness of

the specified TCP modifications with the fairness of their LDA-integrated counterparts and

noticed very small changes. In all investigated scenarios, maximum improvement and

worsening of the fairness of 2.50% and 3%, respectively, was noted. Hence, we concentrate our

analyzing effort on the protocols’ achieved throughput when FIFO queuing disciplines are

deployed.

The values of the number of actions presented in the tables in this paper are averaged values

obtained from a series of simulations.

6.1. TCP NewReno

Since TCP NewReno does not receive feedback from the network to adjust its sending rate, the

impact of the LDA integration is the simplest of all discussed schemes to observe. It becomes

clear that the most important factor of the protocol’s behaviour is the number of performed

different reactions to packet losses. Therefore, we observe three different categories of actions:

actions of increasing, decreasing or keeping the congestion window unchanged. We further

investigate the number of such actions and try to find correlation between their number and the

achieved throughput.

Fig. 3a and Fig. 3b depict the percentage of improvement of TCP NewReno with integrated

LDA as function of packet error rate. The new protocol is referred to as TCP NewRenoLDA.

Fig. 3a and Fig. 3b show the throughput improvement in single-bottleneck and multiple-

bottleneck network topology respectively, in Scenario 1. Figure 3a clearly shows that the

highest improvement is achieved at packet error rate of 0.01, followed by almost linear

performance degradation to 0.09 error rate. The linear characteristics of the improvement are

mainly due to the simple congestion reaction used by TCP NewReno, accompanied by the

monotonous dynamics of the single-bottleneck topology.

a) b)

Figure 3. Percentage of throughput improvement of NewRenoLDA in a) single-

bottleneck topology b) multiple-bottleneck topology in Scenario 1.

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

20

0.00

1,000,000.00

2,000,000.00

3,000,000.00

4,000,000.00

5,000,000.00

6,000,000.00

7,000,000.00

8,000,000.00

9,000,000.00

10,000,000.00

0 1 2 3 4 5 6 7 8 9

Packet error rate (%)

T
h

ro
u

g
h
p
u
t

(b
p

s
)

New Reno

New RenoLDA

By observing the number of congestion events at the NewReno agent presented in Table 1, we

concluded that the degradation of the throughput is caused by too aggressive action when packet

loss due to corruption is detected. Keeping the window unchanged seems to be more aggressive

action as the number of corruption events increases. However, the overall outcome is positive -

the minimum value of improvement is almost 40%.

Table 1. Number of losses due to corruption at the sender’s side (single-bottleneck topology,

Scenario 1)

We noted the increased number of congestion events at packer error rate (referred to as PER) of

0.09 (9%). When PER is 0.01 the NewRenoLDA agent detected slightly less congestion events

than original NewReno. In contrary, when PER is 0.09, the situation is vice versa – the

NewRenoLDA agent has experienced more losses than the NewReno sender. It can be

concluded that keeping the window unchanged causes additional congestion in the network for

high error rates, therefore decreasing the overall efficiency.

Figure 3b depicts the different behaviour of the protocol in a multiple-bottleneck topology. We

observe a decreasing trend until PER of 0.05 is reached. For PER values greater than 0.06, the

general trend of increasing performance is not stable. In order to explain the sudden decrease at

PER of 0.08, we observed steep forward throughput degradation at both NewReno and

NewRenoLDA agents when packet error loss is introduced in the multiple-bottleneck topology

(Fig. 4). Hence, a big improvement or worsening of the throughput of NewRenoLDA is

calculated from a very small overall number of packets. An important factor of the diminished

throughput is the highly discrete and not adaptive behaviour of the investigated AIMD

congestion scheme. As more time is spent in retransmitting corrupted packets, the congestion

window shrinks or expands at low rate, resulting in bad network capacity utilization.

Additionally, the time spent per retransmission in a three bottleneck topology is considerably

long, which directly decreases the achieved throughput in a fixed time interval of 100 sec.

Figure 4. Throughput of forward long-lived flow in multiple-bottleneck topology

Protocol Packet error rate No. of congestion events

NewReno 0.01 124

NewRenoLDA 0.01 121

NewReno 0.09 116

NewRenoLDA 0.09 125

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

21

0.00

5.00

10.00

15.00

20.00

25.00

1 2 3 4 5 6 7 8 9

Packet error rate (%)
T

h
ro

u
g
h
p

u
t
im

p
ro

v
e
m

e
n
t
(%

)

-5.00

0.00

5.00

10.00

15.00

1 2 3 4 5 6 7 8 9

Packet error rate (%)

T
h
ro

u
g
h
p
u

t
im

p
ro

v
e
m

e
n
t
(%

)

Fig. 3b is a proof that the increased number of performed congestion actions is not always a

cause for lowered protocol performance of the NewRenoLDA sender. We noticed trend of

increased congestion actions at the NewrenoLDA agent as PER has greater value in multiple-

bottleneck technology, similar to the results presented in Table 1. Therefore, the number of

congestion epochs in the network can perform different roles in different topologies – it can be a

factor for either increased or decreased total throughput.

Fig. 5a and Fig. 5b display the throughput improvement of NewRenoLDA in Scenario 2.

a) b)

Figure 5. Percentage of throughput improvement of NewRenoLDA in a) single-bottleneck

topology b) multiple-bottleneck topology in Scenario 2.

We observed almost complementary protocol behaviour when compared with the results

presented in Fig. 3a and Fig. 3b. From Fig. 5a it can be concluded that the LDA integration does

not seem to make any significant throughput improvement until PER of 0.06 is reached. The

advantage of using LDA is evident after the threshold of 0.06 error rate. We noticed that the

average bottleneck utilization decreases as the value of PER increases. Considering the high

congestion state of the network, keeping the congestion window unchanged pays off after a

certain freeing of the network capacities is performed by high PER values. Furthermore, by

conducting a set of additional experiments, we noticed that the value of the mentioned error rate

threshold is strongly dependant on the congestion level of the network. Moreover, we recorded

greater number of congestion events at the NewRenoLDA sender than the NewReno sender at

PER of 0.02 and 0.03, which was certainly not the case in Scenario 1 (Table 1). An interesting

fact is that the same PER threshold is present in the multiple-bottleneck topology, but this time

the threshold marks the beginning of a throughput decreasing trend (Fig. 5b). Because the

bottleneck link capacity is relieved of stress by dropping packets, we recorded performance

improvement until the threshold is reached. Congestion window analysis showed that when the

threshold is passed, the averaged congestion window of NewRenoLDA is too large when

compared with the averaged congestion window of NewReno. Hence, NewRenoLDA is too

aggressive for the congestion state of the network, so the performance is decreased in almost the

same fashion as it was increased.

6.2. TCP Westwood

TCP Westwood uses bandwidth estimation to control its sending rate at each received

acknowledgement. In [10] the authors state that the bandwidth estimation of the network is

performed in both slow start and congestion avoidance phase. Therefore, additional network

phenomenon as ACK compression or ACK delay may perform much important role in the

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

22

-10.00

-5.00

0.00

5.00

10.00

15.00

1 2 3 4 5 6 7 8 9

Packet error rate (%)

T
h
ro

u
g
h
p

u
t
im

p
ro

v
e
m

e
n
t
(%

)

-20.00

-10.00

0.00

10.00

20.00

30.00

40.00

1 2 3 4 5 6 7 8 9

Packet error rate (%)

T
h
ro

u
g
h
p
u

t
im

p
ro

v
e
m

e
n
t
(%

)

overall protocol behaviour. In contrary to TCP NewReno, we observe much greater continuality

in the protocol’s congestion scheme. We argue that the most appropriate way to implement

LDA may be more complex than the implementation in the AIMD scheme. Currently, the

integrated ideal LDA simply does not perform the bandwidth estimation operation and the

possible decreasing of the congestion window when three duplicate acknowledgements are

received.

In [6] it has been stated that TCP Westwood strongly relies on the TCP acknowledgement

scheme, so we further broaden our study and include analysis of the acknowledgements in order

to completely understand the behaviour of bandwidth estimation algorithms.

Fig. 6a and Fig. 6b show the throughput improvement of TCP WestwoodLDA (TCP Westwood

with integrated LDA) when compared with TCP Westwood in Scenario 1.

a) b)

Figure 6. Percentage of throughput improvement of WestwoodLDA in a) single-bottleneck

topology b) multiple-bottleneck topology in Scenario 1.

According to the action undertaken by the ideal LDA, as the PER increases, the number of

bandwidth estimations performed by the WestwoodLDA agent decreases. In other words, for

big values of PER, we disrupt the continuality of bandwidth estimation to a large scale. It has

proved to be of more benefit for the simulated multiple-bottleneck topology.

When single-bottleneck topology is simulated, the value of AckdInterval (Section 2.2) takes

smaller values when compared with the values of AckdInterval when multiple-bottleneck

topology is used in simulations. The greater value of AckdInterval in multiple-bottleneck

topology is due to the longer path which the acknowledgement must travel. We measured

averaged values of 0.004194 and 0.005499 of AckdInterval for single and multiple-bottleneck

topology respectively. We also recorded constant value of both AckdSize and RTTmin in the

both topologies. Therefore we conclude that the value of AckdInterval has the greatest impact

over the continuous bandwidth estimation and finally at the achieved throughput. AckdInterval

and SampleBwe are reverse proportional; hence we recorded smaller values of SampleBwe in

the multiple-bottleneck topology than in the single-bottleneck topology. The reverse

proportionality of AckdInterval and SampleBwe, accompanied by the different magnitudes of

AckdInterval in the two topologies, lead to the almost inverted behaviour of WestwoodLDA

presented in Fig. 6a and Fig. 6b. It should be noted that, according to Eq. 4, greater values of

SampleBwe may lead to consecutive greater values of Bwe. The increasing value of Bwe results

in more aggressive WestwoodLDA sender, which proves to be inefficient in single-bottleneck

topology after PER of 0.02.

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

23

We observe the two extremes in Fig. 6a, at PER of 0.01 and PER of 0.08. At PER of 0.01 we

record improvement of TCP WestwoodLDA of 11.91%, while at PER of 0.08 degradation of

6.58% was noticed. Also, two extremes are depicted in Fig. 6b - at PER of 0.04 (degradation of

11.91%) and 0.08 (improvement of 33.24%). We prove the variability in aggressiveness of the

Westwood and the WestwoodLDA sender from another point of view – the number of packet

losses due to congestion recorded at the sender in Scenario 1(Table 2 and Table 3).

Table 2. Number of losses due to corruption at the sender’s side (single-bottleneck topology,

Scenario 1)

Protocol Packet error rate No. of congestion events

Westwood 0.01 994

WestwoodLDA 0.01 795

Westwood 0.08 306

WestwoodLDA 0.08 130

Table 3. Number of losses due to corruption at the sender’s side (multiple-bottleneck topology,

Scenario 1)

The decreased number of congestion events recorded at both the Westwood and WestwoodLDA

agents indicates that the multiple-bottleneck topology is much less prone to congestion than the

single-bottleneck topology. The WestwoodLDA agent recorded only 4 packet losses due to

congestion in a simulation time of 100s at PER of 0.08. The small number of congestion events

is an indicator that WestwoodLDA did not decrease the congestion window almost 46 times

more than the Westwood sender. Moreover, WestwoodLDA did not cause additional congestion

in the network. From our observations of the Westwood and Vegas LDA variants we concluded

that due to the network adaptive behaviour, non-AIMD schemes with integrated LDA never

experience more congestion packet losses than the original congestion schemes. This is

certainly not the case with the AIMD scheme used by TCP NewReno (Table 1).

Fig. 7a and Fig. 7b show the throughput improvement of TCP Westwood over TCP

WestwoodLDA when Scenario 2 is simulated. We observed general throughput improvement of

WestwoodLDA in the single-bottleneck topology, in contrary of the worsened achieved

throughput depicted in Fig. 6a. However, the throughput improvement is very small; the

maximum improvement of 1.65% is noted at PER of 0.05. We also observed inverted behaviour

of the protocol in multiple-bottleneck topology (Fig. 6b and Fig. 7b). The window size

aggressiveness of the WestwoodLDA sender produces increased averaged throughput only

because of the great number of congestion losses. The congestion window is reduced many

times during the simulation due to heavy congestion, so occasional keeping of the size of the

congestion window brings only a small benefit until PER of 0.09 is reached (Fig. 7a). However,

that is not the case when multiple-bottleneck topology is simulated, since the WestwoodLDA

sender is not so aggressive due to high values of AckdInterval. The values of AckdInterval are

additionally increased because of the three routers where heavy congestion occurs. Opposite of

Protocol Packet error rate No. of congestion events

Westwood 0.04 249

WestwoodLDA 0.04 72

Westwood 0.08 50

WestwoodLDA 0.08 4

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

24

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

1 2 3 4 5 6 7 8 9

Packet error rate (%)

T
h
ro

u
g

h
p
u

t
im

p
ro

v
e

m
e
n
t

(%
)

-6.00

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

1 2 3 4 5 6 7 8 9

Packet error rate (%)

T
h
ro

u
g
h

p
u
t
im

p
ro

v
e
m

e
n
t

(%
)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Simulation time (s)

A
c
k

tI
n
te

rv
a
l (

s
)

26 28

the WestwoodLDA sender, the original Westwood agent is prone to adjusting its congestion

window to smaller sizes. Fig. 7b shows that keeping the congestion window unchanged results

in worsened throughput due to heavy congestion, for PERs greater than 0.07.

 a) b)

Figure 7. Percentage of throughput improvement of WestwoodLDA in a) single-bottleneck

topology b) multiple-bottleneck topology in Scenario 2.

An important factor of the non-linear characteristics of Fig. 7a and Fig. 7b may be the fact that

TCP Westwood (and hence TCP WestwoodLDA) relies on the TCP acknowledgement

mechanism. The reverse traffic accompanied by the cross traffic created ACK compression of

great scale. In Fig. 8 we present the recorded values of AckdInterval in WestwoodLDA sender

in single-bottleneck topology in 2 seconds of simulation. As expected, we observed even greater

ACK compression in the multiple-bottleneck topology.

 Figure 8. ACK compression recorded at the WestwoodLDA sender

The consecutive low values of AckdInterval are clear indicators that a series of

acknowledgement packets are received in a very tight time slot, often followed by large delay

until next acknowledgement is received. Therefore, if a packet loss due to congestion happens

after a long ACK compression event, the Westwood and WestwoodLDA agents set their slow

start threshold and possibly the congestion window to a slightly greater value. If packet loss

due to corruption happens sometime after that sequence of events, the congestion window is not

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

25

-140.00

-120.00

-100.00

-80.00

-60.00

-40.00

-20.00

0.00

1 2 3 4 5 6 7 8 9

Packet error rate (%)

T
h
ro

u
g
h
p
u
t
im

p
ro

v
e
m

e
n
t
(%

)

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

1 2 3 4 5 6 7 8 9

Packet error rate (%)

T
h
ro

u
g
h
p
u
t
im

p
ro

v
e
m

e
n
t
(%

)

readjusted by WestwoodLDA. That creates high probability for new congestion events. We

observe non-linear characteristics of the averaged throughput because of the unpredictability of

such events.

6.3. TCP Vegas

The congestion scheme of TCP Vegas is the most complex scheme so far, because the

congestion window is modified at many places (Section 2). Therefore, we analyze three kinds of

actions performed by the Vegas (and the VegasLDA) sender: Action of increasing, decreasing

or keeping the congestion window unchanged. Decreasing the congestion window is performed

when three duplicate acknowledgements are received; all other actions take place at each

received acknowledgement. Once again, the ideal LDA simply avoids the decreasing of the

congestion window and resetting the timeout value when three duplicate acknowledgements are

received.

a) b)

Figure 9. Percentage of throughput improvement of VegasLDA in a) single-bottleneck topology

b) multiple-bottleneck topology in Scenario 1.

The behaviour of TCP VegasLDA in Scenario 1 is not positive. We observe linear improvement

of the negative throughput as the PER increases in Fig. 9a. The same trend is evident in Fig. 9b

until PER of 0.09 is reached. However, the overall achieved throughput is greatly worsened. We

explain the worsened throughput by observing two possible factors:

a) we noticed that the VegasLDA (and the Vegas) sender received small values of RTTs in the

not utilized network in Scenario 1. Because of the reverse proportionality of the values of

Actual and RTT for the last window (Section 2.3) we recorded high values for Actual and small

values of Difference. From the algorithm deployed in TCP Vegas we concluded that small

values of Difference led to bigger chances for increased congestion window;

b) although small, the number of detected erroneous packets disrupts the process of continuous

increase of the timeout value which Vegas implements. It should be noted that the timeout value

is crucial for faster retransmits. Hence, for small enough timeout values, a Vegas sender would

never have to wait for three duplicate acknowledgements in order to perform retransmit [11].

Since VegasLDA avoids prolonging its timeout value, the agent produced smaller timeout

values than the original Vegas agent and hence he never waited for three duplicate

acknowledgements. That behaviour is too aggressive for single-bottleneck (Fig. 9a) and

multiple-bottleneck topology (Fig. 9b).

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

26

In Table 4 and Table 5 we present the number of different actions performed upon the

congestion window in single and multiple-bottleneck topology, respectively:

 Table 4. Number of actions upon the congestion window at the sender’s side (single-bottleneck

topology, Scenario 1)

 Table 5. Number of actions upon the congestion window at the sender’s side (multiple-

bottleneck topology, Scenario 1)

NKU stands for Number of Keeping the window Unchanged, NI for Number of Increasing the

window, ND for Number of Decreasing the window and NOC for Number of Original

Congestion actions. We observed the values of PER where Fig. 9a and Fig. 9b depicted

maximum improvement or worsening of the throughput, or when sudden change in the trend

was noticed. As previously stated, the VegasLDA agent never manages to perform the original

congestion action of decreasing the congestion window after three duplicate acknowledgements,

making its behaviour too aggressive (note that NOC is equal to 0).

At multiple-bottleneck topology we observe deviation from the linear trend of negative

throughput improvement. This deviation can be explained by the change in the behaviour of the

agent noticeable at the PER of 0.09 in multiple-bottleneck topology when compared with the

behaviour of the same PER in single-bottleneck topology. In Table 4 we observe smaller values

of NKU and NI at the VegasLDA agent than the original Vegas sender. In Table 5, however, the

situation is opposite. The additional aggressiveness of the VegasLDA in multiple bottleneck

topology results in worsening of the achieved throughput.

In Fig. 10a and Fig. 10b we present the improvement of the throughput of the TCP VegasLDA

protocol in Scenario 2. Similar to TCP WestwoodLDA (Section 5.2) we observe better

performance of Vegas LDA in a congestion network scenario. The heavy congestion limits the

congestion window to low sizes, never allowing excessive aggressiveness of the VegasLDA

agent. The presented results are complementary with the results depicted in Fig. 9a and Fig. 9b;

for high error rates the VegasLDA agent in Scenario 1 records throughput improvement, in

contrary to the VegasLDA agent in Scenario 2.

Until PER of 0.03 is reached, we observe almost same behaviour of both Vegas and VegasLDA

in the single-bottleneck topology (Fig. 10a) and even slight improvement (PER 0.01) in the

 Vegas/

0.01 PER

VegasLDA/

0.01 PER

Vegas/

0.09 PER

VegasLDA/

0.09 PER

NKU 53 12 112 73

NI 1012 764 491 386

ND 11 0 5 0

NOC 166 0 183 0

 Vegas/

0.07 PER

VegasLDA/

0.07 PER

Vegas/

0.09 PER

VegasLDA/

0.09 PER

NKU 50 38 27 35

NI 214 187 120 162

ND 0 0 0 0

NOC 20 0 7 0

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

27

-70.00

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

10.00

1 2 3 4 5 6 7 8 9

Packet error rate (%)

T
h
ro

u
g
h
p

u
t
im

p
ro

v
e
m

e
n
t
(%

)

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

10.00

1 2 3 4 5 6 7 8 9

Packet error rate (%)

T
h
ro

u
g
h
p
u
t
im

p
ro

v
e
m

e
n

t
(%

)

multiple-bottleneck topology (Fig. 10b). We recorded trend of lowering bottleneck utilization as

PER increases. Therefore, the VegasLDA sender managed to partially regain its high window

sizes which we observed in Scenario 1; hence the complementarities of the presented charts in

this section.

a) b)

Figure 10. Percentage of throughput improvement of VegasLDA in a) single-bottleneck

topology b) multiple-bottleneck topology in Scenario 2.

Furthermore, we observed very similar value of the sum of original congestion actions and

detected packets lost due to errors at VegasLDA and number of congestion actions at Vegas

sender (Table 6). Hence, the PER of 0.03 is a PER threshold after which the balance is disturbed

and the throughput of VegasLDA is significantly worsened – we observe that for high PER rates

the VegasLDA sender does not decrease its congestion window (NOC is equal to 0).

Table 6. Number of actions upon the congestion window at the sender’s side (single-bottleneck

topology, Scenario 2)

 Vegas/

0.01 PER

VegasLDA/

0.01 PER

Vegas/

0.07 PER

VegasLDA/

0.07 PER

Detected

losses due to

errors

0 894 0 2530

NOC 1045 48 4833 0

Since specific congestion action is performed at each receipt of acknowledgement, the effect of

the compressed acknowledgements has been expressed through the presented numbers of

different performed actions. Also, the small time slots between the compressed

acknowledgements does not cause drastic changes in the behaviour of TCP VegasLDA since the

variables Expected and Actual do not rely on it; they rely on the overall RTT.

7. FUTURE WORK

This work can be continued in several directions: First, a more detailed analysis can be

performed on each discussed protocol. The effect of the faster retransmits algorithms deployed

in both TCP WestwoodLDA and TCP VegasLDA can be thoroughly discussed. For TCP

VegasLDA, analysis on the behaviour of RTT should also be taken into consideration, since its

algorithm relies greatly on the RTT values. Second, few more representatives can be picked out

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

28

of each type of congestion scheme in order to find common behaviour patterns. If similar

characteristics are discovered, then we could consider designing LDA schemes appropriate for

each type of congestion mechanism.

8. CONCLUSIONS

We observed very different and complex dynamics of the three investigated congestion

schemes. For example, we noticed that TCP Westwood produced inverted throughput

achievement in congested and not congested networks. Moreover, TCP VegasLDA produced

complementary throughput improvement charts for dumb-bell and parking-lot topology, making

the output even more diverse.

At the AIMD scheme employed by TCP NewReno and TCP NewRenoLDA we observed linear

characteristics of the throughput improvement charts. We conclude that the greatest impact on

the behaviour of TCP NewReno and TCP NewRenoLDA has the number of congestion losses –

number of error losses relationship.

We witnessed unpredictability of the behaviour of the bandwidth estimation scheme used in

TCP Westwood. We showed that changes in the inter-arrival times of the acknowledgements

cause improvement or worsening of the throughput in rather unpredictable ways. Additionally,

we disclosed the sensitivity of TCP Westwood and TCP WestwoodLDA of the AckdInterval

variable. We also concluded that occasional events like ACK compression can cause excessive

aggressiveness in the WestwoodLDA agent. However, in order to achieve improved behaviour

of WestwoodLDA in different network scenarios, we conclude that the LDA must take into

consideration the estimated bandwidth and make possible changes after the estimation is

performed.

As expected, we observed huge sensitivity of the delay-based scheme of the timeout variable.

Avoiding increasing the timeout value when packer loss due to error is detected results in

greatly worsened throughput. We also noticed that if we do not increase the timeout value, even

for a few times, the whole dynamics of Vegas is disturbed – it never manages to increase it

again in a time interval of 100 sec. Therefore, we conclude that the timeout value must be

increased no matter of the type of the detected loss.

It is evident that there is no single way of integrating LDA into a congestion scheme. We have

often witnessed inverted and complementary behaviour of the bandwidth estimation and delay-

based protocols. That leads to the conclusion that in complex congestion schemes we might

need several ways of integrating LDA in one congestion scheme, each way best for different

network situations. However, constructing an LDA which performs different set of actions in

one congestion scheme might be cumbersome – a delicate switching mechanism would have to

be designed.

REFERENCES

[1] G. Xylomenos, G.C. Polyzos, P. Mähönen, M. Saaranen, “TCP Performance Issues over

Wireless Links,” IEEE Communications Magazine, vol. 39, no. 4, pp. 52-58, April 2001.

[2] C. Paras, J.J. Garcia-Luna-Acevez, “Differentiating Congestion vs. random loss: a method for

improving TCP performance over wireless links,” Proceedings of IEEE WCNC, pp. 90-93,

2000.

[3] A.M. Sakib, F.B. Lugman, “Improving TCP Performance over wired-wireless networks,”

Computer Networks, vol. 51, no. 13, pp. 3799-3811, Sept. 2007.

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

29

[4] S. Lohier, Y Ghamri Doudane, G. Pujolle, “Cross-Layer Differentiation Algorithms to improve

TCP Performance in WLANs,” Telecommunication Systems, vol. 36, no. 1, pp. 61-72, Nov.

2007.

[5] Y. Ji-Hoon, “Cross-Layer Explicit Link Status Notification to Improve TCP Performance in

Wireless Networks,” EURASIP Journal on Wireless Communications and Networking, vol.

2009, Article ID 617818, 15 pages, 2009. doi:10.1155/2009/617818.

[6] S. Cen, P.C. Cosman, G.M. Voelker, “End-to-end Differentiation of congestion and wireless

losses,” IEEE/ACM Transactions on Networking, vol. 11, no. 5, pp. 703-717, Oct. 2003.

[7] S. Biaz, N.H. Vaidya, “Distinguishing Congestion Losses from Wireless Transmission Losses: A

Negative Result,” Proceedings of the International Conference on Computer Communications

and Networks, p. 722, 1998.

[8] A. Boukerche, G. Jia, R.W.N. Pazzi, “Performance evaluation of packet loss differentiation

algorithms for wireless networks,” Proceedings of the 2nd ACM workshop on Performance

monitoring and measurement of heterogeneous wireless and wired networks, pp. 50-52, 2007.

[9] S. Floyd, T. Henderson, A. Gurtov, “The NewReno Modification to TCP’s Fast Recovery

Algorithm,” RFC 3782, April 2004.

[10] C. Casetti, M. Gerla, S. Mascolo, M.Y. Sanadidi, R. Wang, “TCP Westwood: Bandwidth

Estimation for Enhanced Transport over Wireless Links,” Proceedings of ACM Mobicom, pp.

287-297, 2001.

[11] L. Brakmo, L. Peterson, “TCP Vegas: End to End Congestion Avoidance on a Global Internet,”

IEEE Journal on Selected Areas in Communication, vol. 13, no. 8, pp. 1465-1480, Oct. 1995.

[12] A. Seddik-Ghaleb, Y. Ghamri-Doudane, S.M. Senouci, “TCP WELCOME TCP variant for

Wireless Environment, Link losses, and COngestion packet loss ModEls,” Proceedings of First

International Communication Systems and Networks and Workshops, pp. 243-250, 2009.

[13] H. Jae-Hyun, Y. See-Hwan, Y. Chuck, “TCP Feno: Enhancement for higher accuracy of loss

differentiation over small buffer heterogeneous networks,” Proceedings of IEEE 34th

Conference on Local Computer Networks, pp. 249-252, 2009.

[14] C.P. Fu, S.C. Liew, “TCP Veno: TCP Enhancement for Transmission Over Wireless Access

Networks,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 2, pp. 216-228,

Feb. 2003.

[15] K.W. Lien, J.S. Reeve, Y.J. Lee, “Improving TCP performance over wireless networks,”

Proceedings of International Symposium on Telecommunications, pp. 424-428, 2008.

[16] M. Alnuem, J. Mellor, R. Fretwell, “New Algorithm to Control TCP Behavior over Lossy

Links,” Proceedings of the 2009 International Conference on Advanced Computer Control, pp.

236-240, 2009.

[17] M. Alnuem, J. Mellor, R. Fretwell, “Tcp multiple drop action for transmission errors,” The 9th

Annual Postgraduate Symposium on the Convergence of Telecommunications, Networking and

Broadcasting, 2008.

[18] M.Y. Park, S.H. Chung, “Analyzing effect of loss differentiation algorithms on improving TCP

performance,” Proceedings of The 12th International Conference on Advanced Communication

Technology, pp. 737-742, 2010.

[19] P. Papadimitriou, V. Tsaoussidis, C. Zhang, “ End-to-end loss differentiation for video

streaming with wireless link errors,” Telecommunication Systems, vol. 43, no. 3, pp. 295-312,

2009, April 2010.

[20] W. Stevens, “TCP Slow Start, Congestion Avoidance, Fast Retransmit,” RFC 2001, Jan. 1997.

[21] “The Network Simulator – ns-2,”. Available: http://www.isi.edu/nsnam/ns/.

[22] “An NS2 TCP Evaluation Tool,”. Available: http://labs.nec.com.cn/tcpeval.htm.

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

30

[23] S. Floyd, V. Jacobson, “On Traffic Phase Effects in Packet-Switched Gateways,”

Internetworking: Research and Experience, vol. 3, no. 3, pp. 115-156, Sept. 1992.

[24] S. Floyd, V. Jacobson, “Random early detection gateways for congestion avoidance,”

IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp. 397-413, Aug. 1993.

Authors

Aleksandar Milenkoski received his Diploma

in Electrical Engineering at Faculty of Electrical

Engineering and Information Technology

Skopje and is currently an MSc candidate at

University American College Skopje. He

currently works as teaching assistant in

University American College Skopje where he

teaches computer network related subjects. His

general interests are simulation methods, loss

differentiation in wireless and ad hoc networks

and network modeling.

Biljana Stojcevska works as a teaching

assistant at the School of Computer Science and

IT at the University American College Skopje.

She received her MCs degree in the field of

Computer networks at the Institute of

Informatics, Faculty of Natural Sciences and

Mathematics in Skopje. The areas of her interest

are Computer Networks, Network Congestion

Management and Operating Systems.

