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ABSTRACT 

This paper carefully analyzes the behaviour of different congestion control schemes when used in 

combination with Loss Differentiation Algorithm. Three types of congestion schemes are discussed: 

delay-based, bandwidth estimation and AIMD, with one TCP variant representing each congestion 

scheme. We simulated two network scenarios with diverse link and traffic properties and evaluated the 

congestion schemes with integrated Loss Differentiation Algorithm in each of them. The integrated Loss 

Differentiation Algorithm is ideal, i.e. it makes no errors in its judgement. The behaviour of the schemes 

is analyzed from aspect of: the properties of the employed mathematical functions, the effect of presence 

or absence of additional network load (reverse and background traffic), and the achieved throughput. 

The results show very diverse scene and pinpoint the importance of the careful and delicate design of the 

congestion avoidance action when a non-congestion loss is detected.     
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1. INTRODUCTION 

With the increasing popularity of wireless networks, a few problems of the standard TCP 

implementation have become evident. Among them, the inability to cope with losses due to link 

errors has proven to be one of the greatest obstacles [1] when it comes to high throughput 

performance in networks with wireless links. Many TCP variants blindly reduce their 

congestion window because their TCP schemes always suppose that any loss is caused by 

network congestion. As a result, a great degradation in performance is noted.  

As an answer to this problem, many Loss Differentiation Algorithms (referred to as LDAs from 

this point) have been designed. Their primary goal is to make a two-way decision: is a packet 

loss due to congestion, or due to corruption? It has been shown that losses due to link error can 

be detected both in the transport [2] and the link layer [3]. These two approaches have been 

accompanied by cross-layer designs [4], [5]. The varying efficiencies of the existing LDAs have 

been observed by several LDA evaluation papers [6], [7], [8]. Their evaluation methods usually 

include testing the LDA from aspect of accuracy and frequency of congestion loss prediction. 

The excellent study presented in [6] goes further and defines metrics for misclassification rate, 

stressing the possible effect on the performance of the protocol when the LDA makes 

misclassifications.  Additionally, the same paper outlines the performance of the protocols put 

under evaluation in terms of throughput and fairness.  
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However, a certain trend has been noticed: very few papers explicitly define the way in which 

the used LDA is integrated into the TCP congestion control scheme. In most cases, it can be 

implicitly concluded that the undertaken action when a packet error loss is detected is simply 

avoiding the original congestion control response.   

To fill the gap, this paper closely investigates the relationship between the LDA and the 

congestion control scheme in which it is integrated. Three different types of congestion schemes 

are investigated: AIMD scheme, bandwidth estimation scheme and delay-based scheme. We 

investigate the following representative protocols of these schemes: TCP NewReno [9], TCP 

Westwood [10] and TCP Vegas [11] respectively. In each scheme we integrate ideal LDA with 

zero misclassification rate. The performances of the protocols are compared in terms of 

throughput and briefly on fairness. We observed very closely the dynamics of the protocols and 

the impact of the way in which the LDA is implemented in the congestion scheme.  

The paper is organized as follows: Section 2 contains the related work in this field. In Section 3 

a brief overview of the underlying algorithms behind TCP NewReno, TCP Westwood and TCP 

Vegas is given; in Section 4 we describe the structure of the LDA in use, while in Section 5 the 

simulation environment is discussed. In Section 6 the performances and dynamics of the 

schemes is elaborated, in Section 7 we present guidelines for future work, and finally in Section 

8 we give our conclusions. 

2. RELATED WORK 

Although proposing loss differentiation solutions with high precision, many of the published 

papers that present protocols aimed for operation in networks with high random loss do not 

implement change in the standard congestion schemes. The most utilized actions when wireless 

errors occur are no change at all or changing the reduction of the congestion window by a factor 

smaller than 1/2. For instance, the authors of [12] clearly state that no congestion window 

adjustment is needed when wireless errors are detected. Moreover, TCP Feno [13], based on its 

predecessor TCP Veno [14], simply reduces the window by 1/5 for each recognized wireless 

loss. The same action is undertaken by [15]. 

In contrary, [16] proposes congestion scheme designed for best efficiency when loss 

differentiator is used and analyzes in detail the performance of the scheme with and without 

error discriminator. The authors introduce congestion window cut policy in order to minimize 

unnecessary congestions caused by error discriminator mismatches. Additionally, they draw 

attention to the importance of designing adaptable and dynamic congestion schemes, suitable 

for LDA integration. Similarly, [17] proposes efficient congestion action when multiple non-

congestion losses take place. The authors emphasize the possible harm to the network’s 

performance caused by inadaptable congestion window actions combined with loss 

differentiator. In addition, [18] closely observes the impact of LDA accuracy on the 

performance of TCP. It concludes that accurate LDA and appropriate reaction to wireless loss is 

often not enough for improved performance, but that the LDA information should be used even 

in designing retransmission timeout recovery algorithms. 

A proposal which implements flexible action triggered upon a detected wireless loss is 

presented in [19]: a switching mechanism based on queuing delay is used to decide the 

appropriate congestion action after a wireless loss. Normally, when wireless loss is detected the 

window is kept unchanged. But, if big queuing delay is present, the protocol treats the wireless 

loss as congestive and reduces the congestion window.  

Following the arguments presented in [16] and [17], this research thoroughly analyzes the 

consequences of simple and not dynamic reaction to packet drops due to wireless errors. 
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3. CONGESTION SCHEMES 

In this section we briefly overview the mathematical model used by the congestion schemes of 

TCP NewReno, TCP Westwood and TCP Vegas. The accent is put on the reaction of the TCP 

modification when n consecutive duplicate acknowledgements are received; therefore we 

closely observe the position where LDA is deployed. 

3.1. TCP NewReno 

TCP NewReno is an effective modification of the original congestion avoidance algorithm [20]. 

The modification is an improvement of the Fast Recovery phase. However, the congestion 

avoidance scheme is still an AIMD scheme, since the congestion window is increased additively 

and decreased in a multiplicative fashion.  

When three duplicate acknowledgements are received by the sender, TCP NewReno halves the 

congestion window along with the Slow Start threshold (Eq. 1 and Eq. 2). 

2

WindowSize
ssthresh =   (1) 

2

WindowSize
WindowSize =                (2) 

ssthresh is the Slow Start threshold, while WindowSize is the size of the congestion window at 

the moment of receiving three duplicate acknowledgements. 

3.2. TCP Westwood 

TCP Westwood uses bandwidth estimation in order to achieve admirable protocol performance 

in mixed wired-cum-wireless networks. One of the key advantages of this protocol over TCP 

NewReno is the adaptive adjustment of the congestion window. TCP Westwood estimates the 

available link bandwidth, based on Eq. 3 and Eq. 4: 

 
alAckdInterv

AckdSize
SampleBwe =  (3) 

 0476.0)(9047.0 ×++×= BweLastSampleBweBweBwe  (4), 

where AckdSize is the total size of the acknowledged windows, AckdInterval is the length of the 

time slot between the last received acknowledgement and the moment of bandwidth estimation,. 

Bandwidth estimation is performed at each received acknowledgement. Bwe is the new 

estimated bandwidth, and LastSampleBwe is the previous SampleBwe. 

Finally, the congestion action is defined in Eq. 5: 

 
SegSize

RTTBwe
ssthresh

)( min×
=  (5). 

Only if the current window size is greater then the new Slow Start Threshold, new window size 

is calculated (Eq. 6): 

 ssthreshWindowSize =  (6). 
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RTTmin is the minimal RTT observed during the connection and SegSize is the length of the TCP 

segment, expressed in bits. It should be noted that TCP Westwood has successful mechanism 

for handling delayed and cumulative acknowledgements.  

3.3. TCP Vegas 

Similarly to TCP Westwood, TCP Vegas differs greatly from the AIMD scheme. The 

congestion avoidance actions in TCP Vegas can happen in two cases: one action takes place at 

the moment when new acknowledgement is received. The congestion window linearly 

decreases, increases or keeps its previous size. The pseudo code is given below. 

 Actual sending rate = Last window size / RTT for the last window 

 Expected = Current window size / minimalRTT 

 Difference = Expected – Actual 

 if (Difference < α) linearly increase window; 

 if (Difference > β) linearly decrease window; 

 else    leave window unchanged; 

minimalRTT is the minimal RTT observed during the connection.  

The other action takes place when n duplicate acknowledgements are received. It manipulates 

the window in more aggressive fashion: the window may be halved, set to three fourths of its 

current size or directly set to size of 2. The way in which the congestion window will be 

changed depends on the number of the retransmissions of the packet which is lost. The pseudo 

code follows: 

 if (Current window size <= 3) Current window size = 2; 

 else if(Number of retransmissions > 1) Current window size = Current window size/2; 

 else Current window size = Current window size*3/4;  

When it receives three duplicate acknowledgements, TCP Vegas also readjusts its timeout 

value: either it increases it two times when the number of transmissions is greater than one, or it 

increases it by one eighth of its value in any other case. The timeout value is crucial for deciding 

whether the sender should wait for three duplicate acknowledgements or retransmit the lost 

packet immediately. 

4. THE IDEAL LDA 

It has been previously stated that this research uses ideal LDA algorithm. In this section we 

briefly discuss the reasons for using such LDA and the way it is implemented. 

There are two reasons for constructing an ideal LDA:  

(a) it is the most appropriate way to investigate the congestion scheme – LDA relationship. Any 

LDA clearly has a certain misclassification rate, which could seriously alter the final results. 

Additionally, the architecture of each LDA invokes algorithm-specific inefficiencies. For 

example, [6] concludes that two loss differentiation schemes have classification problems when 

multiple streams share the same wireless link. The usage of ideal LDA guarantees a great deal 
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of “cleanliness” in the simulation scenario; it certainly eliminates the chances for classification 

mistakes. Therefore, the advantages or disadvantages of integrated loss classification 

mechanism are unbiased from misclassifications;  

(b) an ideal LDA certainly represents the final goal of the LDA authors. Each LDA has been 

designed with maximum classification rate in mind. Interestingly enough, this research clearly 

shows that many congestion schemes would have achieved better performance if the employed 

LDA made a certain number of mistakes. However, such improved performance may be safely 

considered as unexpected behaviour of the protocol when compared with the final goal of the 

creation of the loss differentiation scheme.  

By the properties of the ideal LDA, it can be easily concluded that it does not use a specific 

algorithm. The design of loss differentiation algorithm with perfect classification is still the 

ultimate goal. The LDA which we use is implemented in two places of the ns-2 [21] code: the 

first one is in the used error model code. At each detected drop event the LDA writes the packet 

sequence number – flow id pair in a file. The written pair is chosen specifically to ensure 

uniqueness of the record of the dropped packet. The second part of the ideal LDA is 

implemented at the TCP sender’s side. It consists of a function which searches the specific 

record file at each n duplicate acknowledgement event. If the combination of the acknowledged 

sequence number which triggered the loss action and the appropriate flow id is found in the 

record file, then the loss is classified as loss due to link error. Otherwise, the loss is considered 

to be caused by network congestion. Inspired by the previously discussed LDA evaluation 

papers, the action of the ideal LDA when loss due to corruption is detected is simply avoiding 

the original congestion action when three duplicate acknowledgements are received. In that way 

we observe the behaviour of the protocol in a situation when it does not activate its congestion 

reaction (Section 2) when there is no real congestion event present.  

The design of the ideal LDA has the disadvantage of many reading and writing actions to a file 

which increases the time needed for a simulation set to finish. However, storing the sequence 

number – flow id pair in the ns-2 code has proven to be unreliable. The great number of 

simulation runs in order to achieve good statistical accuracy can easily drain the available 

system memory. Additionally, the complexity of the code makes the transfer of the information 

on the dropped packet from the error model to the TCP agent very hardly feasible. At the end, 

the more time-consuming process was chosen, since reliability must be kept at high level. 

5. SIMULATION ENVIRONMENT AND METHODOLOGY 

In order to investigate the behaviour of the congestion schemes in realistic manner, we 

simulated a number of different scenarios in ns-2 network simulator. We used tcp-eval [22] as 

traffic and topology generator. In this section we give detailed explanation of the simulated 

scenarios. 

From aspect of general network congestion level, we created two different scenarios: 

• Scenario 1 - Not congested network  

o Number of forward long-lived flows: 1 

o No reverse traffic 

o No background traffic 

• Scenario 2 - Congested network  

o Number of forward long-lived flows: 20 

o Number of reverse long-lived flows: 5 

o Number of voice streaming flows: 5 
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o Number of forward video streaming flows: 5 

o Number of reverse video streaming flows: 5 

o Video streaming rate: 640 Kb/s 

o Video streaming packet size: 840 bytes 

o HTTP generation rate: 5 Kb/s 

Scenario 1 was created to investigate the impact of LDA integration into the congestion scheme 

when the number of packet loss due to congestion is low and when the protocol of the long-

lived flow does not compete with other flows. Therefore, all outside factors which could 

possibly disturb the efficient performance of the congestion scheme put under evaluation were 

eliminated. Scenario 2 represents more realistic scenario. Traffic in both directions is simulated, 

accompanied by additional background CBR UDP flows and TCP short-lived, ON/OFF flows. 

With this complex traffic scheme we create network situation which creates sudden congestion 

and decongestion, ACK compression, delayed and out-of-order acknowledgements, and 

eliminates possible traffic-phase effects [23].  

 

Figure 1. Single-bottleneck topology 

 

Figure 2. Multiple-bottleneck topology 

The traffic scheme explained in Scenario 1 and Scenario 2 was deployed in different network 

topologies with various link characteristics. We simulated two network topologies: single-

bottleneck (Fig. 1) and multiple-bottleneck topology (Fig. 2) for each traffic scenario. The 

multiple-bottleneck topology was modelled with three bottlenecks. Additionally, two queuing 

schemes were tested, FIFO and RED [24]. At the bottleneck queues a Bernoulli error model was 

used to drop packets. We tested the congestion schemes in a packet error rate interval of 0.01 to 

0.09. The bottleneck bandwidth was set to 10 Mbps and the queue length was equal to the 

Bandwidth Delay Product (BDP).  The non-bottleneck links had 1.5 ×  10 Mbps bandwidth. The 

achieved statistical precision is 5% with 95% confidence interval. The simulation time was set 
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to 100 sec. Careful examination of the protocols’ dynamics showed that they reached stable 

state after 100 sec of traffic generation. 

6. THE OBSERVATIONS 

In this section we present the observations of the congestion schemes dynamics specified in 

Section 2. We compared the protocols’ achieved throughput when FIFO and RED queuing 

schemes were deployed at the routers and concluded very similar results. Therefore, RED is not 

thoroughly discussed in the following sections. We also measured and compared the fairness of 

the specified TCP modifications with the fairness of their LDA-integrated counterparts and 

noticed very small changes. In all investigated scenarios, maximum improvement and 

worsening of the fairness of 2.50% and 3%, respectively, was noted. Hence, we concentrate our 

analyzing effort on the protocols’ achieved throughput when FIFO queuing disciplines are 

deployed.   

The values of the number of actions presented in the tables in this paper are averaged values 

obtained from a series of simulations. 

6.1. TCP NewReno 

Since TCP NewReno does not receive feedback from the network to adjust its sending rate, the 

impact of the LDA integration is the simplest of all discussed schemes to observe. It becomes 

clear that the most important factor of the protocol’s behaviour is the number of performed 

different reactions to packet losses. Therefore, we observe three different categories of actions: 

actions of increasing, decreasing or keeping the congestion window unchanged. We further 

investigate the number of such actions and try to find correlation between their number and the 

achieved throughput. 

Fig. 3a and Fig. 3b depict the percentage of improvement of TCP NewReno with integrated 

LDA as function of packet error rate. The new protocol is referred to as TCP NewRenoLDA. 

Fig. 3a and Fig. 3b show the throughput improvement in single-bottleneck and multiple-

bottleneck network topology respectively, in Scenario 1. Figure 3a clearly shows that the 

highest improvement is achieved at packet error rate of 0.01, followed by almost linear 

performance degradation to 0.09 error rate. The linear characteristics of the improvement are 

mainly due to the simple congestion reaction used by TCP NewReno, accompanied by the 

monotonous dynamics of the single-bottleneck topology.  

a) b) 

Figure 3. Percentage of throughput improvement of NewRenoLDA in a) single-

bottleneck topology b) multiple-bottleneck topology in Scenario 1. 
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By observing the number of congestion events at the NewReno agent presented in Table 1, we 

concluded that the degradation of the throughput is caused by too aggressive action when packet 

loss due to corruption is detected. Keeping the window unchanged seems to be more aggressive 

action as the number of corruption events increases. However, the overall outcome is positive - 

the minimum value of improvement is almost 40%. 

Table 1. Number of losses due to corruption at the sender’s side (single-bottleneck topology, 

Scenario 1) 

 

We noted the increased number of congestion events at packer error rate (referred to as PER) of 

0.09 (9%). When PER is 0.01 the NewRenoLDA agent detected slightly less congestion events 

than original NewReno. In contrary, when PER is 0.09, the situation is vice versa – the 

NewRenoLDA agent has experienced more losses than the NewReno sender. It can be 

concluded that keeping the window unchanged causes additional congestion in the network for 

high error rates, therefore decreasing the overall efficiency.  

Figure 3b depicts the different behaviour of the protocol in a multiple-bottleneck topology. We 

observe a decreasing trend until PER of 0.05 is reached.  For PER values greater than 0.06, the 

general trend of increasing performance is not stable. In order to explain the sudden decrease at 

PER of 0.08, we observed steep forward throughput degradation at both NewReno and 

NewRenoLDA agents when packet error loss is introduced in the multiple-bottleneck topology 

(Fig. 4). Hence, a big improvement or worsening of the throughput of NewRenoLDA is 

calculated from a very small overall number of packets. An important factor of the diminished 

throughput is the highly discrete and not adaptive behaviour of the investigated AIMD 

congestion scheme. As more time is spent in retransmitting corrupted packets, the congestion 

window shrinks or expands at low rate, resulting in bad network capacity utilization. 

Additionally, the time spent per retransmission in a three bottleneck topology is considerably 

long, which directly decreases the achieved throughput in a fixed time interval of 100 sec.  

Figure 4. Throughput of forward long-lived flow in multiple-bottleneck topology 

Protocol Packet error rate No. of congestion events 

NewReno 0.01 124 

NewRenoLDA 0.01 121 

NewReno 0.09 116 

NewRenoLDA 0.09 125 
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Fig. 3b is a proof that the increased number of performed congestion actions is not always a 

cause for lowered protocol performance of the NewRenoLDA sender. We noticed trend of 

increased congestion actions at the NewrenoLDA agent as PER has greater value in multiple-

bottleneck technology, similar to the results presented in Table 1. Therefore, the number of 

congestion epochs in the network can perform different roles in different topologies – it can be a 

factor for either increased or decreased total throughput.  

Fig. 5a and Fig. 5b display the throughput improvement of NewRenoLDA in Scenario 2.  

a) b) 

Figure 5. Percentage of throughput improvement of NewRenoLDA in a) single-bottleneck 

topology b) multiple-bottleneck topology in Scenario 2. 

We observed almost complementary protocol behaviour when compared with the results 

presented in Fig. 3a and Fig. 3b. From Fig. 5a it can be concluded that the LDA integration does 

not seem to make any significant throughput improvement until PER of 0.06 is reached. The 

advantage of using LDA is evident after the threshold of 0.06 error rate. We noticed that the 

average bottleneck utilization decreases as the value of PER increases. Considering the high 

congestion state of the network, keeping the congestion window unchanged pays off after a 

certain freeing of the network capacities is performed by high PER values. Furthermore, by 

conducting a set of additional experiments, we noticed that the value of the mentioned error rate 

threshold is strongly dependant on the congestion level of the network. Moreover, we recorded 

greater number of congestion events at the NewRenoLDA sender than the NewReno sender at 

PER of 0.02 and 0.03, which was certainly not the case in Scenario 1 (Table 1). An interesting 

fact is that the same PER threshold is present in the multiple-bottleneck topology, but this time 

the threshold marks the beginning of a throughput decreasing trend (Fig. 5b). Because the 

bottleneck link capacity is relieved of stress by dropping packets, we recorded performance 

improvement until the threshold is reached. Congestion window analysis showed that when the 

threshold is passed, the averaged congestion window of NewRenoLDA is too large when 

compared with the averaged congestion window of NewReno. Hence, NewRenoLDA is too 

aggressive for the congestion state of the network, so the performance is decreased in almost the 

same fashion as it was increased.  

6.2. TCP Westwood 

TCP Westwood uses bandwidth estimation to control its sending rate at each received 

acknowledgement. In [10] the authors state that the bandwidth estimation of the network is 

performed in both slow start and congestion avoidance phase. Therefore, additional network 

phenomenon as ACK compression or ACK delay may perform much important role in the 
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overall protocol behaviour. In contrary to TCP NewReno, we observe much greater continuality 

in the protocol’s congestion scheme. We argue that the most appropriate way to implement 

LDA may be more complex than the implementation in the AIMD scheme. Currently, the 

integrated ideal LDA simply does not perform the bandwidth estimation operation and the 

possible decreasing of the congestion window when three duplicate acknowledgements are 

received.  

In [6] it has been stated that TCP Westwood strongly relies on the TCP acknowledgement 

scheme, so we further broaden our study and include analysis of the acknowledgements in order 

to completely understand the behaviour of bandwidth estimation algorithms.  

Fig. 6a and Fig. 6b show the throughput improvement of TCP WestwoodLDA (TCP Westwood 

with integrated LDA) when compared with TCP Westwood in Scenario 1.  

a) b) 

Figure 6. Percentage of throughput improvement of WestwoodLDA in a) single-bottleneck 

topology b) multiple-bottleneck topology in Scenario 1. 

According to the action undertaken by the ideal LDA, as the PER increases, the number of 

bandwidth estimations performed by the WestwoodLDA agent decreases. In other words, for 

big values of PER, we disrupt the continuality of bandwidth estimation to a large scale. It has 

proved to be of more benefit for the simulated multiple-bottleneck topology.   

When single-bottleneck topology is simulated, the value of AckdInterval (Section 2.2) takes 

smaller values when compared with the values of AckdInterval when multiple-bottleneck 

topology is used in simulations. The greater value of AckdInterval in multiple-bottleneck 

topology is due to the longer path which the acknowledgement must travel. We measured 

averaged values of 0.004194 and 0.005499 of AckdInterval for single and multiple-bottleneck 

topology respectively. We also recorded constant value of both AckdSize and RTTmin in the 

both topologies. Therefore we conclude that the value of AckdInterval has the greatest impact 

over the continuous bandwidth estimation and finally at the achieved throughput.  AckdInterval 

and SampleBwe are reverse proportional; hence we recorded smaller values of SampleBwe in 

the multiple-bottleneck topology than in the single-bottleneck topology. The reverse 

proportionality of AckdInterval and SampleBwe, accompanied by the different magnitudes of 

AckdInterval in the two topologies, lead to the almost inverted behaviour of WestwoodLDA 

presented in Fig. 6a and Fig. 6b. It should be noted that, according to Eq. 4, greater values of 

SampleBwe may lead to consecutive greater values of Bwe. The increasing value of Bwe results 

in more aggressive WestwoodLDA sender, which proves to be inefficient in single-bottleneck 

topology after PER of 0.02.  
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We observe the two extremes in Fig. 6a, at PER of 0.01 and PER of 0.08. At PER of 0.01 we 

record improvement of TCP WestwoodLDA of 11.91%, while at PER of 0.08 degradation of 

6.58% was noticed. Also, two extremes are depicted in Fig. 6b - at PER of 0.04 (degradation of 

11.91%) and 0.08 (improvement of 33.24%). We prove the variability in aggressiveness of the 

Westwood and the WestwoodLDA sender from another point of view – the number of packet 

losses due to congestion recorded at the sender in Scenario 1(Table 2 and Table 3).  

Table 2. Number of losses due to corruption at the sender’s side (single-bottleneck topology, 

Scenario 1) 

Protocol Packet error rate No. of congestion events 

Westwood 0.01 994 

WestwoodLDA 0.01 795 

Westwood 0.08 306 

WestwoodLDA 0.08 130 

 

Table 3. Number of losses due to corruption at the sender’s side (multiple-bottleneck topology, 

Scenario 1) 

 

The decreased number of congestion events recorded at both the Westwood and WestwoodLDA 

agents indicates that the multiple-bottleneck topology is much less prone to congestion than the 

single-bottleneck topology. The WestwoodLDA agent recorded only 4 packet losses due to 

congestion in a simulation time of 100s at PER of 0.08.  The small number of congestion events 

is an indicator that WestwoodLDA did not decrease the congestion window almost 46 times 

more than the Westwood sender. Moreover, WestwoodLDA did not cause additional congestion 

in the network. From our observations of the Westwood and Vegas LDA variants we concluded 

that due to the network adaptive behaviour, non-AIMD schemes with integrated LDA never 

experience more congestion packet losses than the original congestion schemes. This is 

certainly not the case with the AIMD scheme used by TCP NewReno (Table 1). 

Fig. 7a and Fig. 7b show the throughput improvement of TCP Westwood over TCP 

WestwoodLDA when Scenario 2 is simulated. We observed general throughput improvement of 

WestwoodLDA in the single-bottleneck topology, in contrary of the worsened achieved 

throughput depicted in Fig. 6a. However, the throughput improvement is very small; the 

maximum improvement of 1.65% is noted at PER of 0.05. We also observed inverted behaviour 

of the protocol in multiple-bottleneck topology (Fig. 6b and Fig. 7b). The window size 

aggressiveness of the WestwoodLDA sender produces increased averaged throughput only 

because of the great number of congestion losses. The congestion window is reduced many 

times during the simulation due to heavy congestion, so occasional keeping of the size of the 

congestion window brings only a small benefit until PER of 0.09 is reached (Fig. 7a). However, 

that is not the case when multiple-bottleneck topology is simulated, since the WestwoodLDA 

sender is not so aggressive due to high values of AckdInterval. The values of AckdInterval are 

additionally increased because of the three routers where heavy congestion occurs. Opposite of 

Protocol Packet error rate No. of congestion events 

Westwood 0.04 249 

WestwoodLDA 0.04 72 

Westwood 0.08 50 

WestwoodLDA 0.08 4 
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26 28

the WestwoodLDA sender, the original Westwood agent is prone to adjusting its congestion 

window to smaller sizes. Fig. 7b shows that keeping the congestion window unchanged results 

in worsened throughput due to heavy congestion, for PERs greater than 0.07.  

    a)      b) 

Figure 7. Percentage of throughput improvement of WestwoodLDA in a) single-bottleneck 

topology b) multiple-bottleneck topology in Scenario 2. 

An important factor of the non-linear characteristics of Fig. 7a and Fig. 7b may be the fact that 

TCP Westwood (and hence TCP WestwoodLDA) relies on the TCP acknowledgement 

mechanism. The reverse traffic accompanied by the cross traffic created ACK compression of 

great scale. In Fig. 8 we present the recorded values of AckdInterval in WestwoodLDA sender 

in single-bottleneck topology in 2 seconds of simulation. As expected, we observed even greater 

ACK compression in the multiple-bottleneck topology.  

  Figure 8. ACK compression recorded at the WestwoodLDA sender 

The consecutive low values of AckdInterval are clear indicators that a series of 

acknowledgement packets are received in a very tight time slot, often followed by large delay 

until next acknowledgement is received. Therefore, if a packet loss due to congestion happens 

after a long ACK compression event, the Westwood and WestwoodLDA agents set their slow 

start threshold and possibly the congestion window to a slightly greater value.  If packet loss 

due to corruption happens sometime after that sequence of events, the congestion window is not 
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readjusted by WestwoodLDA. That creates high probability for new congestion events. We 

observe non-linear characteristics of the averaged throughput because of the unpredictability of 

such events.  

6.3. TCP Vegas 

The congestion scheme of TCP Vegas is the most complex scheme so far, because the 

congestion window is modified at many places (Section 2). Therefore, we analyze three kinds of 

actions performed by the Vegas (and the VegasLDA) sender: Action of increasing, decreasing 

or keeping the congestion window unchanged. Decreasing the congestion window is performed 

when three duplicate acknowledgements are received; all other actions take place at each 

received acknowledgement. Once again, the ideal LDA simply avoids the decreasing of the 

congestion window and resetting the timeout value when three duplicate acknowledgements are 

received.  

a)      b) 

Figure 9. Percentage of throughput improvement of VegasLDA in a) single-bottleneck topology 

b) multiple-bottleneck topology in Scenario 1. 

The behaviour of TCP VegasLDA in Scenario 1 is not positive. We observe linear improvement 

of the negative throughput as the PER increases in Fig. 9a.  The same trend is evident in Fig. 9b 

until PER of 0.09 is reached. However, the overall achieved throughput is greatly worsened. We 

explain the worsened throughput by observing two possible factors:  

a) we noticed that the VegasLDA (and the Vegas) sender received small values of RTTs in the 

not utilized network in Scenario 1. Because of the reverse proportionality of the values of 

Actual and RTT for the last window (Section 2.3) we recorded high values for Actual and small 

values of Difference. From the algorithm deployed in TCP Vegas we concluded that small 

values of Difference led to bigger chances for increased congestion window;  

b) although small, the number of detected erroneous packets disrupts the process of continuous 

increase of the timeout value which Vegas implements. It should be noted that the timeout value 

is crucial for faster retransmits. Hence, for small enough timeout values, a Vegas sender would 

never have to wait for three duplicate acknowledgements in order to perform retransmit [11]. 

Since VegasLDA avoids prolonging its timeout value, the agent produced smaller timeout 

values than the original Vegas agent and hence he never waited for three duplicate 

acknowledgements. That behaviour is too aggressive for single-bottleneck (Fig. 9a) and 

multiple-bottleneck topology (Fig. 9b).  
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In Table 4 and Table 5 we present the number of different actions performed upon the 

congestion window in single and multiple-bottleneck topology, respectively: 

 Table 4. Number of actions upon the congestion window at the sender’s side (single-bottleneck 

topology, Scenario 1) 

 

 Table 5. Number of actions upon the congestion window at the sender’s side (multiple-

bottleneck topology, Scenario 1) 

 

NKU stands for Number of Keeping the window Unchanged, NI for Number of Increasing the 

window, ND for Number of Decreasing the window and NOC for Number of Original 

Congestion actions. We observed the values of PER where Fig. 9a and Fig. 9b depicted 

maximum improvement or worsening of the throughput, or when sudden change in the trend 

was noticed. As previously stated, the VegasLDA agent never manages to perform the original 

congestion action of decreasing the congestion window after three duplicate acknowledgements, 

making its behaviour too aggressive (note that NOC is equal to 0).  

At multiple-bottleneck topology we observe deviation from the linear trend of negative 

throughput improvement. This deviation can be explained by the change in the behaviour of the 

agent noticeable at the PER of 0.09 in multiple-bottleneck topology when compared with the 

behaviour of the same PER in single-bottleneck topology. In Table 4 we observe smaller values 

of NKU and NI at the VegasLDA agent than the original Vegas sender. In Table 5, however, the 

situation is opposite. The additional aggressiveness of the VegasLDA in multiple bottleneck 

topology results in worsening of the achieved throughput. 

In Fig. 10a and Fig. 10b we present the improvement of the throughput of the TCP VegasLDA 

protocol in Scenario 2. Similar to TCP WestwoodLDA (Section 5.2) we observe better 

performance of Vegas LDA in a congestion network scenario. The heavy congestion limits the 

congestion window to low sizes, never allowing excessive aggressiveness of the VegasLDA 

agent. The presented results are complementary with the results depicted in Fig. 9a and Fig. 9b; 

for high error rates the VegasLDA agent in Scenario 1 records throughput improvement, in 

contrary to the VegasLDA agent in Scenario 2.  

Until PER of 0.03 is reached, we observe almost same behaviour of both Vegas and VegasLDA 

in the single-bottleneck topology (Fig. 10a) and even slight improvement (PER 0.01) in the 

 Vegas/ 

0.01 PER 

VegasLDA/ 

0.01 PER 

Vegas/ 

0.09 PER 

VegasLDA/ 

0.09 PER 

NKU  53 12 112 73 

NI 1012 764 491 386 

ND 11 0 5 0 

NOC 166 0 183 0 

 Vegas/ 

0.07 PER 

VegasLDA/ 

0.07 PER 

Vegas/ 

0.09 PER 

VegasLDA/ 

0.09 PER 

NKU 50 38 27 35 

NI 214 187 120 162 

ND 0 0 0 0 

NOC 20 0 7 0 
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multiple-bottleneck topology (Fig. 10b). We recorded trend of lowering bottleneck utilization as 

PER increases. Therefore, the VegasLDA sender managed to partially regain its high window 

sizes which we observed in Scenario 1; hence the complementarities of the presented charts in 

this section.  

a)      b) 

Figure 10. Percentage of throughput improvement of VegasLDA in a) single-bottleneck 

topology b) multiple-bottleneck topology in Scenario 2. 

Furthermore, we observed very similar value of the sum of original congestion actions and 

detected packets lost due to errors at VegasLDA and number of congestion actions at Vegas 

sender (Table 6). Hence, the PER of 0.03 is a PER threshold after which the balance is disturbed 

and the throughput of VegasLDA is significantly worsened – we observe that for high PER rates 

the VegasLDA sender does not decrease its congestion window (NOC is equal to 0).  

Table 6. Number of actions upon the congestion window at the sender’s side (single-bottleneck 

topology, Scenario 2) 

 Vegas/ 

0.01 PER 

VegasLDA/ 

0.01 PER 

Vegas/ 

0.07 PER 

VegasLDA/ 

0.07 PER 

Detected 

losses due to 

errors 

0 894 0 2530 

NOC 1045 48 4833 0 

 

Since specific congestion action is performed at each receipt of acknowledgement, the effect of 

the compressed acknowledgements has been expressed through the presented numbers of 

different performed actions. Also, the small time slots between the compressed 

acknowledgements does not cause drastic changes in the behaviour of TCP VegasLDA since the 

variables Expected and Actual do not rely on it; they rely on the overall RTT. 

7. FUTURE WORK 

This work can be continued in several directions: First, a more detailed analysis can be 

performed on each discussed protocol. The effect of the faster retransmits algorithms deployed 

in both TCP WestwoodLDA and TCP VegasLDA can be thoroughly discussed. For TCP 

VegasLDA, analysis on the behaviour of RTT should also be taken into consideration, since its 

algorithm relies greatly on the RTT values.  Second, few more representatives can be picked out 
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of each type of congestion scheme in order to find common behaviour patterns. If similar 

characteristics are discovered, then we could consider designing LDA schemes appropriate for 

each type of congestion mechanism.  

8. CONCLUSIONS 

We observed very different and complex dynamics of the three investigated congestion 

schemes. For example, we noticed that TCP Westwood produced inverted throughput 

achievement in congested and not congested networks. Moreover, TCP VegasLDA produced 

complementary throughput improvement charts for dumb-bell and parking-lot topology, making 

the output even more diverse.  

At the AIMD scheme employed by TCP NewReno and TCP NewRenoLDA we observed linear 

characteristics of the throughput improvement charts. We conclude that the greatest impact on 

the behaviour of TCP NewReno and TCP NewRenoLDA has the number of congestion losses – 

number of error losses relationship.  

We witnessed unpredictability of the behaviour of the bandwidth estimation scheme used in 

TCP Westwood. We showed that changes in the inter-arrival times of the acknowledgements 

cause improvement or worsening of the throughput in rather unpredictable ways. Additionally, 

we disclosed the sensitivity of TCP Westwood and TCP WestwoodLDA of the AckdInterval 

variable. We also concluded that occasional events like ACK compression can cause excessive 

aggressiveness in the WestwoodLDA agent. However, in order to achieve improved behaviour 

of WestwoodLDA in different network scenarios, we conclude that the LDA must take into 

consideration the estimated bandwidth and make possible changes after the estimation is 

performed.  

As expected, we observed huge sensitivity of the delay-based scheme of the timeout variable. 

Avoiding increasing the timeout value when packer loss due to error is detected results in 

greatly worsened throughput. We also noticed that if we do not increase the timeout value, even 

for a few times, the whole dynamics of Vegas is disturbed – it never manages to increase it 

again in a time interval of 100 sec. Therefore, we conclude that the timeout value must be 

increased no matter of the type of the detected loss.  

It is evident that there is no single way of integrating LDA into a congestion scheme. We have 

often witnessed inverted and complementary behaviour of the bandwidth estimation and delay-

based protocols. That leads to the conclusion that in complex congestion schemes we might 

need several ways of integrating LDA in one congestion scheme, each way best for different 

network situations. However, constructing an LDA which performs different set of actions in 

one congestion scheme might be cumbersome – a delicate switching mechanism would have to 

be designed.  
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