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ABSTRACT 

Checkpointing is an efficient fault tolerance technique used in distributed systems. Mobile computing 

raises many new issues, such as high mobility, lack of stable storage on mobile hosts (MHs), low 

bandwidth of wireless channels, limited battery life and disconnections that make the traditional 

checkpointing protocols unsuitable for such systems. Several checkpointing algorithms have been 

reported in the literature. In this paper, we analyze some of existing coordinated checkpointing 

algorithms on the basic of blocking time, synchronization message overhead, number of processes 

required to checkpoint, number of useless checkpoint, piggybacked information messages onto 

computation messages and concurrent execution. We also proposed an efficient checkpointing algorithm 

to reduce the checkpointing overheads. Our checkpoint algorithm does not have any synchronization 

message overhead as it uses time to indirectly coordinate to create the consistent cut in distributed mobile 

system without increasing the number of checkpoints..  
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1. INTRODUCTION 

Recent years have witnessed rapid development of mobile communications and become part of 

everyday life for most people.  In the future, we will expect more and more people will use 

some portable units such as notebooks or personal data assistants. With increasing use small 

portable computers, wireless networks and satellites, a trend to support “Computing of the 

move” has emerged. This trend is known as mobile computing or “anytime” or “anywhere” 

computing. This enables the user to access and exchange information while they travel, roam in 

their home environments, or work at their desktop computers. Mobile environment contains 

both fixed and mobile hosts interconnected by a backbone network. Thus, recent advances in 

technology and mobile devices (e.g., laptop PCs with wireless connections, PDAs, etc.) have 

made the mobile computing affordable. 

The mobile hosts have several characteristics that make them different from fixed host. So any 

checkpointing approach for fault tolerant in mobile environment should consider these 

distinguishing features in their application. Presence of following characteristics we distinguish 

between distributed system and mobile distributed system. 

• Host Mobility 

• Limited Battery power  

• Frequently Disconnection 
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• Limited Bandwidth on wireless link 

• High bandwidth variability 

• Lack of Stable Storage on MH 

• Different types of failure 

• Limited geographical area 

• Handoff 

Numerous checkpointing and rollback recovery protocols have been proposed and studied 

extensively for distributed systems in the past years. However, little attention has been devoted 

to checkpointing mobile distributed systems. Now a day’s wireless networks, and mobile 

devices become pervasive, it is necessary to extend the capability of checkpointing to wireless 

and mobile environment. Due to the above unique characteristics of mobile environments, it is 

not appropriate to directly apply checkpointing and recovery protocols designed for distributed 

systems to mobile distributed systems. Checkpointing and rollback protocol for mobile 

distributed systems must consider these above unique characteristics. Otherwise, the protocols 

may not perform correctly or efficiently. 

 

2. SYSTEM MODEL 

A distributed system is a collection of computers that are spatially separated and do not share a 

common memory. The processes executing on these computers communicate with one another 

by exchanging messages over communication channels. The messages are delivered after an 

arbitrary delay. 

A mobile distributed system is a distributed system where some of the processes are running on 

mobile hosts (MHs)[5]. It consists of Static Hosts (SHs), Mobile Hosts (MHs) and the Mobile 

Support Stations (MSSs). So, the mobile distributed system can be considered as consisting of 

“n” MHs and “m” MSSs. The static network provides reliable, sequenced delivery of messages 

between any two MSSs, with arbitrary message latency. Similarly, the wireless network within 

a cell ensures FIFO delivery of messages between an MSS and a local MH. The links are FIFO 

in nature. An MH communicates with other nodes of system via special nodes called mobile 

support station (MSS).An MH can directly communicate with an MSS only if the MH is 

physically located within the cell serviced by MSS. A static node that has no support to MH can 

be considered as an MSS with no MH. A cell is a geographical area around an MSS in which it 

can support an MH .An MH can change its geographical position freely from one cell to another 

cell or even area covered by no cell .At any given instant of time an MH may logically belong to 

only one cell; its current cell defines the MH’s location and the MH is considered local to MSS 

providing wireless coverage in the cell. If an MH does not leave the cell, then every message 

sent to it from local MSS would receive in sequence in which they are sent.  

Base Station (BS) provides the wireless environment within the cell. It acts as a mediator 

between MHs and Base station controller (BSC) i.e wired and wireless networks. It is connected 

to MH via wireless link and to BSC via a high speed wired link. Two or more MHs are 

controlled by BS, two or more BSs are controlled by a BSC and similarly Mobile Support 

Station (MSS) will control two or more BSC’s. Due to mobility, the MH may cross the 

boundary between two cells; this process is known as handoff. The handover from one BS to 

another within the BSC region are handled by the BSC. MSS is high performance digital ISDN 

switch and is equipped with Home Location Register (HLR) and Visitor Location Register 

(VLR) for storing the location information of the mobile hosts.  HLR is the master subscriber 

data base that contains details of each mobile host (MHs) like pertinent user information, 

including address, account status, and preferences etc. VLR act as a temporary subscriber data 

base database maintained by a MSS to track users who are roaming in that mobile service 

provider's area. 

 



International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010 

63 

 

 

Figure 1. Reference Architecture Mobile Distributed Systems 

Message communication from an MH says MH1 to another MH says MH2 occurs as follows 

.MH1 first sends the message to its local MSS says MSS1 using wireless link .MSS1 forwards it 

to MSS2, the local MSS of MH2 via a fixed network. MSS2 then transmit it to MH2 over its 

wireless network. However location of MH2 may not be known to MSS1. So MSS1 may require 

to first determining the location of MH2 [23]. A node in the distributed system may fail during 

checkpointing. We assume all the failure to be fail-stop in nature. When a node fails, the 

contents of its primary memory are lost. 

2.1 System Failure 

The computing node in distributed system may fail. A system failure occurs when the processor 

fails to execute [34]. To handle the failure systems periodically saves the state in stable storage. 

At the time of failure system restart from its valid state. These failures can be classified in two 

different categories. 

2.1.1 Hard failures 

Hard failures consider as permanently failure or complete loss of connectivity from mobile 

node. This type of failure is non-voluntary in nature and processes stops any further actions 

forever such as falls, breaks, lost or stolen. 
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2.1.2 Soft Failure 

Soft failures do not permanently damages the mobile host. In such case mobile host informs to 

MSS prior to its occurrence such as battery discharge, disconnections or operating crashes. 

These two distinct types of failure can be handled by using checkpointing. The protocol use soft 

checkpoints which stored locally to tolerate soft failure and hard checkpoints are stored in the 

stable storage of MSS to tolerate the failures. Soft checkpoints are less reliable than hard 

checkpoints, because they can be lost with hard failures. However, soft checkpoints cost much 

less than hard checkpoints because they are created locally, without any message exchanges. 

Hard checkpoints have to be sent through the wireless link, and then through the backbone 

network, until they are stored in stable storage.    

3. ROLLBACK RECOVERY MECHANISM 

A rollback-recovery mechanism consists of three parts: checkpointing, fault detection and 

failure recovery. During checkpointing the state of a system periodically saved. When a failure 

occurs, processes have to rollback to their latest checkpointed state and continue execution from 

that state   The main issues in rollback recovery are to minimizing the work to be undoing and 

to begin the rollback recovery as soon as possible for each process which must rollback and 

minimal required information of the state should be saved so that process can be restarted in 

case of an error. 

Two main approaches of rollback recovery for the solutions to the problem of node failure are: 

• Log based rollback recovery 

• Checkpointing based rollback recovery 

3.1 Log-Based rollback Recovery Mechanism 

In log-based recovery, sending message history of processes since last checkpoints, are kept in 

main memory [7]. In case of a failure, a process can ask fault-free processes the needed 

messages. “Spooling” can be performing if volatile message logging takes too much memory 

space.  In message logging protocols, each process periodically records its local state and logs 

the messages that it receives after having recorded that state on stable storage. When a process 

crashes, a new process is created in its place. The new process is given the appropriate recorded 

local state, and then the logged messages are replayed in the order the process originally 

received them. All message-logging protocols require that once a crashed process recovers, its 

recovered state is   consistent with the states of the other processes [7]. Pessimistic logging, 

Optimistic and Casual Logging are three types of logging protocols [7]. 

3.2 Checkpoint-Based Rollback Recovery Mechanism 

In checkpointing based rollback recovery is a well-established technique to deal with process 

failures and increase the system reliability and fault-tolerance in distributed systems [23]. In this 

approach, the state of each process in the system is periodically saved on stable storage, which 

is called a checkpoint of a process. To recover from a failure, the system restarts its execution 

from a previous error-free, consistent global state [3]. In a distributed system, since the 

processes in the system do not share memory, a global state of the system is defined as a set of 

local states, one from each process. The processes exchange information with each other 

through messages.  A global state is said to be “consistent” if it contains no orphan message; 

i.e., a message whose receive event is recorded, but its send event is lost [3]. There are several 

applications of checkpointing including: rollback recovery, playback debugging, process 

migration, job swapping and load balancing [22]. 
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3.2.1 Checkpointing Related Notations 

Lamport’s ‘happen before’ relation: (i) if a and b are two events occurring in the same process 

and if a occurs before b, then a →b (ii) if a is the event of sending a message and b is the event 

of receiving the same message in another process then, a → b. 

Orphan message and domino effect: Consider the system activity illustrated in figure 2(a). P0, 

P1, P2 and P3 are four processes that cooperate by exchanging information (shown by the 

arrows). Each symbol ‘’ marks a recovery point to which a process can be rolled back in the 

event of a failure. If process P2 is to be rolled back, it can be rolled back to the recovery point 

C2,1 without effecting any other process. Suppose that P1 fails after sending message m4 and 

rolled back to C1,1. In this case, the receipt of m4 is recorded in C2,1, but the sending of m is not 

recorded in C1,1. Under such circumstances, m4 is referred to as an orphan message (messages 

whose receive events are recorded in the states of the destination processes but the send events 

are lost) and process P2 must also roll back because P1 interacted with P2 after establishing its 

recovery point C1,1.  So this effect, where rolling back one process causes one or more other 

processes to roll back, is known as domino effect [34]. The domino effect is caused by orphan 

message, which themselves are due to rollbacks [33].  

Lost message: Such a message, whose send event is recorded in the state of the sender process 

but the receive event is lost is called lost message as m5  in figure 2(b)  is a lost message. 

Local checkpoints: In distributed systems, all processes may take a local checkpoint 

independently at any time during the execution. The process of saving local state is called local 

checkpointing [34]. The local checkpoints of different processes are not coordinate to form a 

global consistent checkpoint state. In figure 1(a) C0,0, C1,0, C2,0, C3,0, C3,1 are the local 

checkpoints. 

Global checkpoints: A set of local checkpoints, with one checkpoint for every process, is said 

to be Consistent Global Checkpointing State (CGS), if it does not contain any orphan message 

or lost message. However missing message are acceptable in GCS, if messages are logged by 

sender [36]. In figure 1(a) checkpoint state C0,1, C1,1, C2,2  show an inconsistent checkpoints state 

due to orphan message m4 but in figure 1(b) these processes show the consistent global state as 

there is not any orphan and lost messages. 

FIFO Vs Non-FIFO channel: In FIFO system, checkpoint request play an important roll to 

determine the consistent global state. A FIFO system ensures that all messages sent after a 

checkpoint request on a channel will be delivered after the checkpoint request [37]. Hence, if 
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Figure 2. Non-blocking coordinated checkpointing: (a) with orphan, domino effect and checkpoint 

inconsistency; (b) with FIFO channels and lost message; (c) with non-FIFO channels. 
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channels are FIFO, process send first post-checkpoint message on each channel by checkpoint 

request before sending the message [7], as illustrated in figure 2(b).  In non-FIFO system, the 

problem of global snapshot recording is complicated because a checkpoint request can not be 

used delineate messages into those not to be recorded in the global state [37]. If channels are 

non-FIFO, the checkpoint request can be piggybacked on every post-checkpoint message as in 

figure 2(c) [35].    

Forced /Induced Checkpoint: A checkpoint that is forced due to receive of a message.   

Useful and Useless Checkpoints: if a forced checkpoints is converted into tentative checkpoint 

after receiving the checkpoint request and become the member of global state is called useful 

checkpoint else it become useless checkpoint. 

Directly and transitively dependent: A process Pi is in its yth 
 checkpoint interval directly 

depends on the process Pj on its x
th
 interval if Pj sends a message m after taking checkpoint Cj,x 

and Pi receives it after taking the checkpoint Ci,y. Process Pi  transitively depends on the process 

Pj if it depends directly depends on some processes Pm and Pm depends on Pj [19]. In figure 2(a) 

process P0 is directly depends on process P1 due to m1 and transitively depends on P2 as P2 sends 

message m2 to P1 on which P0 directly depends. 

Minimum set: if Pi initiate its(x+1)th checkpoint then the set of processes on which Pi 

depends(directly or transitively) in its xth checkpoint is minimum set[19]. In figure 2(a) on 

process P0 has the processes in minset {P0, P1, P2} as P0 directly depends and P2 transitively 

depends upon P0.  

Fault tolerance: The ability of a system to perform with the presence fault. 

Recovery line: A recovery line is a line which connects all the local checkpoints of a consistent 

global checkpointing state. If a failure occurs, then a system is requires to rollback to the latest 

available consistent global state. 

3.2.2Checkpoint Algorithms Assumptions 

 Checkpoint algorithms assume the following characteristics for the distributed system [7]: 

(i) Processes do not share memory and communicate by exchanging messages through 

communication channels. 

(ii) Channels are FIFO in nature. 

(iii) When a process fail, in such case it loses its volatile state and stops its volatile state and 

stops execution according to the fail-stop model. 

(iv) Communication failures do not partition the network. 

(v) Channels can loss messages. However, they are made virtually lossless and order of the 

messages is preserved by some end-to-end transmission protocol. Message sequence 

numbers may be used to preserve the order. 

(vi) Processes are piecewise deterministic in the sense that from the same state, if given the 

same inputs, a process executes the same sequence of instructions. 

(vii) Processes can save their state on stable storage to survives from failures during failure- 

free execution and can be used for recovery. 

3.2.3 Types of Checkpointing 

There are three flavors of checkpointing based recovery protocols: 

1) Coordinated or Synchronous checkpointing 

2) Uncoordinated or Asynchronous checkpointing 

3) Communication induced or Quasi-Synchronous or Hybrid Checkpointing 
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We first explain the uncoordinated, communication induced checkpointing algorithms 

in short and at last coordinated checkpointing algorithms in details with comparative 

study.  

1) Independent/Uncoordinated/Asynchronous Checkpointing 

In independent checkpointing, processes do not synchronize their checkpointing activity   and 

processes are allowed to records their local checkpoints in an independent way. After a failure, 

system will search a consistent global state by tracking the dependencies from the stable 

storage. The main advantage of this approach is that there is no need to exchange any control 

messages during checkpointing. But this requires each process to keep several checkpoints in 

stable storage and there is no certainty that a global consistent state can be built. It may require 

cascaded rollbacks that may lead to the initial state due to domino-effect [7]. Acharya- 

Badrinath[5] were the first who present a uncoordinated checkpointing algorithm for mobile 

computing systems. In their algorithm, an MH takes a local checkpoint whenever a message 

reception is preceded by a message sent at that MH. If the send and receive of messages are 

interleaved, the number of local checkpoints will be equal to half of the number of computation 

messages, which may degrade the system performance. 

2) Quasi-synchronous/Hybrid Checkpointing 

In the quasi-synchronous checkpointing approach, a global checkpoint is similar to the approach 

of coordinated checkpointing while rollback propagation can be avoided by forcing additional 

un-coordinated local checkpoint in processes [22]. There are three factors contributing to 

checkpointing overhead in this approach. 

i) Processes are allowed to take their checkpoints asynchronously. 

ii) Processes take forced checkpoints on receiving some application message depending upon 

conditions. 

iii) Processes may take checkpoint on receiving checkpoint request message. If a process takes 

forced checkpoint related to current initiations then it convert the forced checkpoint in to 

tentative one and if it already takes checkpoints, ignore the checkpoint request.  

Quasi-synchronous checkpointing algorithms can be classified into two categories [7].   

• Model based checkpointing: it relies on preventing patterns of communications and 

checkpoints that could result in inconsistent states among the existing checkpoints. 

Here a model is set up to detect the possibility that such patterns could be forming 

within the system, according to some heuristic and a checkpoint is usually forced to 

prevent the undesirable pattern from occurring. 

• Index based checkpointing: Index-based checkpointing works by assigning 

monotonically increasing indexes to checkpoints, such that the checkpoints having 

the same index at different processes form a consistent state. The indices are 

piggybacked on application messages to help receivers decide when they should 

force a checkpoint. 

3) Coordinated/Synchronous/Communication induced Checkpointing 
Coordinated checkpointing is a commonly used technique for fault tolerant in mobile distributed 

systems. In coordinated checkpointing approach all the processes communicate and synchronize 

through system messages before taking checkpoint and coordinate their checkpointing actions in 

such a way that checkpointing approach yields a CGS. In some approaches initiator of the 

checkpointing process forces the dependent processes (minimum processes)   In coordinated 

approach consistent global state is achieved during run-time, while in the independent approach 

the determination of a consistent recovery line was left to the recovery phase, which could result 

in some rollback propagation [22]. 
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3.2.4 Comparison between Checkpoint Schemes 

Table 1. Comparison between uncoordinated, coordinated and qusi-synchronoun checkpointing 

 Uncoordinated  

Checkpointing 
Coordinated  

Checkpointing 
Qusi-Synchronous 

Checkpointing 
Efficiency High for small 

number of MHs 

High for large 

number of MHs 

High 

Checkpoint/Process Multiple Single Multiple 

Domino effect Possible No No 

Orphan message Possible No Possible 

Scalable No  Minimal Not scale for large 

number of 

processors 

Recovery Cost High as global 

consistent state is not 

predictable 

Low as global 

consistent state is 

predictable 

High 

Recovery 

Complexity 

Yes No Yes 

Rollback Unbounded During fault, 

processes rollback to 

last committed 

checkpointed state 

Possibly several 

checkpoints 

Overhead Large storage and log 

management 

overhead 

Minimum storage 

overhead and 

negligible overhead 

in failure free 

execution 

High latency and 

memory and disk 

overhead 

Advantages No need to exchange 

any control message 

and save their 

checkpoint 

individually 

Lower overhead in 

stable storage, 

Recovery simple and 

predictable, not suffer 

from domino effect. 

Preventing domino 

effect piggybacking 

and information 

exchanged by the 

processes 

Disadvantages Domino effect 

possibility, storage 

overhead & complex 

garbage collection 

Synchronization 

message overhead 

and large latency for 

saving checkpoints 

Requires high 

performance 

parallel processor 

 

Coordinated checkpointing algorithms are made up by using the following scheme: 

• All process checkpointing: This requires all processes in the system to participate in every 

checkpointing session. 

• Minimum process checkpointing: These algorithms only forces those process to take their 

checkpoints which communicated with the initiator directly or indirectly since the last 

checkpoint need to take new checkpoints. 

• Blocking: Blocking algorithms force all relevant processes in the system to block their 

underlying computation during checkpointing latency. 

• Non-blocking: In non-blocking algorithms applications processes are not blocked when 

checkpoints are being taken. 

As mobile computing faces many new challenges such as low wireless bandwidth, frequent 

disconnections and lack of stable storage at mobile nodes. These issues make traditional 

checkpointing techniques unsuitable to checkpoint mobile distributed systems [1,5,15]. A good 
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checkpoint algorithm for mobile systems needs to have following characteristics [10].  It should 

impose low memory overheads on MHs and low overheads on wireless channels. The 

disconnection of MHs should not lead to infinite wait state. The checkpointing algorithm should 

avoid awakening of an MH in doze mode operation. The algorithm should be non-blocking and 

minimum-process.  

There is a tradeoff between coordinated and uncoordinated checkpointing approach for mobile 

systems. Some of the approaches advocate coordinated checkpointing[1-4,8,11,13,15,17,21,24-

26], as it free from domino-effect and others advocate un-coordinated checkpointing [5], due to 

lots of synchronization overhead caused by coordinated approach. But un-coordinated 

checkpointing in true sense is not suitable mobile computing and even for distributed systems 

due to number of reasons [1]. If the frequency of local checkpointing is high, each process will 

have multiple checkpoints, which require a large amount of stable storage and introduces a lot 

of communication overhead in mobile computing systems. The stable storage and 

communication overheads can be reduced by taking local checkpoints less frequently. However, 

this will increase the recovery time as greater rollback and reply will be needed. Even though 

some algorithm were proposed to reduce the number of checkpoints to be saved on the stable 

storage, to ensure correctness, a process still needs to keep many more checkpoints in 

uncoordinated checkpointing algorithms. So if we reduce the synchronization overhead from in 

coordinated approach, then it can become quite effective for mobile systems [27].  

In coordinated checkpointing, processes take checkpoints in such a manner that the resulting 

global state in consistent. Mostly it follows two-phase commit structure [1,2,4,8,13,19,26,27,] 

[31]. In the first phase, processes take tentative checkpoints and in the second phase, these are 

made permanent. The main advantage is that only one permanent checkpoint and at most one 

tentative checkpoint is required to be stored. In the case of a fault, processes rollback to last 

checkpointed state.  

4. PERFORMANCE ANALYSIS OF CHECKPOINTING ALGORITHMS 

We analyze and evaluate the checkpointing algorithms on the basic of blocking time, 

synchronization message overhead, number of processes required to checkpoint, number of 

useless checkpoint, piggybacked information messages onto computation messages and 

concurrent executions. We use the following notations:  

Nmss Number of MSSs. 
Nmh Number of MHs. 

Cst Cost of sending a message between any two MSSs. 

Cpp Average cost of sending a message between two processes. 

Cwl Cost of sending a message from an MH to its local MSS (or vice versa). 

Cbst Cost of broadcasting a message over static network 

Csearch Cost incurred to locate an MH and forward a message to its current    local MSS,  

from a source MSS. 

Tst Average message delay in static network.  

Twl Average message delay in the wireless network. 

Tch Average delay to save a checkpoint on the stable storage. It also includes the  

time  to transfer the checkpoint from an MH to its local MSS. 

Tch_static Average delay for a fixed host to save a checkpoint on the stable storage. 

Tsearch Average delay incurred to locate an MH and forward a message to its current  

local MSS. 

N Total number of processes in the system. 

Nmin Number of minimum processes required to take checkpoints.                

Nmut Number of useless mutable checkpoints [1].     

Nind Number of useless induced checkpoints [2, 19]. 

Ndep Height of the checkpointing tree in Koo-Toueg [4] algorithm 
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4.1 All Process Blocking Algorithms 

All process blocking algorithm can be differentiates on basic of  FIFO and non-FIFO channels. 

Barigazzi-Strigini[29], Deng-Park[28] and Kim-Park[17] proposed checkpointing algorithm 

which forces to all processes and block their underlying computation during current 

checkpointing interval by assuming the FIFO channel. Later, Leu-Bhargwa [30] proposed all 

blocking algorithm which does not assume that the channel is FIFO. Such algorithms are not 

suitable for mobile environment. Hence, the problem of minimizing the number of 

synchronization messages and checkpoints is become a crucial issue in mobile system as 

wireless network has limited bandwidth and mobile nodes have limited computation, storage 

and energy conservation requirement. It is mostly desirable that a coordinated checkpoint 

algorithm forces a minimum number of processes to take checkpoints [14].  

4.2 Minimum-process Blocking Algorithms 

Minimum- process blocking algorithms has the lowest synchronization overhead in the 

comparison of all-process blocking algorithms. The algorithms proposed in Koo-Tong[4],Cao-

Singhal[13], P.Kumar[26],], Higaki-Taki[27] has the lowest among the blocking 

algorithms[17], [28]-[30] which try to minimize the number of synchronization messages and 

the number of checkpoints during checkpointing.  

The koo-Toueg[4] proposed a minimum process coordinated checkpointing algorithm for 

distributed systems with the cost of blocking of processes during checkpointing. However this 

algorithm requires minimum number of synchronization message and number of checkpoints 

but each process uses monotonically increasing labels in its outgoing messages. The initiator 

process sends the checkpoint request to Pi only if it has received m from Pi in the current CI. 

Similarly, Pi sends the checkpoint request to other processes. In this way, a checkpointing tree is 

formed and at last the leaf node processes take checkpoints. The time taken to collect 

coordinated checkpoint in mobile systems may be too large due to mobility, disconnections and 

unreliable wireless channels. The extensive blocking of processes may degrade the system 

performance. The blocking time and synchronization message overhead in [4] are Nmh *(4*Twl + 

Tch  + Tsearch) and Nmh * (Cwl + Csearch) respectively[Refer Table 2]. Thus extensive blocking of 

processes may degrade the system performance.  

In [13], author proves that there does not exist a non-blocking algorithm that forces only a 

minimum number of processes to take their checkpoint. Every process maintains direct 

dependencies in a bit array of length n for n processes. Initiator process collects the direct 

dependencies and makes a set of interacting processes (Sforced), which need to checkpoint along 

with the initiator. During blocking time, processes can do their normal computations but cannot 

send any messages. On the basic of this result [13, 26] proposed minimum process blocking 

algorithm. Both the algorithms [13] and [26] have approximately same blocking time and 

message overhead. The algorithms [13, 26] block during the time, when MSS sends the 

dependency vector to its local dependent and receives the checkpoint request. Therefore, the 

blocking period of both the algorithms in worst case is 2Tst.The coordination message overhead 

in worst case including the following: (a) 2Cwl – the checkpoint request message from initiator 

process to its local MSS and it’s acknowledged. (b) 3Cbst: the initiator MSS broadcast send 

dependency, take checkpoint and commit message to all MSSs. (c) 2Nmss * Cst : MSSs send 

dependency vector to their processes and receive acknowledge. (d) 3 Nmh * Cwl : MSSs send 

checkpoint request, commit requests to relevant processes and receive acknowledge. So total 

message overhead (say TMOminp) in worst case in [13,26] is 3broad + 2Cwl + 2Nmss*Cst + 3 Nmh 

*Cwl. As shown in Table 2, algorithms [13, 26] avoids the search cost and dramatically reduces 

the blocking time from Nmh *(4*Twl + Tch  + Tsearch  to 2*Tst and cuts the message overhead cost 

by half compared to Koo-Toueg algorithm. Hence these algorithms avoid the search cost and 

minimize the number of checkpoints during checkpointing. 
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Higaki and Takizawa [27] have shown that there is a high probability that at least one MH will 

fail to record the checkpoint synchronously with other nodes and thus will render whole 

checkpointing effort useless. Such successive unsuccessful efforts will waste the scarce 

resources of mobile systems and will not allow the normal computation to proceed. They 

proposed a    checkpointing protocol where mobile hosts checkpoint independently and fixed 

ones synchronously and requires blocking of processes during checkpointing.  An MSS logs the 

messages of the MHs in its cell. If an MH fails to take its checkpoint and transfer it to the 

current MSS, it can try later. MSSs take checkpoints synchronously.  A process on an MH can 

recover independently. When a process on an MH crashes, a new process is created using 

checkpoint of the crashed MH, and then the logged messages are replayed in the order they 

were originally received. When a process on an MSS fails, all processes rollback to recent 

synchronous checkpoint. An MH uses its recent committed checkpoint and message logs to 

reach to a state consistent with the synchronous checkpoint.   The algorithm does not awaken an 

MH in doze mode operation. This algorithm suffers from the overhead of message logging for 

MHs. The blocking time and synchronization message overhead in [27] are 2*Tst +Tch_static and 

2*Cbst +Nmss*Cst respectively.  As shown in table 2, as compared to Cao-Singhal[13], Higaki-

Taki[27] have some higher blocking time but reduced message overheads and compared to 

Koo-Toueg[4], algorithm have reduced blocking and message overhead. 

 

Table 2. Performance analysis of all-process non-blocking and minimum-process blocking 

algorithms for distributed and mobile systems. 

 

 

Analysis  

Parameters 

All Process but 

Non-Blocking Algo. 

Minimum-Process but  Blocking Algorithms 

 

Elnozahy  

et al [8] 

S.Neogy 

et al.[25] 

Cao-Singhal 

[13] 

P.Kumar 

[26] 

Koo-

Toueg 

[4] 

Higaki-

Takizawa 

[27] 

Blocking 

Time  

0 0 2*Tst 2*Tst Ndep *Tch 2*Tst+ 

Tch_static 

Number of 

checkpoints 

N N+1 Nmin Nmin Nmin  Nmss 

Message 

Overhead 

2*Cbst + 

N *Cpp 

2*Cbst 
+ N*Cpp 

3Cbst+2Cwl+2

Nmss* 

Cst+3Nmh* 

Cwl 

TMOminp Nmh*( 

6Cwl+ 

Csearch) 

2*Cbst 

+Nmss* 

Cst 

Piggybacked  

Information  

integer Integer Nil Integer integer Nil  

Distributed/ 

Centralised 

Centralis

-ed 

Centralis

-ed 

Distributed Distribut 

-ed 

Distribut 

-ed 

Distribut 

-ed 

4.3 All Process Non-blocking 

All the above coordinated checkpointing algorithms [4][13] [17][26]-[30] requires processes to 

be blocked during checkpointing. During checkpointing, information related to process like all 

variables, the environment, control information and register values are stored on the stable 

storage. So, it consume a lot of time which me be long. Therefore, blocking algorithms may 

reduce the performance of the system [8]. Further to remove blocking overhead, recently non-

blocking distributed checkpointing algorithms [6],[8],[21],[25] have received consideration 

attention.  

The Chandy-Lamport [6] algorithm is the earliest all-process non-blocking coordinated 

checkpointing algorithm. In this algorithm, the global state is constructed by coordinating all 

processors and logging the channels states at the time of checkpointing. A special messages 
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called are used for coordination and for identifying the messages originating at different 

checkpoint intervals. This leads to a message complexity of O(N
2
) The algorithm is initiated by 

a centralized node and requires FIFO channels.   

The Elnozahy et al.[8] and Neogy-Sinha[25] also design an all-process non-blocking 

checkpointing algorithm. In these algorithms the initiator broadcast the checkpoint request to all 

processes the overhead of which is Cbst. The initiator receives reply from the N processes the 

overhead of which is N*Cpp. At last the initiator broadcasts a commit request to all processes to 

convert their tentative checkpoints to permanent one. In such way we get the consistent global 

state with the total message overhead of (2*Cbst + N*Cpp) [Refer Table 2].  

Algorithm proposed by Silva and Silva [21] uses a similar idea as [8] except that the processes 

which did not communicate with others during the previous checkpoint interval do not need to 

take new checkpoints. 

Table 3. Performance Analysis of Minimum-processes non-blocking and minimum-processes 

non-blocking with useless checkpoints for distributed and mobile systems.  

 

 

 

Analysis 

Parimeter 

Minimum-Process 

and Non-blocking 

Minimum-Process and Non-blocking 

with Useless Checkpoints 

S.K.Gupta 

et al.[27] 

B.Gupta 

et al.[31] 

Cao_ 

Singhal [1] 

 

P.Kumar 

et al.[2] 

Lalit  Kumar  

et al. [19] 

Blocking Time  0 0 0 0 0 

Number of 

checkpoints 

Nmin Nmin Nmin+Nmut Nmin+Nind Nmin+Nind 

Message 

Overhead 

2*Nmin*Cpp 

+ Cbst 

Cbst 2*Nmin*Cpp 

+ 

min(Nmin*

Cpp, Cbst ) 

3*Cbst + 

2*Nmin 

*Cpp 

3Cbst+2Cwl+2N 

mss* Cst +3Nmh*   

Cwl 

Piggybacked  

Information  

Integer Nil Integer Integer integer 

Concurrent  

Execution  

No No Yes No No 

Useless 

Checkpoint 

nil nil Present Present Present 

Single Phase/ 

Two Phase 

Two Single Two Two Two 

Non-

deterministic 

No Yes Yes Yes Yes 

 

 Therefore, algorithms [6][8][21][25] suffer from the disadvantages of centralized algorithms, 

such as one-site failure, traffic bottle-neck, etc. and there is no easy way to make it distributed 

without significantly increasing message overhead[1]. Moreover their algorithms require almost 

all processes to take checkpoints, even though many of them are unnecessary. Since some 

processes may be in the doze mode, broadcast may waste their energy and processor power. 

However, algorithms proposed in [6,8,21,25] dramatically increases the performance of the 

system in the comparison of blocking algorithms [4][13] [17][26]-[30] which requires processes 

to be blocked during checkpointing. As checkpointing time may be long and can reduce the 

performance of system. But algorithms [6,8,21,25], forces to all processes in the system to take 

their checkpoints for each checkpoint initiation, even though many of them may not be 

necessary as [17], [28]-[30].This may waste the energy and processor power of the processes 

which are in doze mode. We compare only Elnozahy et al. [8] and Neogy-Sinha[25] with 

minimum process blocking algorithms, as these has lowest overhead in among 

algorithms[6,8,21,25]. 
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4.4 Non-blocking Minimum-process 

A good checkpointing protocol for mobile distributed systems should have low overheads on 

MHs and wireless channels and should avoid awakening of MHs in doze mode operation. The 

algorithm should be non-intrusive and should force minimum number of processes to take their 

local checkpoints [15].  

All the above algorithms either minimize the number of synchronization messages and the 

number of checkpoints [17], [28]-[30] or make checkpointing algorithm non-blocking [6][8] 

[21],[25]. 

Prakash-Singhal proposed an algorithm in [15] by combing both minimum-process and non-

blocking approach. This algorithm only forces the minimum number of processes to take 

checkpoints without blocking of the underlying computation. Cao and Singhal  [13] have  

shown that the algorithm [15] can leads to inconsistencies. The authors also proved that there 

does not exist a non-blocking algorithm which forces only minimum number of processes to 

take checkpoints. Due to the inconsistency in algorithm [15], we do not compare it with other 

algorithms.    

In [27], S.K. Gupta et al. proposed a minimum process non blocking checkpointing algorithm 

for deterministic mobile distributed systems with a message overhead of 2*Nmin*Cpp+Cbst [Refer 

Table 3]. In deterministic system, if two processes starts in the same state, and both receive the 

identical sequence of inputs, they will produce the identical sequence outputs and will finish in 

the same state. In such case state of a process is completely determined by its starting state and 

by sequence of messages it has received [27].  

B.Gupta et al.[31] presented a single phase an efficient non-blocking coordinated checkpointing 

algorithm to determine the global consistent state. The algorithm produce 2*Nmin*Cpp + Cbst 

[Refer Table 3] message overhead and forces the minimum number of processes. Simulation 

result have shown that algorithm requires much less number of control (system) message in the 

comparison of [4,8, 25]. 

4.5 Minimum-process Non-blocking with Useless Checkpoints 

A good coordinated checkpointing algorithm for mobile distributed system should be non-

intrusive and force minimum number of processes to take their local checkpoints [15] but in 

algorithm [13] Cao-Singhal proved that non-intrusive and minimum process algorithms does not 

exist in coordinated system.  The algorithms [1][2][19] achieved non-intrusiveness with 

minimum-process in coordinated systems by using some useless checkpoints. 

In [1], Cao-Singhal proposed a mutable checkpoint based non-blocking minimum-process 

coordinated checkpointing algorithm. This algorithm completes its processing in the following 

three steps. First initiator MSS sends tentative checkpoint request to minimum number of 

processes that need to take checkpoint. The synchronization message overhead for this is Nmin 

*Cpp.  Secondly MSSini gets the acknowledgement from all processes to whom it sent checkpoint 

request. Hence message overhead 2* Nmin *Cpp is needed in first two phases. At last MSSini sends 

the commit request to convert its tentative checkpoint into permanent. In this case it takes 

min(Nmin* Cst, Cbst). Hence algorithm [1] determine consistent global state with the message 

overhead cost 2* Nmin * Cpp  + min(Nmin* Cpp, Cbst) and average number of checkpoints Nmin+ 

Nmut [Refer Table 3]. Mutable checkpoints  taken as: If any process sends a computation 

message to another process after receiving the checkpoint request, the receiving process first 

take the mutable checkpoint first and then process the message. Later, this mutable checkpoint 

converted to tentative, if it receives checkpoint request related to the current initiation; 

otherwise it become the useless checkpoint. The number of useless checkpoints in [1] may be 

exceedingly high in some situations [19]. 

P. Kumar et al. [2] proposed five phase minimum-process non-intrusive coordinated 

checkpointing algorithms to reduce the height of the checkpointing tree and the number of 

useless checkpoints. It follows the following steps in a distributed system which has (n+1) 
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processes. (i) Initiator process broadcasts the dependency vector request to all processes. (ii) 

Receives the dependency vector from all processes and then initiator process compute minimum 

set of processes which are directly or transitively dependent on the initiator process. (iii) Take 

own tentative checkpoint and send the tentative checkpoint request to the processes which 

belongs to the minimum set.(iv) Initiator process receives the responses  of taking tentative 

checkpoint (v) initiator process send the commit or abort message to all the processes. The 

synchronization message overhead to complete the checkpointing process using algorithm[2] is 

given as 3*Cbst  + 2*Nmin * Cpp.[Table 3] Here 3Cbst is the total cost of broadcasting sends 

ddv[](Cbst, take tentative checkpoint request(Cbst) and commit(Cbst) messages to all MSSs by the 

initiator MSS. 2*Nmin*Cpp is the total cost of sending checkpoint request message to the 

minimum number of processes that need to take checkpoints(Nmin*Cpp) and reply to the initiator 

after taking the tentative checkpoint(Nmin*Cpp). Hence algorithm [2] determines the global 

consistent state by using  Nmin+ Nindu average number of checkpoint and 3*Cbst  + 2*Nmin * Cpp 

message overhead cost but our proposed algorithm by using Nmin and 3* Nmin * Cpp respectively 

[Refer Table 3]. Thus algorithm [2] takes less useless checkpoint in the comparison of [1] but 

suffer from the overhead of collecting dependencies, computing the minimum set and 

broadcasting the minimum set on the static network.   

L. Kumar et al. [19] also proposed minimum-process non-intrusive coordinated checkpointing 

algorithms, where number of useless checkpoints is reduced as compared to [1][2]. In both of 

these algorithms, initiator MSS collects the direct dependency vectors of all processes, 

computes the minimum set, and sends the checkpoint request along with the  minimum set to all 

MSSs.  In algorithm [19], during the time Pi sends its direct dependency vectors and receives the 

minimum set, if Pi processes m which changes its own direct dependency vector, Pi takes 

induced checkpoint before processing m. In this way, fresh dependencies, created during 

checkpointing, do not alter the computed minimum set. The proposed minimum process non-

instrusive approach have the total message overhead cost is 3Cbst+2Cwl+2N mss* Cst +3Nmh* Cwl 

with Nmin +Nind checkpoints [Refer Table 3]. Simulations results have shown that the number of 

useless checkpoints in [19] is negligible as compared to [1]. But algorithm [19], is also suffer 

from the overhead as in [2].  

 

5. CONCURRENT INITIATIONS 

Most of the proposed checkpointing algorithms not addressing the multiple concurrent 

initiations in their algorithms, as it may exhaust the limited battery and congest the wireless 

channels. The authors claim in [1],[3] that their algorithm supports concurrent initiations. But 

in[20] authors proves that the algorithm in[1],[3] are designed to only handle the situation where 

the system has only one checkpoint initiator at a time and can cause inconsistency when there 

are multiple forced checkpoints or multiple concurrent checkpoint initiations. In[20] author also 

point out the reasons for inconsistency in [1],[3] and proposed a consistent checkpointing 

algorithm which supports concurrent executions. In[26], the author point out following 

problems in allowing concurrent initiations in minimum-process checkpointing protocols, 

particularly in case of mobile distributed systems:  

i) If  Pi and Pj concurrently initiate checkpointing and Pj belongs to the minimum set of Pi, 

then Pj’s initiation will be redundant one. Some processes, in Pj’s minimum set,   will 

unnecessarily take multiple checkpoints by hardly advancing their recovery line.  In other 

words, an MH may be asked to store multiple checkpoints in its local disk. It may also 

transfer multiple checkpoints to its local MSS.  

ii) Sometimes, multiple triggers need to be piggybacked onto normal messages. Trigger 

contains the initiator process identification and its csn. Even if a process takes a 

checkpoint and no concurrent initiation is going on, it will piggyback its trigger, 

unnecessarily. If we do not allow concurrent initiation, no trigger is required to be 

piggybacked onto normal messages. Hence, concurrent initiations increase message size. 
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6. COMPARATIVE STUDY 

Barigazzi et a. in [3] proposed first coordinated checkpointing algorithm by assuming that 

communication between processes are atomic, which is too restrictive.  

In [17],[29] proposed FIFO channel based checkpointing algorithm which forces to all process 

to take checkpoint and blocks their computation during checkpointing by relaxing the atomic 

assumption. Later, Leu-Bhargava[30] proposed coordinated checkpointing algorithm as 

[17],[29] by relaxing the FIFO channel assumption. However, algorithm [30] does not consider 

lost messages in checkpointing and recovery. Deng-Park [28] proposed an algorithm to deal 

with orphan and lost messages efficiently. Algorithms[4],[13],[28] has the lowest overhead 

among the blocking algorithms [17],[28]-[30], which try to minimize the number of 

synchronization messages and the number of checkpoints during checkpointing by forcing the 

process which are directly or transitively dependent upon initiator process since the last 

checkpoint. Koo-Tong [4] have high blocking time and double message overhead cost in the 

comparison of [13,26][Refer Table 2]. As shown in table 2, as compared to Cao-Singhal[13], 

Higaki-Taki[27] have some higher blocking time but reduced message overheads cost and 

compared to Koo-Toueg[4], algorithm have reduced blocking and message overhead. However 

in [4],[13],[28], if any one of the involved process reply negatively, the entire process is 

aborted. Kim-Park [17] and Higaki-Taki[27] proposed an improved scheme that allow the new 

checkpoints in some subtrees to be committed, while others are aborted. Further to reduce 

system messages, time based checkpoints are used in algorithm [32]. 

All the above coordinated checkpointing algorithms are forces all- process or minimum-process 

[4][13] [17][26]-[30]  to take checkpoints during current checkpointing interval but requires 

blocking of processes during checkpointing. Since saving checkpoints takes a long time which 

increase blocking time and it may reduce the performance of system [8]. In [6], Chandy-

Lamport presented first non-blocking checkpointing algorithm for coordinated checkpointing 

which forces to all processes to take their checkpoints, however many of them may not be 

necessary. Further, Elnozahy et al.[8] an Neogy-Sinha[25] also design non-blocking 

checkpointing algorithms which forces to all process to take checkpoints. Silva-Silva [21] uses a 

similar idea as[8] except that the processes which did not communicate with others during the 

previous checkpoint interval do not need to take new checkpoints. Therefore, 

algorithms[6],[8][21][25] suffer from the disadvantages of centralized algorithms, such as one-

site, traffic bottle-neck, etc. and there is no easy way to make it distributed without significantly 

increasing message overheads[1].  

All the above algorithms either minimize the number of synchronization messages and number 

of checkpoints [17],[28]-[30] or make it non-blocking[6][8][21][25]. Prakash-Singhal proposed 

an algorithm in [15] by combing both minimum-process and non-blocking approach. This 

algorithm only forces the minimum number of processes to take checkpoints without blocking 

of the underlying computation. Cao and Singhal [13] have shown that the algorithm [15] can 

leads to inconsistencies. The authors also proved that there does not exist a non-blocking 

algorithm which forces only minimum number of processes to take checkpoints. S.K.Gupta et 

al. [27] proposed a minimum process non-blocking checkpointing algorithm for non-

deterministic mobile distributed systems. B.Gupta et al.[31] presented a single phase non-

blocking coordinated checkpointing algorithm to determine the global consistent state. 

  A good coordinated checkpointing algorithm for mobile distributed system should be non-

intrusive and force minimum number of processes to take their local checkpoints [15] but in 

algorithm [13] Cao-Singhal proved that non-intrusive and minimum process algorithms does not 

exist in coordinated system.  The algorithms [1][2][19] achieved non-intrusiveness with 

minimum-process in coordinated systems by using some useless checkpoints. 

Cao-Singhal[1] proposed a mutable checkpoint based non-blocking minimum-process 

coordinated checkpointing algorithm. The number of useless checkpoints in [1] may be 

exceedingly high in some situations mention in algorithm [19]. Author also proved that 
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concurrent executions is allowed in his algorithm [1], but in algorithm [20] author prove that 

algorithm [1] may lead to inconsistency during concurrent execution. P.Kumar et al. [2] takes 

less useless checkpoint in the comparison of [1] but suffer from the overhead of collecting 

dependencies, computing the minimum set and broadcasting the minimum set on the static 

network. L. Kumar et al. [19] also proposed minimum-process non-intrusive coordinated 

checkpointing algorithms, where number of useless checkpoints is reduced as compared to 

[1][2]. Simulations results have shown that the number of useless checkpoints in [19] is 

negligible as compared to [1]. But algorithm [19], is also suffer from the overhead as in [2].  

7. PROPOSED CHECKPOINTING ALGORITHM 

In this paper we proposed non-blocking coordinated checkpointing algorithm for distributed 

mobile systems with lesser number of checkpoints. Our checkpoint algorithm does not have any 

synchronization message overhead and use time to indirectly coordinate to create the consistent 

cut in distributed mobile system.  

With the new proposed checkpointing algorithm, each process checks the status of 

checkpointing periodically. At the time of expiry of local timer, before taking a checkpoint, 

each process check, if there is a forced checkpoint in the current checkpoint interval. It there 

exist a forced checkpoint, then the content of forced checkpoint, which is stored on local 

memory of MH, is written to a stable storage of its local MSS. After checkpointing a sequence 

number is increased by one and checkpointing time is updated. To reduce the number of 

checkpoint, our proposed algorithm does not take checkpoint if it does not send any message 

during its current checkpoint interval.  

During normal operation to remove the domino effect and inconsistency, each process Pi sends 

the checkpoint sequence number (csn) of Pi and Last_csni[j] with the message. When Pj receives 

the message and observe that csni[j] and csni is equal, it is observable that a domino cycle is 

going to happen. So it forces to take a forced checkpoint to break the cycle. Each process before 

receiving the message compares its csn with the csn number of the sender that is logged with 

each message. 

7.1 Data Structure 

m: Computation message sent by a process. 

Timeri: time of the process Pi. 

csni: A checkpoint sequence number for the current checkpoint interval of Pi. it is initially set to 

zero and incremented by 1 each time process takes new checkpoint. Each message sent from 

process Pi to Pj piggybacked with the current csni . 

csni[j]: An integer vector which denotes the csn of Pj currently known by Pi. 

Last_csni[j]: An integer array which denotes the csnj carried in the last message from Pj before 

the latest checkpoint was taken. 

sendi: A boolean variable with default value 0 and set to 1 if Pi sent a message in its current 

checkpointing interval. 

FV: A boolean variable with default value 0 and set to 1 if Pi takes a its forced checkpoint 

during its current checkpointing interval.   

 7.2 Checkpointing Algorithm  

1. At each process Pi in distributed system (1≤i≤n) set its local timeri. 

2. On sending and receiving message: 

   When Pi sends a message to Pj 

 Send (m, csni, last_csni[j],) 

    When Pj receves(m, csni, Last_csni[j] from Pj  ) 

 if (csni = Last_csnj[i]) 
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    { Take forced checkpoint; 

       Set FV=0; Last_csni=csni ;   csn++; csni[j] = csnj; 

             Receive message m; 

    } 

3. if timeri expires 

 if (FV =0 &&  Sendi = =0)// not any forced checkpoint taken 

    { do not take checkpoint and continue normal execution;} 

 else if(FV =0 && Sendi = = 1)   

     { Take checkpoint; set sendi= 0; csni ++; resume continue execution;} 

 else // FV= =1 

   {  Convert forced checkpoint in permanent checkpoint; csni++; set FV=0;}  

7.3 Handling Node Mobility and Disconnections 

An MH may be disconnected from the network for an arbitrary period of time. Disconnection is 

distinct from failure. Disconnections are elective by nature. An MH informs its MSS prior to its 

disconnection. Abrupt or non-volunteer disconnection is termed as a failure.  The 

Checkpointing algorithm may generate a request for such MH to take a checkpoint. Delaying a 

response may significantly increase the completion time of the checkpointing algorithm.  

When an MH, say MHi, disconnects from an MSS, say MSSk, MHi takes its own checkpoint, say 

disconnect_ckpti, and transfers it to MSSk. MSSk  stores all the relevant data structures and 

disconnect_ckpti of MHi on stable storage. During disconnection period, MSSk acts on behalf of 

MHi as follows. In minimum-process checkpointing, if MHi is in the minimum set, say minset[], 

disconnect_ckpti is considered as MHi’s checkpoint for the current initiation.  In all-process 

checkpointing, if MHi’s disconnect_ckpti is already converted into permanent one, then the 

committed checkpoint is considered as the checkpoint for the current initiation; otherwise, 

disconnect_ckpti is considered.   On global checkpoint commit, MSSk also updates MHi’s data 

structures, e.g., ddv[] (direct dependency vector). On the receipt of messages for MHi, MSSk 

does not update  MHi’s ddv[] but maintains  them in a queue, say message_q.  

When MHi, enters in the cell of MSSj, it is connected to the MSSj. Before connection, MSSj 

collects MHi’s ddv[], and other information  from MSSk; and MSSk discards MHi’s support 

information and disconnect_ckpti. MSSj sends the messages in message_q  to MHi.  

7.4 Handling Failures during checkpointing  

Since MHs are prone to failure, an MH may fail during checkpointing process. Sudden or abrupt   

disconnection of an MH is also termed as a fault. If the failed process is not required to 

checkpoint in the current initiation or the failed process has already taken its tentative 

checkpoint, the checkpointing process can be completed uninterruptedly. If the failed process is 

not the initiator, one way to deal with the failure is to discard the whole checkpointing process 

similar to the approach in [4], [9]. The process detecting the failure informs the initiator, which 

aborts current checkpointing process. If the failed process is a checkpoint initiator, and the 

failure occurred before the process sent out commit or abort messages, on restarting after 

failure, it aborts the checkpointing activity corresponding to its initiation. If the initiator fails 

after sending commit or abort message, it has nothing to do for the current initiation. 

The above approach seems to be inefficient, because, the whole checkpointing process is 

discarded even when only one participating process fails. The more efficient technique has been 

proposed by Kim and Park [17]. In the approach, a process commits its tentative checkpoints if 

none of the processes, on which it transitively depends, fails; and the consistent recovery line is 

advanced for those processes that committed their checkpoints. The initiator and other processes 

which transitively depend on the failed process have to abort their tentative checkpoints. Thus, 

in case of a node failure during checkpointing, total abort of the checkpointing is avoided.  
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8. CONCLUSION 

The mobile wireless networks present challenges in designing fault-tolerant systems because of 

the host mobility, limited bandwidth on wireless link, limited local storage on MH, limited 

battery power etc. Several checkpointing approaches have been proposed for distributed mobile 

systems. In coordinated checkpointing processes coordinate through system message before 

taking checkpoints. These synchronization messages contribute to extra overhead. Coordinated 

checkpointing algorithms may be minimum-process, blocking, non-blocking and takes some 

useless checkpoints to determine the consistent global state. In this paper we analyzed and 

compare different coordinated checkpointing algorithms for distributed mobile systems on the 

basic of blocking time, synchronization message overhead, number of processes required to 

checkpoint, number of useless checkpoint, piggybacked information messages onto computation 

messages and concurrent execution. Every checkpointing algorithms try to minimize the 

checkpointing overhead but not fit in mobile environment from all perspective. An efficient 

checkpointing algorithm for mobile distributed systems should have the following desirable 

feature. These features will ensure efficient use of wireless channel bandwidth and conserve the 

energy of MH battery. 

• In coordinated checkpointing processes coordinated through message passing. These 

messages contribute extra overhead. So minimizing the synchronization messages when 

checkpointing is in progress become a crucial issue in mobile system due to the low 

bandwidth constraint and energy conservation requirement. 

• Checkpoint algorithm should have minimum checkpoint latency from the time a process 

initiate a checkpoint request to the time the global checkpointing process complete. 

• Checkpointing algorithm should have low overhead on MHs and wireless channels and 

should avoid awakening of MHs in doze mode operation. 

• The checkpointing process should be non-blocking 

• The checkpointing should forces minimum number of processes to take checkpoint. 

• The algorithm should be domino-effect free. 

• The disconnection of MHs should not lead to infinite wait state. 

• The algorithm should not have useless checkpoints. However in case of minimum-process 

coordinated checkpointing algorithms some useless checkpoints can be taken. 
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