
International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

DOI : 10.5121/ijdps.2010.1105 61

DESIGN AND PERFORMANCE ANALYSIS OF

COORDINATED CHECKPOINTING ALGORITHMS

FOR DISTRIBUTED MOBILE SYSTEMS

Surender Kumar
 1

,R.K. Chauhan
2
 and Parveen Kumar

3

1
Deptt. of I.T, Haryana College of Tech. & Mgmt. Kaithal-136027(HR), INDIA

Ssjangra20@rediffmail.com
2
Deptt. of Computer Sc & Application, Kurukshetra University, Kurukshetra(HR),India

rkcdcsa@gmail.com
3
Department of Computer Application, MIET, Meerut(U.P), India

Pk223475@gmail.com

ABSTRACT

Checkpointing is an efficient fault tolerance technique used in distributed systems. Mobile computing

raises many new issues, such as high mobility, lack of stable storage on mobile hosts (MHs), low

bandwidth of wireless channels, limited battery life and disconnections that make the traditional

checkpointing protocols unsuitable for such systems. Several checkpointing algorithms have been

reported in the literature. In this paper, we analyze some of existing coordinated checkpointing

algorithms on the basic of blocking time, synchronization message overhead, number of processes

required to checkpoint, number of useless checkpoint, piggybacked information messages onto

computation messages and concurrent execution. We also proposed an efficient checkpointing algorithm

to reduce the checkpointing overheads. Our checkpoint algorithm does not have any synchronization

message overhead as it uses time to indirectly coordinate to create the consistent cut in distributed mobile

system without increasing the number of checkpoints..

KEYWORDS

Fault tolerance, checkpointing, message logging, independent checkpointing, consistent global state,

domino effect, coordinated checkpointing and mobile systems

1. INTRODUCTION

Recent years have witnessed rapid development of mobile communications and become part of

everyday life for most people. In the future, we will expect more and more people will use

some portable units such as notebooks or personal data assistants. With increasing use small

portable computers, wireless networks and satellites, a trend to support “Computing of the

move” has emerged. This trend is known as mobile computing or “anytime” or “anywhere”

computing. This enables the user to access and exchange information while they travel, roam in

their home environments, or work at their desktop computers. Mobile environment contains

both fixed and mobile hosts interconnected by a backbone network. Thus, recent advances in

technology and mobile devices (e.g., laptop PCs with wireless connections, PDAs, etc.) have

made the mobile computing affordable.

The mobile hosts have several characteristics that make them different from fixed host. So any

checkpointing approach for fault tolerant in mobile environment should consider these

distinguishing features in their application. Presence of following characteristics we distinguish

between distributed system and mobile distributed system.

• Host Mobility

• Limited Battery power

• Frequently Disconnection

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

62

• Limited Bandwidth on wireless link

• High bandwidth variability

• Lack of Stable Storage on MH

• Different types of failure

• Limited geographical area

• Handoff

Numerous checkpointing and rollback recovery protocols have been proposed and studied

extensively for distributed systems in the past years. However, little attention has been devoted

to checkpointing mobile distributed systems. Now a day’s wireless networks, and mobile

devices become pervasive, it is necessary to extend the capability of checkpointing to wireless

and mobile environment. Due to the above unique characteristics of mobile environments, it is

not appropriate to directly apply checkpointing and recovery protocols designed for distributed

systems to mobile distributed systems. Checkpointing and rollback protocol for mobile

distributed systems must consider these above unique characteristics. Otherwise, the protocols

may not perform correctly or efficiently.

2. SYSTEM MODEL

A distributed system is a collection of computers that are spatially separated and do not share a

common memory. The processes executing on these computers communicate with one another

by exchanging messages over communication channels. The messages are delivered after an

arbitrary delay.

A mobile distributed system is a distributed system where some of the processes are running on

mobile hosts (MHs)[5]. It consists of Static Hosts (SHs), Mobile Hosts (MHs) and the Mobile

Support Stations (MSSs). So, the mobile distributed system can be considered as consisting of

“n” MHs and “m” MSSs. The static network provides reliable, sequenced delivery of messages

between any two MSSs, with arbitrary message latency. Similarly, the wireless network within

a cell ensures FIFO delivery of messages between an MSS and a local MH. The links are FIFO

in nature. An MH communicates with other nodes of system via special nodes called mobile

support station (MSS).An MH can directly communicate with an MSS only if the MH is

physically located within the cell serviced by MSS. A static node that has no support to MH can

be considered as an MSS with no MH. A cell is a geographical area around an MSS in which it

can support an MH .An MH can change its geographical position freely from one cell to another

cell or even area covered by no cell .At any given instant of time an MH may logically belong to

only one cell; its current cell defines the MH’s location and the MH is considered local to MSS

providing wireless coverage in the cell. If an MH does not leave the cell, then every message

sent to it from local MSS would receive in sequence in which they are sent.

Base Station (BS) provides the wireless environment within the cell. It acts as a mediator

between MHs and Base station controller (BSC) i.e wired and wireless networks. It is connected

to MH via wireless link and to BSC via a high speed wired link. Two or more MHs are

controlled by BS, two or more BSs are controlled by a BSC and similarly Mobile Support

Station (MSS) will control two or more BSC’s. Due to mobility, the MH may cross the

boundary between two cells; this process is known as handoff. The handover from one BS to

another within the BSC region are handled by the BSC. MSS is high performance digital ISDN

switch and is equipped with Home Location Register (HLR) and Visitor Location Register

(VLR) for storing the location information of the mobile hosts. HLR is the master subscriber

data base that contains details of each mobile host (MHs) like pertinent user information,

including address, account status, and preferences etc. VLR act as a temporary subscriber data

base database maintained by a MSS to track users who are roaming in that mobile service

provider's area.

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

63

Figure 1. Reference Architecture Mobile Distributed Systems

Message communication from an MH says MH1 to another MH says MH2 occurs as follows

.MH1 first sends the message to its local MSS says MSS1 using wireless link .MSS1 forwards it

to MSS2, the local MSS of MH2 via a fixed network. MSS2 then transmit it to MH2 over its

wireless network. However location of MH2 may not be known to MSS1. So MSS1 may require

to first determining the location of MH2 [23]. A node in the distributed system may fail during

checkpointing. We assume all the failure to be fail-stop in nature. When a node fails, the

contents of its primary memory are lost.

2.1 System Failure

The computing node in distributed system may fail. A system failure occurs when the processor

fails to execute [34]. To handle the failure systems periodically saves the state in stable storage.

At the time of failure system restart from its valid state. These failures can be classified in two

different categories.

2.1.1 Hard failures

Hard failures consider as permanently failure or complete loss of connectivity from mobile

node. This type of failure is non-voluntary in nature and processes stops any further actions

forever such as falls, breaks, lost or stolen.

MHs

Wireless Cell

Wireless Cell

Wireless Cell

Wireless Cell

BSC

MSS

HLR

VLR

BSC

Wired Network

(PSTN)

BSC

MSS

MSS

FIXED HOST

BS

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

64

2.1.2 Soft Failure

Soft failures do not permanently damages the mobile host. In such case mobile host informs to

MSS prior to its occurrence such as battery discharge, disconnections or operating crashes.

These two distinct types of failure can be handled by using checkpointing. The protocol use soft

checkpoints which stored locally to tolerate soft failure and hard checkpoints are stored in the

stable storage of MSS to tolerate the failures. Soft checkpoints are less reliable than hard

checkpoints, because they can be lost with hard failures. However, soft checkpoints cost much

less than hard checkpoints because they are created locally, without any message exchanges.

Hard checkpoints have to be sent through the wireless link, and then through the backbone

network, until they are stored in stable storage.

3. ROLLBACK RECOVERY MECHANISM

A rollback-recovery mechanism consists of three parts: checkpointing, fault detection and

failure recovery. During checkpointing the state of a system periodically saved. When a failure

occurs, processes have to rollback to their latest checkpointed state and continue execution from

that state The main issues in rollback recovery are to minimizing the work to be undoing and

to begin the rollback recovery as soon as possible for each process which must rollback and

minimal required information of the state should be saved so that process can be restarted in

case of an error.

Two main approaches of rollback recovery for the solutions to the problem of node failure are:

• Log based rollback recovery

• Checkpointing based rollback recovery

3.1 Log-Based rollback Recovery Mechanism

In log-based recovery, sending message history of processes since last checkpoints, are kept in

main memory [7]. In case of a failure, a process can ask fault-free processes the needed

messages. “Spooling” can be performing if volatile message logging takes too much memory

space. In message logging protocols, each process periodically records its local state and logs

the messages that it receives after having recorded that state on stable storage. When a process

crashes, a new process is created in its place. The new process is given the appropriate recorded

local state, and then the logged messages are replayed in the order the process originally

received them. All message-logging protocols require that once a crashed process recovers, its

recovered state is consistent with the states of the other processes [7]. Pessimistic logging,

Optimistic and Casual Logging are three types of logging protocols [7].

3.2 Checkpoint-Based Rollback Recovery Mechanism

In checkpointing based rollback recovery is a well-established technique to deal with process

failures and increase the system reliability and fault-tolerance in distributed systems [23]. In this

approach, the state of each process in the system is periodically saved on stable storage, which

is called a checkpoint of a process. To recover from a failure, the system restarts its execution

from a previous error-free, consistent global state [3]. In a distributed system, since the

processes in the system do not share memory, a global state of the system is defined as a set of

local states, one from each process. The processes exchange information with each other

through messages. A global state is said to be “consistent” if it contains no orphan message;

i.e., a message whose receive event is recorded, but its send event is lost [3]. There are several

applications of checkpointing including: rollback recovery, playback debugging, process

migration, job swapping and load balancing [22].

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

65

3.2.1 Checkpointing Related Notations

Lamport’s ‘happen before’ relation: (i) if a and b are two events occurring in the same process

and if a occurs before b, then a →b (ii) if a is the event of sending a message and b is the event

of receiving the same message in another process then, a → b.

Orphan message and domino effect: Consider the system activity illustrated in figure 2(a). P0,

P1, P2 and P3 are four processes that cooperate by exchanging information (shown by the

arrows). Each symbol ‘’ marks a recovery point to which a process can be rolled back in the

event of a failure. If process P2 is to be rolled back, it can be rolled back to the recovery point

C2,1 without effecting any other process. Suppose that P1 fails after sending message m4 and

rolled back to C1,1. In this case, the receipt of m4 is recorded in C2,1, but the sending of m is not

recorded in C1,1. Under such circumstances, m4 is referred to as an orphan message (messages

whose receive events are recorded in the states of the destination processes but the send events

are lost) and process P2 must also roll back because P1 interacted with P2 after establishing its

recovery point C1,1. So this effect, where rolling back one process causes one or more other

processes to roll back, is known as domino effect [34]. The domino effect is caused by orphan

message, which themselves are due to rollbacks [33].

Lost message: Such a message, whose send event is recorded in the state of the sender process

but the receive event is lost is called lost message as m5 in figure 2(b) is a lost message.

Local checkpoints: In distributed systems, all processes may take a local checkpoint

independently at any time during the execution. The process of saving local state is called local

checkpointing [34]. The local checkpoints of different processes are not coordinate to form a

global consistent checkpoint state. In figure 1(a) C0,0, C1,0, C2,0, C3,0, C3,1 are the local

checkpoints.

Global checkpoints: A set of local checkpoints, with one checkpoint for every process, is said

to be Consistent Global Checkpointing State (CGS), if it does not contain any orphan message

or lost message. However missing message are acceptable in GCS, if messages are logged by

sender [36]. In figure 1(a) checkpoint state C0,1, C1,1, C2,2 show an inconsistent checkpoints state

due to orphan message m4 but in figure 1(b) these processes show the consistent global state as

there is not any orphan and lost messages.

FIFO Vs Non-FIFO channel: In FIFO system, checkpoint request play an important roll to

determine the consistent global state. A FIFO system ensures that all messages sent after a

checkpoint request on a channel will be delivered after the checkpoint request [37]. Hence, if

C3,1

C2,1

C1,1

C0,1

C1,0

C0,0

P3

P2

P1

Po

C2,0

m1

C3,0

m2

m3
m4

(c)

C1,1

m5

C3,1

C2,1

C0,1

C1,0

C0,0

P3

P2

P1

Po

C2,0

m1

C3,0

m2

m3
m4

(b)

C3,1

C2,1

C1,1

C0,1

C1,0

C0,0

P3

P2

P1

Po

C2,0

m1

C3,0

m2

m3

m4

(a)

Figure 2. Non-blocking coordinated checkpointing: (a) with orphan, domino effect and checkpoint

inconsistency; (b) with FIFO channels and lost message; (c) with non-FIFO channels.

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

66

channels are FIFO, process send first post-checkpoint message on each channel by checkpoint

request before sending the message [7], as illustrated in figure 2(b). In non-FIFO system, the

problem of global snapshot recording is complicated because a checkpoint request can not be

used delineate messages into those not to be recorded in the global state [37]. If channels are

non-FIFO, the checkpoint request can be piggybacked on every post-checkpoint message as in

figure 2(c) [35].

Forced /Induced Checkpoint: A checkpoint that is forced due to receive of a message.

Useful and Useless Checkpoints: if a forced checkpoints is converted into tentative checkpoint

after receiving the checkpoint request and become the member of global state is called useful

checkpoint else it become useless checkpoint.

Directly and transitively dependent: A process Pi is in its yth
 checkpoint interval directly

depends on the process Pj on its x
th
 interval if Pj sends a message m after taking checkpoint Cj,x

and Pi receives it after taking the checkpoint Ci,y. Process Pi transitively depends on the process

Pj if it depends directly depends on some processes Pm and Pm depends on Pj [19]. In figure 2(a)

process P0 is directly depends on process P1 due to m1 and transitively depends on P2 as P2 sends

message m2 to P1 on which P0 directly depends.

Minimum set: if Pi initiate its(x+1)th checkpoint then the set of processes on which Pi

depends(directly or transitively) in its xth checkpoint is minimum set[19]. In figure 2(a) on

process P0 has the processes in minset {P0, P1, P2} as P0 directly depends and P2 transitively

depends upon P0.

Fault tolerance: The ability of a system to perform with the presence fault.

Recovery line: A recovery line is a line which connects all the local checkpoints of a consistent

global checkpointing state. If a failure occurs, then a system is requires to rollback to the latest

available consistent global state.

3.2.2Checkpoint Algorithms Assumptions

 Checkpoint algorithms assume the following characteristics for the distributed system [7]:

(i) Processes do not share memory and communicate by exchanging messages through

communication channels.

(ii) Channels are FIFO in nature.

(iii) When a process fail, in such case it loses its volatile state and stops its volatile state and

stops execution according to the fail-stop model.

(iv) Communication failures do not partition the network.

(v) Channels can loss messages. However, they are made virtually lossless and order of the

messages is preserved by some end-to-end transmission protocol. Message sequence

numbers may be used to preserve the order.

(vi) Processes are piecewise deterministic in the sense that from the same state, if given the

same inputs, a process executes the same sequence of instructions.

(vii) Processes can save their state on stable storage to survives from failures during failure-

free execution and can be used for recovery.

3.2.3 Types of Checkpointing

There are three flavors of checkpointing based recovery protocols:

1) Coordinated or Synchronous checkpointing

2) Uncoordinated or Asynchronous checkpointing

3) Communication induced or Quasi-Synchronous or Hybrid Checkpointing

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

67

We first explain the uncoordinated, communication induced checkpointing algorithms

in short and at last coordinated checkpointing algorithms in details with comparative

study.

1) Independent/Uncoordinated/Asynchronous Checkpointing

In independent checkpointing, processes do not synchronize their checkpointing activity and

processes are allowed to records their local checkpoints in an independent way. After a failure,

system will search a consistent global state by tracking the dependencies from the stable

storage. The main advantage of this approach is that there is no need to exchange any control

messages during checkpointing. But this requires each process to keep several checkpoints in

stable storage and there is no certainty that a global consistent state can be built. It may require

cascaded rollbacks that may lead to the initial state due to domino-effect [7]. Acharya-

Badrinath[5] were the first who present a uncoordinated checkpointing algorithm for mobile

computing systems. In their algorithm, an MH takes a local checkpoint whenever a message

reception is preceded by a message sent at that MH. If the send and receive of messages are

interleaved, the number of local checkpoints will be equal to half of the number of computation

messages, which may degrade the system performance.

2) Quasi-synchronous/Hybrid Checkpointing

In the quasi-synchronous checkpointing approach, a global checkpoint is similar to the approach

of coordinated checkpointing while rollback propagation can be avoided by forcing additional

un-coordinated local checkpoint in processes [22]. There are three factors contributing to

checkpointing overhead in this approach.

i) Processes are allowed to take their checkpoints asynchronously.

ii) Processes take forced checkpoints on receiving some application message depending upon

conditions.

iii) Processes may take checkpoint on receiving checkpoint request message. If a process takes

forced checkpoint related to current initiations then it convert the forced checkpoint in to

tentative one and if it already takes checkpoints, ignore the checkpoint request.

Quasi-synchronous checkpointing algorithms can be classified into two categories [7].

• Model based checkpointing: it relies on preventing patterns of communications and

checkpoints that could result in inconsistent states among the existing checkpoints.

Here a model is set up to detect the possibility that such patterns could be forming

within the system, according to some heuristic and a checkpoint is usually forced to

prevent the undesirable pattern from occurring.

• Index based checkpointing: Index-based checkpointing works by assigning

monotonically increasing indexes to checkpoints, such that the checkpoints having

the same index at different processes form a consistent state. The indices are

piggybacked on application messages to help receivers decide when they should

force a checkpoint.

3) Coordinated/Synchronous/Communication induced Checkpointing
Coordinated checkpointing is a commonly used technique for fault tolerant in mobile distributed

systems. In coordinated checkpointing approach all the processes communicate and synchronize

through system messages before taking checkpoint and coordinate their checkpointing actions in

such a way that checkpointing approach yields a CGS. In some approaches initiator of the

checkpointing process forces the dependent processes (minimum processes) In coordinated

approach consistent global state is achieved during run-time, while in the independent approach

the determination of a consistent recovery line was left to the recovery phase, which could result

in some rollback propagation [22].

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

68

3.2.4 Comparison between Checkpoint Schemes

Table 1. Comparison between uncoordinated, coordinated and qusi-synchronoun checkpointing

 Uncoordinated

Checkpointing
Coordinated

Checkpointing
Qusi-Synchronous

Checkpointing
Efficiency High for small

number of MHs

High for large

number of MHs

High

Checkpoint/Process Multiple Single Multiple

Domino effect Possible No No

Orphan message Possible No Possible

Scalable No Minimal Not scale for large

number of

processors

Recovery Cost High as global

consistent state is not

predictable

Low as global

consistent state is

predictable

High

Recovery

Complexity

Yes No Yes

Rollback Unbounded During fault,

processes rollback to

last committed

checkpointed state

Possibly several

checkpoints

Overhead Large storage and log

management

overhead

Minimum storage

overhead and

negligible overhead

in failure free

execution

High latency and

memory and disk

overhead

Advantages No need to exchange

any control message

and save their

checkpoint

individually

Lower overhead in

stable storage,

Recovery simple and

predictable, not suffer

from domino effect.

Preventing domino

effect piggybacking

and information

exchanged by the

processes

Disadvantages Domino effect

possibility, storage

overhead & complex

garbage collection

Synchronization

message overhead

and large latency for

saving checkpoints

Requires high

performance

parallel processor

Coordinated checkpointing algorithms are made up by using the following scheme:

• All process checkpointing: This requires all processes in the system to participate in every

checkpointing session.

• Minimum process checkpointing: These algorithms only forces those process to take their

checkpoints which communicated with the initiator directly or indirectly since the last

checkpoint need to take new checkpoints.

• Blocking: Blocking algorithms force all relevant processes in the system to block their

underlying computation during checkpointing latency.

• Non-blocking: In non-blocking algorithms applications processes are not blocked when

checkpoints are being taken.

As mobile computing faces many new challenges such as low wireless bandwidth, frequent

disconnections and lack of stable storage at mobile nodes. These issues make traditional

checkpointing techniques unsuitable to checkpoint mobile distributed systems [1,5,15]. A good

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

69

checkpoint algorithm for mobile systems needs to have following characteristics [10]. It should

impose low memory overheads on MHs and low overheads on wireless channels. The

disconnection of MHs should not lead to infinite wait state. The checkpointing algorithm should

avoid awakening of an MH in doze mode operation. The algorithm should be non-blocking and

minimum-process.

There is a tradeoff between coordinated and uncoordinated checkpointing approach for mobile

systems. Some of the approaches advocate coordinated checkpointing[1-4,8,11,13,15,17,21,24-

26], as it free from domino-effect and others advocate un-coordinated checkpointing [5], due to

lots of synchronization overhead caused by coordinated approach. But un-coordinated

checkpointing in true sense is not suitable mobile computing and even for distributed systems

due to number of reasons [1]. If the frequency of local checkpointing is high, each process will

have multiple checkpoints, which require a large amount of stable storage and introduces a lot

of communication overhead in mobile computing systems. The stable storage and

communication overheads can be reduced by taking local checkpoints less frequently. However,

this will increase the recovery time as greater rollback and reply will be needed. Even though

some algorithm were proposed to reduce the number of checkpoints to be saved on the stable

storage, to ensure correctness, a process still needs to keep many more checkpoints in

uncoordinated checkpointing algorithms. So if we reduce the synchronization overhead from in

coordinated approach, then it can become quite effective for mobile systems [27].

In coordinated checkpointing, processes take checkpoints in such a manner that the resulting

global state in consistent. Mostly it follows two-phase commit structure [1,2,4,8,13,19,26,27,]

[31]. In the first phase, processes take tentative checkpoints and in the second phase, these are

made permanent. The main advantage is that only one permanent checkpoint and at most one

tentative checkpoint is required to be stored. In the case of a fault, processes rollback to last

checkpointed state.

4. PERFORMANCE ANALYSIS OF CHECKPOINTING ALGORITHMS

We analyze and evaluate the checkpointing algorithms on the basic of blocking time,

synchronization message overhead, number of processes required to checkpoint, number of

useless checkpoint, piggybacked information messages onto computation messages and

concurrent executions. We use the following notations:

Nmss Number of MSSs.
Nmh Number of MHs.

Cst Cost of sending a message between any two MSSs.

Cpp Average cost of sending a message between two processes.

Cwl Cost of sending a message from an MH to its local MSS (or vice versa).

Cbst Cost of broadcasting a message over static network

Csearch Cost incurred to locate an MH and forward a message to its current local MSS,

from a source MSS.

Tst Average message delay in static network.

Twl Average message delay in the wireless network.

Tch Average delay to save a checkpoint on the stable storage. It also includes the

time to transfer the checkpoint from an MH to its local MSS.

Tch_static Average delay for a fixed host to save a checkpoint on the stable storage.

Tsearch Average delay incurred to locate an MH and forward a message to its current

local MSS.

N Total number of processes in the system.

Nmin Number of minimum processes required to take checkpoints.

Nmut Number of useless mutable checkpoints [1].

Nind Number of useless induced checkpoints [2, 19].

Ndep Height of the checkpointing tree in Koo-Toueg [4] algorithm

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

70

4.1 All Process Blocking Algorithms

All process blocking algorithm can be differentiates on basic of FIFO and non-FIFO channels.

Barigazzi-Strigini[29], Deng-Park[28] and Kim-Park[17] proposed checkpointing algorithm

which forces to all processes and block their underlying computation during current

checkpointing interval by assuming the FIFO channel. Later, Leu-Bhargwa [30] proposed all

blocking algorithm which does not assume that the channel is FIFO. Such algorithms are not

suitable for mobile environment. Hence, the problem of minimizing the number of

synchronization messages and checkpoints is become a crucial issue in mobile system as

wireless network has limited bandwidth and mobile nodes have limited computation, storage

and energy conservation requirement. It is mostly desirable that a coordinated checkpoint

algorithm forces a minimum number of processes to take checkpoints [14].

4.2 Minimum-process Blocking Algorithms

Minimum- process blocking algorithms has the lowest synchronization overhead in the

comparison of all-process blocking algorithms. The algorithms proposed in Koo-Tong[4],Cao-

Singhal[13], P.Kumar[26],], Higaki-Taki[27] has the lowest among the blocking

algorithms[17], [28]-[30] which try to minimize the number of synchronization messages and

the number of checkpoints during checkpointing.

The koo-Toueg[4] proposed a minimum process coordinated checkpointing algorithm for

distributed systems with the cost of blocking of processes during checkpointing. However this

algorithm requires minimum number of synchronization message and number of checkpoints

but each process uses monotonically increasing labels in its outgoing messages. The initiator

process sends the checkpoint request to Pi only if it has received m from Pi in the current CI.

Similarly, Pi sends the checkpoint request to other processes. In this way, a checkpointing tree is

formed and at last the leaf node processes take checkpoints. The time taken to collect

coordinated checkpoint in mobile systems may be too large due to mobility, disconnections and

unreliable wireless channels. The extensive blocking of processes may degrade the system

performance. The blocking time and synchronization message overhead in [4] are Nmh *(4*Twl +

Tch + Tsearch) and Nmh * (Cwl + Csearch) respectively[Refer Table 2]. Thus extensive blocking of

processes may degrade the system performance.

In [13], author proves that there does not exist a non-blocking algorithm that forces only a

minimum number of processes to take their checkpoint. Every process maintains direct

dependencies in a bit array of length n for n processes. Initiator process collects the direct

dependencies and makes a set of interacting processes (Sforced), which need to checkpoint along

with the initiator. During blocking time, processes can do their normal computations but cannot

send any messages. On the basic of this result [13, 26] proposed minimum process blocking

algorithm. Both the algorithms [13] and [26] have approximately same blocking time and

message overhead. The algorithms [13, 26] block during the time, when MSS sends the

dependency vector to its local dependent and receives the checkpoint request. Therefore, the

blocking period of both the algorithms in worst case is 2Tst.The coordination message overhead

in worst case including the following: (a) 2Cwl – the checkpoint request message from initiator

process to its local MSS and it’s acknowledged. (b) 3Cbst: the initiator MSS broadcast send

dependency, take checkpoint and commit message to all MSSs. (c) 2Nmss * Cst : MSSs send

dependency vector to their processes and receive acknowledge. (d) 3 Nmh * Cwl : MSSs send

checkpoint request, commit requests to relevant processes and receive acknowledge. So total

message overhead (say TMOminp) in worst case in [13,26] is 3broad + 2Cwl + 2Nmss*Cst + 3 Nmh

*Cwl. As shown in Table 2, algorithms [13, 26] avoids the search cost and dramatically reduces

the blocking time from Nmh *(4*Twl + Tch + Tsearch to 2*Tst and cuts the message overhead cost

by half compared to Koo-Toueg algorithm. Hence these algorithms avoid the search cost and

minimize the number of checkpoints during checkpointing.

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

71

Higaki and Takizawa [27] have shown that there is a high probability that at least one MH will

fail to record the checkpoint synchronously with other nodes and thus will render whole

checkpointing effort useless. Such successive unsuccessful efforts will waste the scarce

resources of mobile systems and will not allow the normal computation to proceed. They

proposed a checkpointing protocol where mobile hosts checkpoint independently and fixed

ones synchronously and requires blocking of processes during checkpointing. An MSS logs the

messages of the MHs in its cell. If an MH fails to take its checkpoint and transfer it to the

current MSS, it can try later. MSSs take checkpoints synchronously. A process on an MH can

recover independently. When a process on an MH crashes, a new process is created using

checkpoint of the crashed MH, and then the logged messages are replayed in the order they

were originally received. When a process on an MSS fails, all processes rollback to recent

synchronous checkpoint. An MH uses its recent committed checkpoint and message logs to

reach to a state consistent with the synchronous checkpoint. The algorithm does not awaken an

MH in doze mode operation. This algorithm suffers from the overhead of message logging for

MHs. The blocking time and synchronization message overhead in [27] are 2*Tst +Tch_static and

2*Cbst +Nmss*Cst respectively. As shown in table 2, as compared to Cao-Singhal[13], Higaki-

Taki[27] have some higher blocking time but reduced message overheads and compared to

Koo-Toueg[4], algorithm have reduced blocking and message overhead.

Table 2. Performance analysis of all-process non-blocking and minimum-process blocking

algorithms for distributed and mobile systems.

Analysis

Parameters

All Process but

Non-Blocking Algo.

Minimum-Process but Blocking Algorithms

Elnozahy

et al [8]

S.Neogy

et al.[25]

Cao-Singhal

[13]

P.Kumar

[26]

Koo-

Toueg

[4]

Higaki-

Takizawa

[27]

Blocking

Time

0 0 2*Tst 2*Tst Ndep *Tch 2*Tst+

Tch_static

Number of

checkpoints

N N+1 Nmin Nmin Nmin Nmss

Message

Overhead

2*Cbst +

N *Cpp

2*Cbst
+ N*Cpp

3Cbst+2Cwl+2

Nmss*

Cst+3Nmh*

Cwl

TMOminp Nmh*(

6Cwl+

Csearch)

2*Cbst

+Nmss*

Cst

Piggybacked

Information

integer Integer Nil Integer integer Nil

Distributed/

Centralised

Centralis

-ed

Centralis

-ed

Distributed Distribut

-ed

Distribut

-ed

Distribut

-ed

4.3 All Process Non-blocking

All the above coordinated checkpointing algorithms [4][13] [17][26]-[30] requires processes to

be blocked during checkpointing. During checkpointing, information related to process like all

variables, the environment, control information and register values are stored on the stable

storage. So, it consume a lot of time which me be long. Therefore, blocking algorithms may

reduce the performance of the system [8]. Further to remove blocking overhead, recently non-

blocking distributed checkpointing algorithms [6],[8],[21],[25] have received consideration

attention.

The Chandy-Lamport [6] algorithm is the earliest all-process non-blocking coordinated

checkpointing algorithm. In this algorithm, the global state is constructed by coordinating all

processors and logging the channels states at the time of checkpointing. A special messages

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

72

called are used for coordination and for identifying the messages originating at different

checkpoint intervals. This leads to a message complexity of O(N
2
) The algorithm is initiated by

a centralized node and requires FIFO channels.

The Elnozahy et al.[8] and Neogy-Sinha[25] also design an all-process non-blocking

checkpointing algorithm. In these algorithms the initiator broadcast the checkpoint request to all

processes the overhead of which is Cbst. The initiator receives reply from the N processes the

overhead of which is N*Cpp. At last the initiator broadcasts a commit request to all processes to

convert their tentative checkpoints to permanent one. In such way we get the consistent global

state with the total message overhead of (2*Cbst + N*Cpp) [Refer Table 2].

Algorithm proposed by Silva and Silva [21] uses a similar idea as [8] except that the processes

which did not communicate with others during the previous checkpoint interval do not need to

take new checkpoints.

Table 3. Performance Analysis of Minimum-processes non-blocking and minimum-processes

non-blocking with useless checkpoints for distributed and mobile systems.

Analysis

Parimeter

Minimum-Process

and Non-blocking

Minimum-Process and Non-blocking

with Useless Checkpoints

S.K.Gupta

et al.[27]

B.Gupta

et al.[31]

Cao_

Singhal [1]

P.Kumar

et al.[2]

Lalit Kumar

et al. [19]

Blocking Time 0 0 0 0 0

Number of

checkpoints

Nmin Nmin Nmin+Nmut Nmin+Nind Nmin+Nind

Message

Overhead

2*Nmin*Cpp

+ Cbst

Cbst 2*Nmin*Cpp

+

min(Nmin*

Cpp, Cbst)

3*Cbst +

2*Nmin

*Cpp

3Cbst+2Cwl+2N

mss* Cst +3Nmh*

Cwl

Piggybacked

Information

Integer Nil Integer Integer integer

Concurrent

Execution

No No Yes No No

Useless

Checkpoint

nil nil Present Present Present

Single Phase/

Two Phase

Two Single Two Two Two

Non-

deterministic

No Yes Yes Yes Yes

 Therefore, algorithms [6][8][21][25] suffer from the disadvantages of centralized algorithms,

such as one-site failure, traffic bottle-neck, etc. and there is no easy way to make it distributed

without significantly increasing message overhead[1]. Moreover their algorithms require almost

all processes to take checkpoints, even though many of them are unnecessary. Since some

processes may be in the doze mode, broadcast may waste their energy and processor power.

However, algorithms proposed in [6,8,21,25] dramatically increases the performance of the

system in the comparison of blocking algorithms [4][13] [17][26]-[30] which requires processes

to be blocked during checkpointing. As checkpointing time may be long and can reduce the

performance of system. But algorithms [6,8,21,25], forces to all processes in the system to take

their checkpoints for each checkpoint initiation, even though many of them may not be

necessary as [17], [28]-[30].This may waste the energy and processor power of the processes

which are in doze mode. We compare only Elnozahy et al. [8] and Neogy-Sinha[25] with

minimum process blocking algorithms, as these has lowest overhead in among

algorithms[6,8,21,25].

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

73

4.4 Non-blocking Minimum-process

A good checkpointing protocol for mobile distributed systems should have low overheads on

MHs and wireless channels and should avoid awakening of MHs in doze mode operation. The

algorithm should be non-intrusive and should force minimum number of processes to take their

local checkpoints [15].

All the above algorithms either minimize the number of synchronization messages and the

number of checkpoints [17], [28]-[30] or make checkpointing algorithm non-blocking [6][8]

[21],[25].

Prakash-Singhal proposed an algorithm in [15] by combing both minimum-process and non-

blocking approach. This algorithm only forces the minimum number of processes to take

checkpoints without blocking of the underlying computation. Cao and Singhal [13] have

shown that the algorithm [15] can leads to inconsistencies. The authors also proved that there

does not exist a non-blocking algorithm which forces only minimum number of processes to

take checkpoints. Due to the inconsistency in algorithm [15], we do not compare it with other

algorithms.

In [27], S.K. Gupta et al. proposed a minimum process non blocking checkpointing algorithm

for deterministic mobile distributed systems with a message overhead of 2*Nmin*Cpp+Cbst [Refer

Table 3]. In deterministic system, if two processes starts in the same state, and both receive the

identical sequence of inputs, they will produce the identical sequence outputs and will finish in

the same state. In such case state of a process is completely determined by its starting state and

by sequence of messages it has received [27].

B.Gupta et al.[31] presented a single phase an efficient non-blocking coordinated checkpointing

algorithm to determine the global consistent state. The algorithm produce 2*Nmin*Cpp + Cbst

[Refer Table 3] message overhead and forces the minimum number of processes. Simulation

result have shown that algorithm requires much less number of control (system) message in the

comparison of [4,8, 25].

4.5 Minimum-process Non-blocking with Useless Checkpoints

A good coordinated checkpointing algorithm for mobile distributed system should be non-

intrusive and force minimum number of processes to take their local checkpoints [15] but in

algorithm [13] Cao-Singhal proved that non-intrusive and minimum process algorithms does not

exist in coordinated system. The algorithms [1][2][19] achieved non-intrusiveness with

minimum-process in coordinated systems by using some useless checkpoints.

In [1], Cao-Singhal proposed a mutable checkpoint based non-blocking minimum-process

coordinated checkpointing algorithm. This algorithm completes its processing in the following

three steps. First initiator MSS sends tentative checkpoint request to minimum number of

processes that need to take checkpoint. The synchronization message overhead for this is Nmin

*Cpp. Secondly MSSini gets the acknowledgement from all processes to whom it sent checkpoint

request. Hence message overhead 2* Nmin *Cpp is needed in first two phases. At last MSSini sends

the commit request to convert its tentative checkpoint into permanent. In this case it takes

min(Nmin* Cst, Cbst). Hence algorithm [1] determine consistent global state with the message

overhead cost 2* Nmin * Cpp + min(Nmin* Cpp, Cbst) and average number of checkpoints Nmin+

Nmut [Refer Table 3]. Mutable checkpoints taken as: If any process sends a computation

message to another process after receiving the checkpoint request, the receiving process first

take the mutable checkpoint first and then process the message. Later, this mutable checkpoint

converted to tentative, if it receives checkpoint request related to the current initiation;

otherwise it become the useless checkpoint. The number of useless checkpoints in [1] may be

exceedingly high in some situations [19].

P. Kumar et al. [2] proposed five phase minimum-process non-intrusive coordinated

checkpointing algorithms to reduce the height of the checkpointing tree and the number of

useless checkpoints. It follows the following steps in a distributed system which has (n+1)

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

74

processes. (i) Initiator process broadcasts the dependency vector request to all processes. (ii)

Receives the dependency vector from all processes and then initiator process compute minimum

set of processes which are directly or transitively dependent on the initiator process. (iii) Take

own tentative checkpoint and send the tentative checkpoint request to the processes which

belongs to the minimum set.(iv) Initiator process receives the responses of taking tentative

checkpoint (v) initiator process send the commit or abort message to all the processes. The

synchronization message overhead to complete the checkpointing process using algorithm[2] is

given as 3*Cbst + 2*Nmin * Cpp.[Table 3] Here 3Cbst is the total cost of broadcasting sends

ddv[](Cbst, take tentative checkpoint request(Cbst) and commit(Cbst) messages to all MSSs by the

initiator MSS. 2*Nmin*Cpp is the total cost of sending checkpoint request message to the

minimum number of processes that need to take checkpoints(Nmin*Cpp) and reply to the initiator

after taking the tentative checkpoint(Nmin*Cpp). Hence algorithm [2] determines the global

consistent state by using Nmin+ Nindu average number of checkpoint and 3*Cbst + 2*Nmin * Cpp

message overhead cost but our proposed algorithm by using Nmin and 3* Nmin * Cpp respectively

[Refer Table 3]. Thus algorithm [2] takes less useless checkpoint in the comparison of [1] but

suffer from the overhead of collecting dependencies, computing the minimum set and

broadcasting the minimum set on the static network.

L. Kumar et al. [19] also proposed minimum-process non-intrusive coordinated checkpointing

algorithms, where number of useless checkpoints is reduced as compared to [1][2]. In both of

these algorithms, initiator MSS collects the direct dependency vectors of all processes,

computes the minimum set, and sends the checkpoint request along with the minimum set to all

MSSs. In algorithm [19], during the time Pi sends its direct dependency vectors and receives the

minimum set, if Pi processes m which changes its own direct dependency vector, Pi takes

induced checkpoint before processing m. In this way, fresh dependencies, created during

checkpointing, do not alter the computed minimum set. The proposed minimum process non-

instrusive approach have the total message overhead cost is 3Cbst+2Cwl+2N mss* Cst +3Nmh* Cwl

with Nmin +Nind checkpoints [Refer Table 3]. Simulations results have shown that the number of

useless checkpoints in [19] is negligible as compared to [1]. But algorithm [19], is also suffer

from the overhead as in [2].

5. CONCURRENT INITIATIONS

Most of the proposed checkpointing algorithms not addressing the multiple concurrent

initiations in their algorithms, as it may exhaust the limited battery and congest the wireless

channels. The authors claim in [1],[3] that their algorithm supports concurrent initiations. But

in[20] authors proves that the algorithm in[1],[3] are designed to only handle the situation where

the system has only one checkpoint initiator at a time and can cause inconsistency when there

are multiple forced checkpoints or multiple concurrent checkpoint initiations. In[20] author also

point out the reasons for inconsistency in [1],[3] and proposed a consistent checkpointing

algorithm which supports concurrent executions. In[26], the author point out following

problems in allowing concurrent initiations in minimum-process checkpointing protocols,

particularly in case of mobile distributed systems:

i) If Pi and Pj concurrently initiate checkpointing and Pj belongs to the minimum set of Pi,

then Pj’s initiation will be redundant one. Some processes, in Pj’s minimum set, will

unnecessarily take multiple checkpoints by hardly advancing their recovery line. In other

words, an MH may be asked to store multiple checkpoints in its local disk. It may also

transfer multiple checkpoints to its local MSS.

ii) Sometimes, multiple triggers need to be piggybacked onto normal messages. Trigger

contains the initiator process identification and its csn. Even if a process takes a

checkpoint and no concurrent initiation is going on, it will piggyback its trigger,

unnecessarily. If we do not allow concurrent initiation, no trigger is required to be

piggybacked onto normal messages. Hence, concurrent initiations increase message size.

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

75

6. COMPARATIVE STUDY

Barigazzi et a. in [3] proposed first coordinated checkpointing algorithm by assuming that

communication between processes are atomic, which is too restrictive.

In [17],[29] proposed FIFO channel based checkpointing algorithm which forces to all process

to take checkpoint and blocks their computation during checkpointing by relaxing the atomic

assumption. Later, Leu-Bhargava[30] proposed coordinated checkpointing algorithm as

[17],[29] by relaxing the FIFO channel assumption. However, algorithm [30] does not consider

lost messages in checkpointing and recovery. Deng-Park [28] proposed an algorithm to deal

with orphan and lost messages efficiently. Algorithms[4],[13],[28] has the lowest overhead

among the blocking algorithms [17],[28]-[30], which try to minimize the number of

synchronization messages and the number of checkpoints during checkpointing by forcing the

process which are directly or transitively dependent upon initiator process since the last

checkpoint. Koo-Tong [4] have high blocking time and double message overhead cost in the

comparison of [13,26][Refer Table 2]. As shown in table 2, as compared to Cao-Singhal[13],

Higaki-Taki[27] have some higher blocking time but reduced message overheads cost and

compared to Koo-Toueg[4], algorithm have reduced blocking and message overhead. However

in [4],[13],[28], if any one of the involved process reply negatively, the entire process is

aborted. Kim-Park [17] and Higaki-Taki[27] proposed an improved scheme that allow the new

checkpoints in some subtrees to be committed, while others are aborted. Further to reduce

system messages, time based checkpoints are used in algorithm [32].

All the above coordinated checkpointing algorithms are forces all- process or minimum-process

[4][13] [17][26]-[30] to take checkpoints during current checkpointing interval but requires

blocking of processes during checkpointing. Since saving checkpoints takes a long time which

increase blocking time and it may reduce the performance of system [8]. In [6], Chandy-

Lamport presented first non-blocking checkpointing algorithm for coordinated checkpointing

which forces to all processes to take their checkpoints, however many of them may not be

necessary. Further, Elnozahy et al.[8] an Neogy-Sinha[25] also design non-blocking

checkpointing algorithms which forces to all process to take checkpoints. Silva-Silva [21] uses a

similar idea as[8] except that the processes which did not communicate with others during the

previous checkpoint interval do not need to take new checkpoints. Therefore,

algorithms[6],[8][21][25] suffer from the disadvantages of centralized algorithms, such as one-

site, traffic bottle-neck, etc. and there is no easy way to make it distributed without significantly

increasing message overheads[1].

All the above algorithms either minimize the number of synchronization messages and number

of checkpoints [17],[28]-[30] or make it non-blocking[6][8][21][25]. Prakash-Singhal proposed

an algorithm in [15] by combing both minimum-process and non-blocking approach. This

algorithm only forces the minimum number of processes to take checkpoints without blocking

of the underlying computation. Cao and Singhal [13] have shown that the algorithm [15] can

leads to inconsistencies. The authors also proved that there does not exist a non-blocking

algorithm which forces only minimum number of processes to take checkpoints. S.K.Gupta et

al. [27] proposed a minimum process non-blocking checkpointing algorithm for non-

deterministic mobile distributed systems. B.Gupta et al.[31] presented a single phase non-

blocking coordinated checkpointing algorithm to determine the global consistent state.

 A good coordinated checkpointing algorithm for mobile distributed system should be non-

intrusive and force minimum number of processes to take their local checkpoints [15] but in

algorithm [13] Cao-Singhal proved that non-intrusive and minimum process algorithms does not

exist in coordinated system. The algorithms [1][2][19] achieved non-intrusiveness with

minimum-process in coordinated systems by using some useless checkpoints.

Cao-Singhal[1] proposed a mutable checkpoint based non-blocking minimum-process

coordinated checkpointing algorithm. The number of useless checkpoints in [1] may be

exceedingly high in some situations mention in algorithm [19]. Author also proved that

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

76

concurrent executions is allowed in his algorithm [1], but in algorithm [20] author prove that

algorithm [1] may lead to inconsistency during concurrent execution. P.Kumar et al. [2] takes

less useless checkpoint in the comparison of [1] but suffer from the overhead of collecting

dependencies, computing the minimum set and broadcasting the minimum set on the static

network. L. Kumar et al. [19] also proposed minimum-process non-intrusive coordinated

checkpointing algorithms, where number of useless checkpoints is reduced as compared to

[1][2]. Simulations results have shown that the number of useless checkpoints in [19] is

negligible as compared to [1]. But algorithm [19], is also suffer from the overhead as in [2].

7. PROPOSED CHECKPOINTING ALGORITHM

In this paper we proposed non-blocking coordinated checkpointing algorithm for distributed

mobile systems with lesser number of checkpoints. Our checkpoint algorithm does not have any

synchronization message overhead and use time to indirectly coordinate to create the consistent

cut in distributed mobile system.

With the new proposed checkpointing algorithm, each process checks the status of

checkpointing periodically. At the time of expiry of local timer, before taking a checkpoint,

each process check, if there is a forced checkpoint in the current checkpoint interval. It there

exist a forced checkpoint, then the content of forced checkpoint, which is stored on local

memory of MH, is written to a stable storage of its local MSS. After checkpointing a sequence

number is increased by one and checkpointing time is updated. To reduce the number of

checkpoint, our proposed algorithm does not take checkpoint if it does not send any message

during its current checkpoint interval.

During normal operation to remove the domino effect and inconsistency, each process Pi sends

the checkpoint sequence number (csn) of Pi and Last_csni[j] with the message. When Pj receives

the message and observe that csni[j] and csni is equal, it is observable that a domino cycle is

going to happen. So it forces to take a forced checkpoint to break the cycle. Each process before

receiving the message compares its csn with the csn number of the sender that is logged with

each message.

7.1 Data Structure

m: Computation message sent by a process.

Timeri: time of the process Pi.

csni: A checkpoint sequence number for the current checkpoint interval of Pi. it is initially set to

zero and incremented by 1 each time process takes new checkpoint. Each message sent from

process Pi to Pj piggybacked with the current csni .

csni[j]: An integer vector which denotes the csn of Pj currently known by Pi.

Last_csni[j]: An integer array which denotes the csnj carried in the last message from Pj before

the latest checkpoint was taken.

sendi: A boolean variable with default value 0 and set to 1 if Pi sent a message in its current

checkpointing interval.

FV: A boolean variable with default value 0 and set to 1 if Pi takes a its forced checkpoint

during its current checkpointing interval.

 7.2 Checkpointing Algorithm

1. At each process Pi in distributed system (1≤i≤n) set its local timeri.

2. On sending and receiving message:

 When Pi sends a message to Pj

 Send (m, csni, last_csni[j],)

 When Pj receves(m, csni, Last_csni[j] from Pj)

 if (csni = Last_csnj[i])

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

77

 { Take forced checkpoint;

 Set FV=0; Last_csni=csni ; csn++; csni[j] = csnj;

 Receive message m;

 }

3. if timeri expires

 if (FV =0 && Sendi = =0)// not any forced checkpoint taken

 { do not take checkpoint and continue normal execution;}

 else if(FV =0 && Sendi = = 1)

 { Take checkpoint; set sendi= 0; csni ++; resume continue execution;}

 else // FV= =1

 { Convert forced checkpoint in permanent checkpoint; csni++; set FV=0;}

7.3 Handling Node Mobility and Disconnections

An MH may be disconnected from the network for an arbitrary period of time. Disconnection is

distinct from failure. Disconnections are elective by nature. An MH informs its MSS prior to its

disconnection. Abrupt or non-volunteer disconnection is termed as a failure. The

Checkpointing algorithm may generate a request for such MH to take a checkpoint. Delaying a

response may significantly increase the completion time of the checkpointing algorithm.

When an MH, say MHi, disconnects from an MSS, say MSSk, MHi takes its own checkpoint, say

disconnect_ckpti, and transfers it to MSSk. MSSk stores all the relevant data structures and

disconnect_ckpti of MHi on stable storage. During disconnection period, MSSk acts on behalf of

MHi as follows. In minimum-process checkpointing, if MHi is in the minimum set, say minset[],

disconnect_ckpti is considered as MHi’s checkpoint for the current initiation. In all-process

checkpointing, if MHi’s disconnect_ckpti is already converted into permanent one, then the

committed checkpoint is considered as the checkpoint for the current initiation; otherwise,

disconnect_ckpti is considered. On global checkpoint commit, MSSk also updates MHi’s data

structures, e.g., ddv[] (direct dependency vector). On the receipt of messages for MHi, MSSk

does not update MHi’s ddv[] but maintains them in a queue, say message_q.

When MHi, enters in the cell of MSSj, it is connected to the MSSj. Before connection, MSSj

collects MHi’s ddv[], and other information from MSSk; and MSSk discards MHi’s support

information and disconnect_ckpti. MSSj sends the messages in message_q to MHi.

7.4 Handling Failures during checkpointing

Since MHs are prone to failure, an MH may fail during checkpointing process. Sudden or abrupt

disconnection of an MH is also termed as a fault. If the failed process is not required to

checkpoint in the current initiation or the failed process has already taken its tentative

checkpoint, the checkpointing process can be completed uninterruptedly. If the failed process is

not the initiator, one way to deal with the failure is to discard the whole checkpointing process

similar to the approach in [4], [9]. The process detecting the failure informs the initiator, which

aborts current checkpointing process. If the failed process is a checkpoint initiator, and the

failure occurred before the process sent out commit or abort messages, on restarting after

failure, it aborts the checkpointing activity corresponding to its initiation. If the initiator fails

after sending commit or abort message, it has nothing to do for the current initiation.

The above approach seems to be inefficient, because, the whole checkpointing process is

discarded even when only one participating process fails. The more efficient technique has been

proposed by Kim and Park [17]. In the approach, a process commits its tentative checkpoints if

none of the processes, on which it transitively depends, fails; and the consistent recovery line is

advanced for those processes that committed their checkpoints. The initiator and other processes

which transitively depend on the failed process have to abort their tentative checkpoints. Thus,

in case of a node failure during checkpointing, total abort of the checkpointing is avoided.

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

78

8. CONCLUSION

The mobile wireless networks present challenges in designing fault-tolerant systems because of

the host mobility, limited bandwidth on wireless link, limited local storage on MH, limited

battery power etc. Several checkpointing approaches have been proposed for distributed mobile

systems. In coordinated checkpointing processes coordinate through system message before

taking checkpoints. These synchronization messages contribute to extra overhead. Coordinated

checkpointing algorithms may be minimum-process, blocking, non-blocking and takes some

useless checkpoints to determine the consistent global state. In this paper we analyzed and

compare different coordinated checkpointing algorithms for distributed mobile systems on the

basic of blocking time, synchronization message overhead, number of processes required to

checkpoint, number of useless checkpoint, piggybacked information messages onto computation

messages and concurrent execution. Every checkpointing algorithms try to minimize the

checkpointing overhead but not fit in mobile environment from all perspective. An efficient

checkpointing algorithm for mobile distributed systems should have the following desirable

feature. These features will ensure efficient use of wireless channel bandwidth and conserve the

energy of MH battery.

• In coordinated checkpointing processes coordinated through message passing. These

messages contribute extra overhead. So minimizing the synchronization messages when

checkpointing is in progress become a crucial issue in mobile system due to the low

bandwidth constraint and energy conservation requirement.

• Checkpoint algorithm should have minimum checkpoint latency from the time a process

initiate a checkpoint request to the time the global checkpointing process complete.

• Checkpointing algorithm should have low overhead on MHs and wireless channels and

should avoid awakening of MHs in doze mode operation.

• The checkpointing process should be non-blocking

• The checkpointing should forces minimum number of processes to take checkpoint.

• The algorithm should be domino-effect free.

• The disconnection of MHs should not lead to infinite wait state.

• The algorithm should not have useless checkpoints. However in case of minimum-process

coordinated checkpointing algorithms some useless checkpoints can be taken.

REFERENCES

[1] Cao G. and Singhal M., Mutable Checkpoints: A New Checkpointing Approach for

Mobile Computing systems, IEEE Transaction On Parallel and Distributed

Systems, vol. 12, no. 2, pp. 157-172, February 2001.

[2] Parveen Kumar, Lalit Kumar, R K Chauhan, V K Gupta, A Non-Intrusive

Minimum Process Synchronous Checkpointing Protocol for Mobile Distributed

Systems, Proceedings of IEEE ICPWC-2005, January 2005.

[3] Cao G. and Singhal M., On coordinated checkpointing in Distributed Systems,

IEEE Transactions on Parallel and Distributed Systems, vol. 9, no.12, pp. 1213-

1225, Dec 1998.

[4] R.Koo and S.Toueg. Checkpointing and Roll-back Recovery for Distributed

systems, IEEE Transactions on Software Engineering, pages 23-31, January 1987.

[5] Acharya A. and Badrinath B. R., Checkpointing Distributed Applications on Mobile

Computers, Proceedings of the 3
rd

 International Conference on Parallel and

Distributed Information Systems, pp. 73-80, September 1994.

[6] Chandy K. M. and Lamport L., Distributed Snapshots: Determining Global State of

Distributed Systems, ACM Transaction on Computing Systems, vol. 3, No. 1, pp.

63-75, February 1985.

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

79

[7] Elnozahy E.N., Alvisi L., Wang Y.M. and Johnson D.B., A Survey of Rollback-

Recovery Protocols in Message-Passing Systems, ACM Computing Surveys, vol.

34, no. 3, pp. 375-408, 2002.

[8] Elnozahy E.N., Johnson D.B. and Zwaenepoel W., The Performance of Consistent

Checkpointing, Proceedings of the 11
th
 Symposium on Reliable Distributed Systems,

pp. 39-47, October 1992.

[9] Y.Dang,E.K. Park, Checkpointing and Rollback-Recovery Algorithms in

Distributed Systems, J. Systems and Software, pp. 59-71, Apr. 1994.

[10] Hung, S. T., Detecting Termination of Distributed Computations by External

Agents, Proceeding 9
th
 Int’ Conf. Distributed Computing System, pp.79-84, 1989.

[11] R. Baldoni, J.M. Helary, A. Mostefaoui and M.Raynal, A Communication-Induced

Checkpoint Protocol that Ensures Rollback-Dependency Tractability, In

Proceedings of the International Symposium on Fault-Tolerant-Computing

Systems, 1997, 68-77.

[12] J.M. Helary, A. Mostefaoui and M. Raynal, Communication-Induced

Determination of Consistent Snapshot, In Proceedings of the 28
th
 International

Symposium on Fault-Tolerant-Computing , 1998,208-217.

[13] Cao G. and Singhal M., On the Impossibility of Min-process Non-blocking

Checkpointing and an Efficient Checkpointing Algorithm for Mobile Computing

Systems, Proceedings of International Conference on Parallel Processing, pp. 37-

44, August 1998.

[14] Guohui Li and LihChyun Shu, A Low-Latency Checkpointing Scheme for Mobile

Computing Systems.

[15] Prakash R. and Singhal M., Low-Cost Checkpointing and Failure Recovery in

Mobile Computing Systems, IEEE Transaction On Parallel and Distributed

Systems, vol. 7, no. 10, pp. 1035-1048, October1996.

[16] I. Akyildiz, J. Mcnair, J. Ho, H. Uzunalioglu, and W. Wang, Mobility Management

in ext-Generation Wireless Systems IEEE, vol. 87, no. 8. pp.. 1347-1384, Aug

1999.

[17] J.L. Kim, T. Park, An efficient Protocol for checkpointing Recovery in Distributed

Systems, IEEE Trans. Parallel and Distributed Systems, pp. 955-960, Aug. 1993.

[18] C. Perkins, Mobile IP, IEEE Comm. Magazine, vol. 35, pp. 84-99, May 1997.

[19] L. Kumar, M. Misra, R.C. Joshi, Low overhead optimal checkpointing for mobile

distributed systems Proceedings. 19th IEEE International Conference on Data

Engineering, pp 686 – 88, 2003.

[20] Ni, W., S. Vrbsky and S. Ray, Pitfalls in Distributed Nonblocking Checkpointing,

Journal of Interconnection Networks, Vol. 1 No. 5, pp. 47-78, March 2004.

[21] L.M. Silva and J.G. Silva, Global Checkpointing for Distributed Programs, Proc.

11th Symp. Reliable Distributed Systems, pp. 155-162, Oct. 1992.

[22] Najib A. Kafahi, Said AI-Bokhitan andAhmed AI-Nazer, On Disk-based and

Diskless Checkpointing for Parallel and Distributed Systems: An Empirical

Analysis, Information Technology Journal 4(4): 367-376, 2005.

[23] Weigang Ni, Susan V. Vrbsky and Sibabrata Ray, Low-cost Coordinated

Checkpointing in Mobile Computing Systems”,Proceeding of the Eighth IEEE

International Symposium on Computers and Communications, 2003.

[24] L.Kumar, P.Kumar, A Synchronous Checkpoiting Protocol for Mobile Distributed

System: Probabilistic Approach, International Journal of Information and

Computer Security 1(3)(2007), 298-314.

[25] S. Neogy, A. Sinha, P.K. Das, A Checkpointing Protocol for Distributed System

Processes, TENCON 2004. 2004 IEEE Regions 10 congerence vol.B. no.2,pp 553-

556, November 2004, Thailand.

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010

80

[26] Parveen Kumar, A low-cost hybrid coordinated checkpointing protocol for mobile

distributed systems, Journal of Mobile Information Systems, vol 4, Number 1,

2008.

[27] H Higaki & M Takizawa, Checkpoint-recovery Protocol for Reliable Mobile

 Systems,Trans. of Information processing Japan, vol. 40, no.1, pp. 236-244, Jan.

1999.

 [28] Y. Deng and E.K. Park. “Checkpointing and Rollback-Recovery Algorithms in

 Distributed System”, Journal of Systems and Software, pages 59-71, April 1994.

 [29] G. Barigazzi and L. Strigini, “Application-Transparent Setting of Recovery

 Points”, Digest of Papers Fault-Tolerant Computing Systems-13, pp. 48-55, 1983.

 [30] P.Y. Leu and B. Bhargava, “Concurrent Roubst Checkpoinitng and Recovery in

 Distributed Systems,” Proc. Fourth IEEE Int’l Cong. Data Eng., pp. 154-163, 1988.

 [31] Bidyut Gupta, Shahram Rashimi, rishad A. Rias, and Guru.Banglore, A low-

 Overhead Non-blocking Checkpointing Algorithm for Mobile Computing

 Environment, LNCS 3947, pp. 597-608, 2006.

 [32] P. Ramanathan and K.G. Shin, “Use of Common Time Base for Checkpointing and

 Rollback Recovery in a Distributed System”, IEEE Trans. Software Eng., pp. 571-

 583, June 1993.

 [33] Mukesh Singhal, Niranjan G. Shivaratri, “Advance Concept in Operating

 System ” Tata Mcgraw-Hill, 2005, pp295-368.

[34] Rendell, B., “Reliable Computing Systems,” Operating Systems :An Advanced

 course, Springer-Verlag, New York, 1979, pp. 282-391.

 [35] T.H. Lai and T.H. Yang. “On Distributed Snapshot”, In Information Processing

 Laters, vol. 25, pp. 153-158, 1987.

 [36] P.S.Mandal, K. Mukhopadhyaya, “Performance analysis of different checkpointing

 and recovery schemes using stochastic model” Journal of Parallel and Distributed

 Computing, 66(2006) 99-107.

 [37] Ajay D.Dshemkalylani and Mukesh Singhal “Distributed Computing: Principals,

 Algorithms, and systems” Cambrige University Press.

Surender Kumar is Sr. Lecturer in the Department of Information Technology at

Haryana College of Technology & Management Kaithal (Haryana) India. He is

pursuing his PhD in Computer Science from Kurukshetra University, Kurukshetra

and his M.Tech. from the Ch. Devi Lal University, Sirsa(Haryana) INDIA. His

research interests include checkpointing in mobile distributed systems, fault tolerance, mobile

computing.

Dr. R.K Chauhan is serving as a Chairman, Department of Computer Sc. & application,

Kurukshetra University, Kurukshetra. He has contributed many technical papers in areas

including Database, Data Mining & Warehousing, Mobile Computing, Ad-hoc Networks and

Checkpointing Algorithms.

Dr. Parveen Kumar received his Ph.D degree in Computer Sc. from Kurukshetra University,

Kurukshetra, India, in 2006. He has contributed over 20 technical papers in areas including

Checkpointing Algorithms, Mobile Computing and Distributed Systems. He is serving in MIET,

Meerut(U.P), INDIA as a Professor in Computer Sc. & Engineering department.

