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ABSTRACT   

In this Paper we consider three different types of variable ordering; namely optimal ordering, good 

ordering and bad ordering for constructing the BDD of a given network by applying three different 

heuristics. This classification is based on the size of the BDD, because the size of the BDD strongly 

depends on the ordering of variables. After that we find the reliability of the given network by these 

different BDD. It is observed experimentally that the results (Reliability) of applying Classical Inclusion-

exclusion principle are the same as obtained by applying BDD for calculating reliability of a given network 

in each case. However the complexity of the BDD increases in bad ordering case.     

Key Words: Binary Decision Diagrams (BDD), Directed Acyclic Graph (DAG), 

Computer communication Network (CNN), Ordered Binary Decision Diagrams 
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1. INTRODUCTION 

Network reliability analysis receives considerable attention for the design, validation, and 

maintenance of many real world systems, such as computer, communication, or power networks. 

The components of a network are subject to random failures, as more and more enterprises 

become dependent upon CCN or networked computing applications. Failure of a single 

component may directly affect the functioning of a network. So the probability of each 

component of a CCN is a crucial consideration while considering the reliability of a network. 

Hence the reliability consideration is an important factor in CCN. The IEEE 90 standard defines 

the reliability as “The ability of a system or component to perform its required functions 

under stated conditions for a specified period of time.” There are so many exact methods for 

computation of network reliability [1]. The network model is a directed stochastic graph G = (V, 

E), where V is the vertex set, and E is the set of directed edges. An incidence relation which 

associates with each edge of G a pair of nodes of G, called its end vertices. The edges represent 

components that can fail with known probability. In real problems, these probabilities are usually 

computed from statistical data. 

The problem related with connection function is NP-hard [2]. The same thing is observed for 

planar graphs [3]. In the exact method there are two classes for the computation of the network 
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reliability. The first class deals with the enumeration of all the minimum paths or cuts. A path is a 

subset of components (edges and/or vertices), that guarantees the source and the sink to be 

connected if all the components of this subset are functioning. A path is a minimal if a subset of 

elements in the path does not exist that is also a path. A cut  is a subset of components (edges 

and/or vertices), whose failure disconnect the source and sink. A cut is a minimal if the subset of 

elements in the cut does not exist that is also a cut. The probabilistic evaluation uses the 

inclusion-exclusion or sum of disjoint products methods because this enumeration provides non-

disjoint events. Numerous works about this kind of methods have been presented in literature [4, 

5, 6]. 

In the second class, the algorithms are based on graph topology. In the first process we reduce the 

size of the graph by removing some structures. These structures are as polygon-to-chain [7] and 

delta-to-star reductions [8]. By this we will be able to compute the reliability in linear time and 

the reduction will result in a single edge. The idea is to decompose the problem in to one failed 

and another functioning. The same was confirmed by Theologou & Carlier [9] for dense 

networks. Satyanarayana & Chang [10] and Wood [11] have shown that the factoring algorithms 

with reductions are more efficient at solving this problem than the classical path or cut 

enumeration methods.  

2. BINARY DECISION DIAGRAMS 

Akers [12] first introduced BDD to represent Boolean functions i.e. a BDD is a data structure 

used to represent a Boolean Function. Bryant [13] popularized the use of BDD by introducing a 

set of algorithms for efficient construction and manipulation of BDD structure. The BDD 

structure provides compact representations of Boolean expressions. A BDD is a directed acyclic 

graph (DAG) based on the Shannon decomposition. The Shannon decomposition for a Boolean 

function is defined as follows:  

f = x. fx = 1 + x. fx = 0 

where x is one of the decision variables, and f is the Boolean function evaluated at x = i. By using 

Shannon’s decomposition, any Boolean expression can be transformed in to binary tree. BDD are 

used to work out the terminal reliability of the links. Madre and coudert [14]   found BDD 

usefulness in reliability analysis which was further extended by Rauzy [15, 16]. They are 

specially used to assess fault trees in system analysis. In the network reliability framework, 

Sekine & Imai [17], and Trivedi [18] have shown how to functionally construct the corresponding 

BDD.  

Figure 1  shows the truth table of a Boolean function f and its corresponding Shannon tree. Sink 

nodes are labelled either with 0, or with 1, representing the two corresponding constant 

expressions. Each internal node u is labelled with a Boolean variable var(u), and has two out-

edges called 0-edge, and 1-edge. The node linked by the 1-edge represents the Boolean 

expression when xi = 1 , i.e. fxi = 1; while the node linked by the 0-edge represents the Boolean 

expression when xi = 0, i.e. fxi = 0. The two outgoing edges are given by two functions low(u) and 

high(u). The diagram is given below. 
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Indeed, such representation is space consuming. It is possible to shrink by using following three 

postulates. 

1. Remove Duplicate Terminals: Delete all but one terminal vertex with a given label, and 

redirect all arcs into the deleted vertices to the remaining one. 

2. Delete Redundant Non Terminals: If non terminal vertices u, and v have var(u) = 

var(v), low(u) = low(v), and high(u) = high(v), then delete one of the two vertices, and 

redirect all incoming arcs to the other vertex. 

3. Delete Duplicate tests: If non terminal vertex v has low(v) = high(v), then  delete v, and 

redirect all incoming arcs to low(v). 

If we apply all these three rules then the above decision tree can be reduced in to the diagrams 

given below in figure 2.  

2.1 Ordered Binary Decision Diagrams 

For an ordered BDD (OBDD), we impose a total ordering ≺≺≺≺    over the set of variables and require 

that for any vertex u, and either non terminal child v, their respective variables must be ordered 

[19]. 

2.2 Modified Binary Decision Diagrams 

Another BDD having the same size or less size of a given BDD is called the modified binary 

decision diagram (MBDD) [20].The size of the BDD means the total number of non-terminal 

nodes and number of nodes in a particular level [21]. 
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3. Network Reliability  

The reliability of a network G is the probability that G supports a given operation. We distinguish 

three kinds of operation and hence three kind of reliability. 

Two Terminal Reliability: It is the probability that two given vertices, called the source and the 

sink, can communicate. It is also called the terminal-pair reliability [22]. 

K Terminal Reliability: When the operation requires only a few vertices, a subset k of N(G), to 

communicate with each other, this is K terminal reliability. 

All Terminal Reliability:  When the operation requires that each pair of vertices is able to 

communicate via at least one operational path, this is all terminal reliability. We can see that 2-

terminal reliability and all terminal reliability are the particular case of K-terminal reliability. 

Let us take an example of a directed network. The network is represented in the form of a graph 

(Figure 3) G = (V, E), where V is the set of vertices (or nodes) and E the set of edges (or arcs).  In 

order to study the reliability of a network we identify a single node as a source node (node 1) and 

a single node as a sink node (node 6) [22]. The analysis may be either qualitative or quantitative.  

Here we use path enumeration method to find the reliability of the example network. 

The network  possess three min-paths. These are H1= {e1, e2, e3}, H2= {e4, e5, e6} and              H3= 

{e4, e7, e3}. 

Let H1, H2,- - - - - - - -, Hn be the n min-paths then the network connectivity C can be represented 

as a logical OR of its min-paths.  

C =  H1UH2----UHi-----UHn 

So the point to point reliability is: 

Rs = Pr{C} = Pr { H1UH2----UHi-----UHn}           ----(1) 
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The network connectivity of our network can be expressed as  

C1-6 = e1e2e3Ue4e5e6U e4e7e3                                                     --- (2) 

The probability of the union of non-disjoint events, as in Formula (1), can be computed by several 

techniques. Here we use the inclusion-exclusion principle.  

Inclusion-exclusion Formula: One method of transforming a Boolean expression Φ(G) into a 

probability expression is to use Poincare’s theorem, also called inclusion-exclusion method.  

Let us consider an example with two minimal paths H1 and H2 and the Boolean expression  Φ(G) 

= H1 +  H2 , then the probability expression E(Φ(G)) can be expressed as follows: 

 E(H1 +  H2) =  E(H1) + E(H2) – E(H1.H2)  

  

Poincare’s formula for m min-paths :  

 

Let Pi denote the probability of edge ei of being working, by applying the Classical inclusion-

exclusion formula for calculating the probability of given network (figure 3), we get 

R1-6 = Pr{C1-6} = p1p2p3 + p4p5p6 + p3p4p7  − p1p2p3p4p5p6 – p1p2p3p4p7 – p3p4p5p6p7  

+ p1p2p3p4p5p6p7                     ---------- (3) 
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4. Generation of BDD and Reliability Computation 

The BDD based network reliability analysis involves three main steps. These are as follows: 

 

1. Order the link by applying a good heuristic approach.  

2. Generate the BDD from the probabilistic graph of the given directed network. 

3. Evaluate network reliability by using Shannon’s decomposition. 

A heuristic is good in the sense that it generates the minimum size BDD by taking an optimal 

variable ordering. A particular sequence of variables is known as a variable ordering. An ordering 

is said to be optimal if it generates the minimum size BDD. The size of the BDD means the total 

number of non-terminal nodes and number of nodes in a particular level. It has been observed that 

the size of the BDD strongly depends on the ordering of variables [23, 24, 25, 26].  

In this paper we take three type of variable orderings. Let E be the total number of links (edges) 

in the network and N be the number of non-terminal nodes in the OBDD or MBDD.  

 

4.1 Optimal Ordering: If the number of non-terminal nodes in the OBDD or MBDD is equal 

to the number of links in the network then the ordering is said to be optimal ordering (N = E).  

 

4.2 Good Ordering: If N ≤ [E + (┌E/4┐)], then  the ordering is said to be good ordering where 

┌E/4┐is called the ceiling of E, denotes the least integer that is not less than E.   
 

4.3 Bad Ordering: If N > [E + (┌E/4┐)], then the ordering is said to be bad ordering. 

Now we apply the Shannon’s decomposition to the Boolean connectivity function of the directed 

network expressed as the union of the min-paths in Formula (2). The Boolean connectivity 

expression (2) is built in figure 4, 5 and 6 by taking five different variables ordering. The 

computation of the probability of the BDD can again proceed recursively by resorting to the 

Shannon’s decomposition.  

  

Pr{F}= p1Pr{Fx
1 
=1}+(1 − p1)Pr{Fx

1 
=0}= Pr{Fx

1 
=0}+ p1(Pr{Fx

1 
=1}−Pr{Fx

1 
=0}) (4) 

where  p1 is the probability of the Boolean variable x1to be true and (1− p1) is the probability of 

the Boolean variable x1 to be false. Recursive application of Equation (4) is pictorially shown in 

Figure 4, 5 and 6. 

Here we will show that the network reliability, which is obtained by Poincare theorem is equal to 

the network reliability, which is obtained recursively by different BDD (different ordering 

variables) of the same network (Figure 3). 

Since the size of the BDD heavily depends on the variable ordering. The size of BDD means the 

total number of nodes in the BDD and number of nodes in a particular level. There are several 

variables ordering are possible for constructing the different BDD of the given CCN (figure 3). 

We have constructed only five different BDD of the given CCN and compute the reliability of the 

given CCN by using these different BDD. We found that the reliability obtained in each case by 

using BDD is same as the reliability obtained by inclusion-exclusion formula. But the size of the 

BDD is different in all the cases. Our program is written in the C language and computations are done 

by using a Pentium 4 processor with 512 MB of RAM. The computation speed heavily depends on the 

variables ordering because the size of the BDD heavily depends on the variable ordering.  



International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010 

88 

 

 

 



International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September 2010 

89 

 

 

For the ordering    e4 < e5 < e6 < e7 < e1 < e2 < e3 the size of the BDD is minimum; because it 

contains only seven non-terminal nodes and there are only seven edges (number of variables in 

connectivity function) in the given network. So the ordering e4 < e5 < e6 < e7 < e1 < e2 < e3 is the 

optimal ordering for generating the BDD of the given network. The diagram is shown above in 

figure 4.  

For the ordering e4 < e5 < e6 < e1 < e2 < e7 < e3 and e4 < e5 < e6 < e1 < e7 < e2 < e3, the BDD contain 

9 non-terminal vertices. While for the ordering e1 < e2 < e3 < e4 < e5 < e6 < e7  and e1 < e4 < e2 < e5 

< e7 < e3 < e6, the BDD have 11and 12 non-terminal vertices. So the size of the BDD is not 

minimum for these ordering and the complexity of the BDD in terms of size is more than the 

optimal ordering.  

Thus the orderings e4 < e5 < e6 < e1 < e2 < e7 < e3 and e4 < e5 < e6 < e1 < e7 < e2 < e3, are the good 

ordering as per the definition. The ordering e1 < e2 < e3 < e4 < e5 < e6 < e7  and e1 < e4 < e2 < e5 < e7 

< e3 < e6, are bad orderings. The BDD of good orderings and bad orderings are shown in figure 5 

and figure 6 respectively.  

 

5. Conclusion 

A method for evaluating the reliability via BDD by taking three different type of variable 

ordering has been proposed in this paper. We found that the results (reliability) are same by 

applying the different variable ordering. We also found that the size of the BDD (i.e. the number 

of non-terminal nodes) depends on the variable ordering. But we can say that at least one optimal 

ordering may exist for finding the reliability of a given CCN by using BDD. So we use optimal 

ordering for finding the reliability of a CCN by using BDD or OBDD or MBDD. Because 

optimal ordering generates minimum size BDD, which can use less memory to store and less 

complexity. We might also use good ordering for finding the reliability of the CCN. In future we 
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will try to develop a new algorithm for finding all optimal ordering on a given network. This 

algorithm will work on both the networks (Directed and Undirected networks). 
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