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ABSTRACT 

Some of the techniques of deriving binary sequences from chaotic function is defined in the literature. In 

this paper a new algebraic structure for generation of sequences using chaotic functions defined over 

finite field GF(2
8
) is proposed. The results indicate that for appropriate choice of bifurcation parameters 

and initial values both from GF(2
8
), a periodic sequence of period (2

8 
– 1) can be obtained. These 

sequences over GF(2
8
) are transformed to binary using three techniques (i), (ii) and (iii) 

i) expressing every element in GF(2
8
)of the sequence as binary 8 tuple 

ii) selecting a particular binary bit from each element of the sequence over GF(2
8
) 

iii) mapping every element in GF(2
8
) to GF(2) using Trace function 

 The cross correlation and Linear Complexity properties of binary sequences so obtained are studied. It 

is found that they have good cross correlation values and large linear complexity and hence can be used 

as spreading sequences in CDMA applications.  

KEYWORDS 

Finite Field, Chaotic Map, Trace Function, Linear Complexity, Cross Correlation 

1. INTRODUCTION 

Chaotic signals are random like but they are produced by deterministic systems and can be 

reproduced. Chaotic sequences are easy to generate and store. Only few parameters and 

functions are needed for generating very long sequences. Chaotic systems are sensitive to initial 

conditions and thus even with a small difference in initial conditions will lead to the generation 

of very different signals from the same dynamical system [1] – [6]. In addition, an enormous 

number of different sequences can be generated simply by changing its initial condition. Also 

the natures of chaotic signals are deterministic, reproducible, uncorrelated and random like, 

which can be very helpful in enhancing the security of transmission in communication.  
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In the past few decades, there has been a great deal of interest in the study of non-linear 

dynamical systems from which chaos developed. Chaos is of great interest in recent years in 

communication and more research are undergoing in either theory or practice [7] to [19]. One of 

the simplest and widely used chaos functions is Logistic map [20]. In recent years several 

methods to generate chaotic binary sequences using Threshold function [21] – [23] and Coupled 

Chaotic Systems [24] are proposed in the literature and are suitable for cryptographic 

applications.  

In this paper we propose to generate chaotic binary sequences using chaotic logistic map 

equation defined over GF(2
8
). The random sequence of finite field elements thus generated 

using chaotic map equation over GF(2
8
) are transformed to binary using three different methods. 

The cross correlation properties and linear complexity properties of corresponding binary 

sequences are studied. The resulting binary sequences are divided into non-overlapping 

segments of 15 bits and found to have good pairwise cross correlation and linear complexity 

properties compared to Gold sequences of same length. The result is similar to binary sequences 

derived from chaotic sequences as reported in [25]. 

The work is organized as follows: In Sec-II a brief introduction to chaotic functions over finite 

fields is presented. In Sec-III, we present our proposed chaotic sequence generator defined over 

finite field GF(28). In Sec-IV, binary mapping expressing field elements as binary 8 tuple is 

presented. Sec-V deals with binary mapping choosing bits in location i (i=1 to 8) of each 

symbol in the sequence. In Sec-VI binary mapping using Trace function is presented. In Sec-

VII, cross correlation and linear complexity properties of the binary sequences are defined.  In 

Sec-VIII, properties of segments of chaotic binary sequences are investigated. Finally, Sec-IX 

contains concluding remarks. 

2. INTRODUCTION TO CHAOTIC FUNCTIONS OVER FINITE FIELDS  

Discrete time dynamical systems are defined by the state equation, xk+1 = f (xk), k = 0, 1, 2… 

where f maps the state xk to the next state, xk+1. Starting with an initial condition x0, repeated 

applications of the map f give rise to a sequence of points {xk: k = 0, 1, 2……} called an orbit 

of the discrete-time system. The chaotic theory is built upon the discrete-time dynamical system 

defined by f. This section starts with the introduction to chaotic map equation defined over real 

numbers [20]. The concept is extended to chaotic map equation defined over finite field GF(28) 

in this paper. The proposed chaotic function over GF(28) is based on logistic map equation. We 

first consider logistic map equation over reals [20].  

2.1. Logistic Map equation over reals 

Consider xk+1 = r xk (1- xk), defined over reals and 0 < x < 1  (1) 

where ‘r’ is called as the bifurcation parameter and 3.57 < r < 4. For any initial value x0 greater 

than 0 and less than 1, the sequences are found to be non periodic and non-converging. Even 

with two initial values differing by a very small value, the resulting sequences are highly 

uncorrelated [26] – [28]. A survey on generation of chaotic sequences is given in [29]. 

Techniques of generating sequences over Zm and deriving binary sequences from them and 

study of their properties are discussed in [25], [30] and [31].  
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2.2. Finite Field GF(2
8
) 

Finite field GF(2
8
) with addition multiplication modulo a primitive polynomial x

8
+x

6
+x

5
+x

4
+1 

over GF(2) is considered. Let ‘g’ be a root of equation x8+x6+x5+x4+1 = 0. Then ‘g’ is a 

primitive or generating element whose powers g2, g3 ……g255 along with ‘g’ give all the 

nonzero elements in GF(2
8
). Further every nonzero element of the form g

j
 for j ≥ 8 can be 

expressed uniquely as a polynomial of degree less than or equal to 7 over GF(2). Every 

polynomial of degree 7 or less is of the form b7x
7 + b6x

6 + ….. b1x + b0, where bi Є (0, 1). Such 

polynomials can uniquely be represented in terms of its coefficients b7 b6 b5 b4 b3 b2 b1b0. Thus 

every nonzero element in GF(28) can be represented by gj for some j, 1 ≤ j ≤ 255 or by a 

corresponding binary 8 tuple. The ‘0’ in GF(28) is denoted by 8 tuple of all zeros.  

Proposed chaotic map equations over GF(2
8
) are given by equation (2) and (3) and are based on 

logistic map [20].   

xk+1 = r1 xk (r2 + xk)    (2) 

where r1, r2 and xk Є GF(2
8
) and are some powers of ‘g’. Here x0 ≠ 0.  

xk+1 = r1 (r2 + xk)    (3) 

where r1, r2 and xk Є GF(28) and are some powers of ‘g’. In this case x0 can be zero.                   

Equation (2) considered is the same logistic map equation (1) but the values of r1, r2 and xk Є 

GF(2
8
). Equation (3) is a variation of equation (2) and the values r1, r2 and xk Є GF(2

8
). The 

sequences generated will have elements from GF(28). Corresponding binary sequences are 

derived from sequences over GF(2
8
). The computation over GF(2

8
) is carried out using 

computer simulation. 

Example 1: Using equation (2), for arbitrarily chosen values of r1, r2 and x0, the random 

sequence of finite field elements are derived. For example, if x0 = g, r1 = g
23 

and r2 = g
24

, then 

using equation (2) we get x1 = g
107

, x2 = g
180

,   x3 = g
214

, x4 = g
99

.  

Example 2: Similarly for arbitrarily chosen values of x0 = g, r1 = g and r2 = g, then using 

equation (3) we get x1 = 0, x2 = g
2
, x3 = g

233
 and x4 = g

61
. 

The r1, r2 and xk can take the values 0, g, g
2
, g

3
… g

255
 and g is a primitive element in GF(2

8
). By 

selecting proper initial values x0 and bifurcation parameters r1, r2 in equation (2) and equation 

(3), sequences over GF(2
8
) of maximum possible period can be generated.  

The random sequence of finite field elements generated using chaotic map equations (2) and (3) 

over GF(28) as explained above are mapped to binary using the following methods.  

1) Expressing field elements as binary 8 tuple.  

2) Choosing bits in location i (where i = 1 to 8) of each symbol in the sequence. 

3) Mapping into binary using Trace function, where every field element in GF(28) is 

mapped to 0 or 1 in GF(2) as discussed in section 6. 

The binary transformations of finite field elements considered in example (1) based on equation 
(2) are listed in Table 1. The binary transformations of finite field elements considered in 
example (2) based on equation (3) are listed in Table 2. 
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Table 1. Binary mapping using equation (2)  

Values 

of 

Field 

element 

Binary mapping technique using 

Expressing elements as 

binary 8 tuple 

Choosing bits in location i  

(i = 1 for MSB) 

Trace 

function x0 g 00000010 0 0 

x1 g107  01001110 0 0 

x2 g180 11001011 1 0 

x3 g
214

 01100010 0 0 

x4 g
99

 11000110 1 1 

 

Table 2. Binary mapping using equation (3) 

Values 

of 

Field 

element 

Binary mapping technique using 

Expressing elements as 

binary 8 tuple 

Choosing bits in location i  

(i = 1 for MSB) 

Trace 

function x0 g 00000010 0 0 

x1 0 00000000 0 0 

x2 g
2
 00000100 0 0 

x3 g233 00001100 0 1 

x4 g61 00011100 0 0 

 

3. CHAOTIC SEQUENCE GENERATOR OVER FINITE FIELD GF(2
8
) 

 

Figure 1. Block diagram for chaotic sequence generator over GF(2
8
) 

The block diagram for chaotic sequence generator is as shown in the figure 1. The chaotic 

sequence generator shown in the block diagram generates random chaotic field elements defined 

over GF(28) for different initial values x0 and the bifurcation parameters r1 & r2. For equations 

(2) and (3), the random chaotic sequence over GF(2
8
) are mapped to binary using the three 

different techniques as discussed in Section 2.2. The generation of binary sequences from 

sequence over GF(28) is discussed next. 

4. Expressing field elements as binary 8 tuple  

For arbitrarily chosen values of x0, r1 and r2, the maximum possible period of the sequence over 

GF(2
8
) is determined by computer search and found to be 63 for equation (2) and 255 for 

equation (3). Each of the finite field elements are expressed as binary 8 tuple and concatenated 

to get binary sequence. Hence the period of the binary sequence is 63 x 8 = 504 bits using 

equation (2) and 255 x 8 = 2040 bits using equation (3). The binary sequence is then divided 

into 15 bit non-overlapping segments. The number of non-overlapping segments of length 15 

bits using equation (2) is 33 and 136 for equation (3). Each of these segments is numbered as 

Segment 1, Segment 2 … and is shown in Fig 2.  

 
Chaotic Map over GF(28)  Binary 

Mapping 

Bifurcation 
Field Elements r1 & r2 

 

Initial 

Field Element X0  

Random Chaotic 
sequence over GF(28) 

Binary 
Sequence 

Chaotic Sequence 
Generator 
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44 344 2144 344 2144 344 21
100

14991485

2

291615

1

1410 ,..............,.........,.......,,,.......,

SegmentSegmentSegment

bbbbbbbbenceBinarySequ =

 

Figure 2. Non-overlapping segments of 15 bits. 

 

5. Choosing Bits in location i (where i = 1 to 8) of each symbol in the sequence   

In this method of binary mapping, choosing bits in location i (where i = 1 (MSB) to 8 (LSB)) of 

each symbol in the sequence, the period of the binary sequence is found to be 63 bits in case of 

Logistic map equation (2) and 255 bits in case of equation (3).  To get the binary sequence we 

group the bits in location i (where i = 1 to 8) of each symbol in the sequence for each initial 

value x0 and bifurcation parameters r1 and r2.  

This binary sequence is divided into 15 bit non-overlapping segments. The number of 15 bit 

non-overlapping segments we get is 4 using equation (2) and 17 using equation (3). Each of 

these segments is numbered as Segment 1, Segment 2, … and is shown in Fig 3.  

44 344 2144 344 2144 344 21
17

254241

2

291615

1

1410 ,..............,.........,.......,,,.......,

SegmentSegmentSegment

bbbbbbbbenceBinarySequ =

 

Figure 3. Non-overlapping segments of 15 bits. 

6. Mapping from GF(2
n
) to GF(2) using Trace function  

The trace function [32] Tr(g) of an element g, g Є GF(2n), relative to GF(2) is defined by the 

equation, Tr(g) = g + g
2
 + …. + g2

n-1
 

It is well known that the trace of an element of GF(2
n
) relative to GF(2) is a binary number, 

either 0 or 1. The trace function is linear mapping over GF(2) from GF(2n). The non zero 

elements of GF(2
n
) form a cyclic group of order (2

n
 – 1) with generator g, where g(2

n
 – 1) =1.  

                                                                                     n-1 

The trace of g over GF(2n) is defined as Tr(g) = ∑    g2
i 

                                                                                     i=0 

For a primitive polynomial p(x) = x8+x6+x5+x4+1, the trace of g over GF(28) is given by, 

                       8-1 

Tr(g) = ∑   g2
i    = g + g2 + g4 +…………+ g128 

                    i=0 

Table 3 gives some mapping using trace function for elements in GF(2
8
). 

Table 3. Some mapping using Trace function for elements in GF(2
8
)  

Trace Polynomial Binary bit 

Tr(0) 0 0 

Tr(g) g + g
2
 + g

4
+….. .+ g

128
 0 

Tr(g2) g2 + g4 + g8+ …..+ g256 0 

Tr(g3) g3 + g6 + g12+…..+ g384 1 

Tr(g4) g4 + g8 + g16+ ….+ g512 0 

Tr(g
5
) g

5
 + g

10
 + g

20
+….+ g

640
 1 

Tr(g
128

) g
128

 =
 
1 1 
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The sequence of elements from GF(2
8
) generated using the chaotic maps as discussed in the 

previous section are expressed as symbols of 8 tuple. The 8 bit elements of GF(28) is mapped to 

GF(2) using Trace function to one bit binary (either 0 or 1) and concatenated.  

Hence in case of binary mapping using Trace function, the maximum possible period of the 

binary sequence is same as that of sequence over GF(28). As mentioned earlier the period of 

sequence over GF(2
8
) is determined by computer search and found to be 63 in case of Logistic 

map equation (2) and 255 in case of equation (3). This binary sequence is divided into 15 bit 

non-overlapping segments. The number of 15 bit non-overlapping segments we get is 4 for 

equation (2) and 17 for equation (3). Each of these segments is numbered as Segment 1, 

Segment 2 … and is shown in Fig 3.  

The linear complexity of 15 bit sequences is computed using Berlekamp – Massey algorithm 

[36] and pairwise cross correlation values are computed using equation (4) given in next 

section. The number of sequences of length 15 bits having pairwise cross correlation values 

denoted by α, are determined for α ≤ 0.35, ≤ 0.5 and ≤ 0.6 for arbitrarily chosen initial value x0, 

r1 and r2.  

7. CROSS CORRELATION (CCR) AND LINEAR COMPLEXITY PROPERTIES  

7.1. Cross Correlation (CCR) Property  

Definition: The normalized cyclic hamming cross correlation function of two binary sequences 

x and y of length L symbols is defined [33] - [35] as  

R x y (τ) = (nτ - dτ) / L, 0 ≤ τ ≤ L-1.     (4) 

Where nτ and dτ are the number of locations at which symbols agree and disagree respectively 

between the two sequences x and y. τ is the number of locations by which one sequence say y is 

shifted with respect to the other sequence x.  

7.2. Linear Complexity (LC) Property 

Definition: Linear complexity (LC) of a binary sequence of finite length is the length of the 

shortest LFSR that generates the same sequence. Berlekamp – Massey algorithm is an efficient 

algorithm for determining the linear complexity or Linear Span of binary sequence of finite 

length [36]. Hence a necessary condition for the sequence generator to be secure is that it 

always produces an output sequence with very large linear complexity [37]. 

 

8. Properties of segments of chaotic binary sequences over GF(2
8
) 

The random finite field elements generated using chaotic map equations (2) and (3) over GF(28) 

are mapped to binary sequence as discussed in section 2.2. The initial values x0, bifurcation 

parameters r1 and r2 are all from GF(2
8
) and the total number of field elements are 256 for each 

x0, r1 and r2. Hence the total number of possible input combinations is 256 x 256 x 256. Out of 

the 256
3
 combinations, if equation (2) is used some of the sequences with r1 = 0 and x0 = 0 are 

trivial and similarly when equation (3) is used some sequences are trivial (when r1 = 0 or 

simultaneously both r2 and x0 are zero). In what follows all the possible combinations are not 

used. To study the cross correlation and linear complexity properties of generated binary 

sequences, the initial values x0 and bifurcation parameters r1 and r2 are limited to few values.  

It is found by computer simulation that for arbitrarily chosen 9 initial values of x0 as (g, g2 

….g
9
), 24 values of r1 as (g, g

2
 ….g

24
) and 24 values of r2 as (g, g

2
….g

24
), the maximum possible 

period is 63 over GF(2
8
) using equation (2) and 255 over GF(2

8
) using equation (3). This will 

lead to 9 x 24 x 24 = 5184 input combinations. For 5184 input combinations the period of 
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sequence over GF(2
8
) is found to be lessthan or equal to 63 using equation (2) and lessthan or 

equal to 255 using equation (3).  

Out of the generated 5184 sequence of elements from GF(2
8
) using equation (2) there are 18 

sequences of period 63, 268 sequences of period 62, 182 sequences of period 31, 73 sequences 

of period 30, 202 sequences of period 28, 223 sequences of period 21, 827 sequences of period 

15, 341 sequences of period 14, 558 sequences of period 12, 100 sequences of period 10, 587 

sequences of period 7, 489 sequences of period 6, 136 sequences of period 5, 122 sequences of 

period 4, 309 sequences of period 3, 198 sequences of period 2 and 551 sequences of period 1. 

Similarly using equation (3), there are 2579 sequences of period 255, 1494 sequences of period 

85, 648 sequences of period 51, 216 sequences of period 17, 216 sequences of period 15 and 31 

sequences of period 1. In this paper the cross correlation and linear complexity properties are 

investigated for generated sequences with maximum possible period using equation (2) and (3). 

 

8.1. Expressing field elements as binary 8 tuple  

From equation (2) it is seen that, if r1 = 0 or x0 = 0, the sequence is all zero sequence, which are 

avoided. For 5184 input combinations the period of sequence over GF(2
8
) is found to be less 

than or equal to 63. Out of 5184 sequences we get 18 sequences of period 63 over GF(28) and 

each element is expressed as binary 8 tuple and concatenated. Hence the period is 63 x 8 = 504 

bits. This results in 33 non-overlapping segments of length 15 bits. The 15 bit segments are 

numbered as Segment1, Segment2… Segment33 as explained in section 4. The pairwise CCR 

values of segment 1 with all other segments are computed using equation (4). If the maximum 

pairwise CCR value exceeds α, then those segments are discarded and if the maximum pairwise 

CCR value is ≤ α then those segments are selected. This is repeated for all other segments. The 

values of x0, r1 and r2 for the 18 sequences of period 63 is given in Table 4. 

The results are obtained for 15 bit binary sequences with pairwise α ≤ 0.35, ≤ 0.5 and ≤ 0.6. The 

results obtained for different α are summarized in Table 4.  

Details of Trial 1 are given. The linear complexity (LC) of the 4 binary sequences along with 

their segment number corresponding to trial number 1 in Table 4 with pairwise α ≤ 0.35 is given 

in Table 5.  

Table 4.  Number of sequences out of 33 sequences having pairwise α ≤ 0.35, ≤ 0.5 and 

≤ 0.6 with primitive polynomial x
8
+x

6
+x

5
+x

4
+1. 

Trial 

Number 

Initial Value 

x0 chosen 

r1 

chosen 

r2 

chosen 

Number of binary sequences having 

pairwise CCR value lessthan α 

α ≤ 0.35 α ≤ 0.5 α ≤ 0.6 

1 g g
23

 g
24

 4 8 19 

2 g2 g23 g24 4 10 21 

3 g
3
 g

23
 g

24
 3 10 21 

4 g
4
 g

23
 g

24
 4 10 25 

5 g5 g23 g24 2 5 22 

6 g6 g
23

 g
24

 3 9 22 

7 g7 g23 g24 3 10 21 

8 g
8
 g

23
 g

24
 3 9 20 

9 g
9
 g23 g24 4 6 21 

10 g g24 g
23

 4 8 20 

11 g
2
 g

24
 g23 2 9 22 
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12 g
3
 g

24
 g23 4 6 19 

13 g4 g24 g
23

 2 8 20 

14 g5 g
24

 g23 3 8 19 

15 g
6
 g24 g

23
 4 9 18 

16 g7 g24 g23 3 9 22 

17 g8 g
24

 g23 3 7 18 

18 g
9
 g24 g

23
 3 10 20 

 

Table 5. LC of 4 binary sequences having pairwise α ≤ 0.35 along with segment number 

Segment Number Binary Sequence Linear complexity 

9 110010010010110 9 

10 000001101010101 8 

30 001010010000101 7 

33 000110101111110 8 

Likewise sequences having pairwise α ≤ 0.5 are identified. The segment number of these 8 

binary sequences and their linear complexity for trial number 1 in Table 4 is given in Table 6.  

Table 6. LC of 8 binary sequences having pairwise α ≤ 0.5 along with segment number 
 

 

 

 

 

Likewise segment numbers of 19 sequences whose pairwise α ≤ 0.6, the corresponding binary 

sequence and computed linear complexity for trial number 1 in Table 4 are given in Table 7. 

The 18 combinations which gave length L = 63 is listed in Table 4. From Table 5, Table 6 and 

Table 7, it is seen that the linear complexity of binary sequences of length 15 bits generated 

using Logistic map equation (2) over GF(2
8
) varies between 7 and 9. The linear complexity of 

Gold sequence of length 15 is 8. Some of the segments of 15 bits have linear complexity 9, 

which is more than that of Gold sequence of same length. 

There are 17 Gold sequences [38] and [39] of length 15 bits which have pairwise α ≤ 0.6. There 

are no Gold sequences of length 15 bits and pairwise α ≤ 0.35 or 0.5. However using the 

proposed scheme it is possible to obtain number of sequences which is greater than Gold 

sequences whose length is 15 bits. 

 

 

 

 

Segment Number Binary Sequence Linear complexity 

1 000000100100111 8 

7 100000100010001 7 

9 110010010010110 9 

19 011101111010000 8 

30 001010010000101 7 

31 011011001011100 7 

32 100001110011101 8 

33 000110101111110 8 
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Table 7. LC of 19 binary sequences having pairwise α ≤ 0.6 along with segment number 

 

 

 

 

 

 

 

 

 

 

 

 

It is observed that by modifying logistic map equation (2) into the form given in equation (3), 

the properties of the chaotic sequence over GF(28) is changed. Out of 5184 sequences for 

arbitrarily chosen values of x0, r1 and r2 as discussed in section 8, we get 2579 sequences of 

period 255 over GF(28) and each element is expressed as binary 8 tuple and concatenated. 

Hence the period is 255 x 8 = 2040 bits. This results in 136 non-overlapping 15 bit segments as 

described in section 4. The first 16 sequences among 2579 sequences of period 255 are 

considered and the results are tabulated in Table 5. As explained earlier the pairwise CCR 

values are computed for 15 bit segments and if the maximum pairwise CCR value exceeds α, 

then those segments are discarded.  

The results are obtained for 15 bit binary sequences with pairwise α ≤ 0.35, ≤ 0.5 and ≤ 0.6. The 

results obtained for different α are summarized in Table 8.  

Details of Trail 1 are given below. The linear complexity (LC) of the two binary sequences 

along with their segment number corresponding to trial number 1 in Table 8 with pairwise α ≤ 

0.35 is given in Table 9.  

Table 8. Number of sequences out of 136 sequences having pairwise α ≤ 0.35, ≤ 0.5 and ≤ 0.6 

with primitive polynomial x8+x6+x5+x4+1 

Trial 

Number 

Initial Value 

x0 chosen 

r1 chosen r2 chosen Number of binary sequences having 

pairwise CCR value lessthan α 
α ≤ 0.35 α ≤ 0.5 α ≤ 0.6 

1 g g g 2 5 30 

2 g2 g g 3 7 30 

3 g3 g g 2 6 36 

4 g
4
 g g 2 8 25 

5 g
5
 g g 2 9 30 

6 g6 g g 3 9 30 

Segment Number Binary Sequence Linear complexity 

4 100101111100000 8 

7 100000100010001 7 

12 011101001101011 8 

14 100111101000110 9 

15 011111010101000 7 

16 011011011110000 8 

18 001110101011011 7 

19 011101111010000 8 

20 111111001110110 7 

21 111110010000010 7 

22 011001000010110 7 

24 111001010001010 7 

25 101100010001011 7 

27 100011100111101 8 

28 000011101110010 8 

30 001010010000101 7 

31 011011001011100 7 

32 100001110011101 8 

33 000110101111110 8 
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7 g7 g g 2 7 29 

8 g8 g g 2 8 26 

9 g
9
 g g 2 10 33 

10 g g
2
 g 3 7 31 

11 g2 g2 g 2 9 38 

12 g3 g2 g 4 8 29 

13 g4 g2 g 2 8 40 

14 g
5
 g

2
 g 4 9 34 

15 g
6
 g

2
 g 4 9 38 

16 g7 g2 g 4 5 31 

 

Table 9. LC of 2 binary sequences having pairwise α ≤ 0.35 along with segment number 

Segment Number Binary Sequence Linear complexity 

1 000000100000000 7 

47 000110011110011 7 

Likewise sequences having pairwise α ≤ 0.5 are identified. The segment number of these 5 

binary sequences and their linear complexity for trial number 1 in Table 8 is given in Table 10.  

Table 10. LC of 5 binary sequences having pairwise α ≤ 0.5 along with segment number 

 

 

 

 

Likewise segment numbers of 30 sequences whose pairwise α ≤ 0.6, the corresponding binary 

sequence and computed linear complexity for trial number 1 in Table 8 are given in Table 11. 

From Table 9, Table 10 and Table 11, it is seen that the linear complexity of binary sequences 

of length 15 bits generated using equation (3) varies between 6 and 11. As in the case of binary 

sequences of length 15 bits using equation (2), in this case also it is possible to obtain number of 

sequences which is greater than Gold sequences whose length is 15 bits. There are no Gold 

sequences of length 15 bits and pairwise α ≤ 0.35 or 0.5. A similar result in case of binary 

sequence obtained by transformation of chaotic sequence over reals is reported in [25]. 

 

 

 

 

 

 

 

 

Segment Number Binary Sequence Linear complexity 

1 000000100000000 7 

14 111000100110110 10 

16 001011001011001 6 

82 010111000000001 9 

107 111111101010000 7 
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Table 11. LC of 30 binary sequences having pairwise α ≤ 0.6 along with segment number 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.2. Choosing Bits in location i (where i = 1 to 8) of each symbol in the sequence   

Consider the logistic map given by equation (2). For 5184 input combinations we get only 18 

sequences of period 63 over GF(28) as discussed in section 8 and when transformed to binary 

choosing bits in location i (i = 1 to 8) the period is 63. Hence there are 18 x 8 = 144 sequences 

of period 63. This results in only 4 non-overlapping segments of 15 bits. The first 2 

combinations choosing bits in location i (i = 1 to 8) resulting in 2 x 8 = 16 sequences are 

tabulated in Table 12. As explained in section 8.1, the pairwise CCR values of 15 bit segments 

are computed and if the pairwise CCR value is ≤ α then those segments are selected. 

The results are obtained for 15 bit sequences with pairwise α ≤ 0.35, ≤ 0.5 and ≤ 0.6 with the 

same x8+x6+x5+x4+1 as primitive polynomial defining GF(28) for equation (2) which gives 

maximum period of 63. The results obtained for different α for each bit selection are 

summarized in Table 12.  

Segment Number Binary Sequence Linear complexity 

8 001101101000011 8 

10 111100110101110 8 

14 111000100110110 10 

28 000101001010011 10 

38 011001010110100 8 

50 001100001110001 8 

51 101111100110000 8 

53 001010010001010 9 

54 101111010101000 8 

58 110100111001110 8 

64 001101000110000 8 

70 110001100010111 9 

71 111111100010110 8 

73 111100011001011 8 

84 000001101000110 8 

87 101011001000110 6 

89 011101011110111 11 

90 010101001001001 7 

93 111000101001010 7 

96 001100001000101 8 

104 010010000111101 7 

107 111111101010000 7 

112 101111111001011 8 

113 111000111011001 7 

117 111010001001011 8 

119 100001101101110 10 

123 110110101111010 8 

131 110000101100010 8 

134 011011101111011 7 

135 001001111001111 8 
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Table 12. Number of sequences out of 4 sequences having pairwise α ≤ 0.35, ≤ 0.5 and ≤ 0.6 

with primitive polynomial x8+x6+x5+x4+1 

Trial 

Number 

x0 

chosen 

r1 

chosen 

r2 

chosen 

Bit Chosen  

        i 

Number of binary sequences having 

pairwise CCR value lessthan α α ≤ 0.35 α ≤ 0.5 α ≤ 0.6 

1 g g23 g24 1 (MSB) 2 3 4 

2 g g23 g24 2 3 3 4 

3 g g
23

 g
24

 3 2 3 4 

4 g g
23

 g
24

 4 3 4 4 

5 g g23 g24 5 3 4 4 

6 g g23 g24 6 3 4 4 

7 g g23 g24 7 3 4 4 

8 g g
23

 g
24

 8 (LSB) 3 4 4 

Details of Trail 1 are given below. The linear complexity (LC) of the 2 binary sequences along 

with their segment number corresponding to trial number 1 in Table 12 with pairwise α ≤ 0.35 is 

given in Table 13.  

Table 13. LC of 2 binary sequences having pairwise α ≤ 0.35 along with segment number 

Segment Number Binary Sequence Linear complexity 

3 100011101011111 6 

4 101101000100001 6 

Likewise sequences having pairwise α ≤ 0.5 are identified. The segment number of these 3 

binary sequences and their linear complexity for trial number 1 in Table 12 is given in Table 14.  

Table 14. LC of 3 binary sequences having pairwise α ≤ 0.5 along with segment number 

 

 

 

Likewise segment numbers of 4 sequences whose pairwise α ≤ 0.6, the corresponding binary 

sequence and computed linear complexity for trial number 1 in Table 12 are given in Table 15. 

Table 15. LC of 4 binary sequences having pairwise α ≤ 0.6 along with segment number 

 

 

 

From Table 13, Table 14 and Table 15, it is seen that the linear complexity of binary sequences 

of length 15 bits generated using equation (2) is 6. However using the proposed scheme the 

number of 15 bit segments is limited to only 4. Also it is possible to generate few sequences of 

length 15 bits with pairwise α ≤ 0.35 or 0.5.  

Next we consider equation (3). Out of 5184 sequences generated using equation (3) for 

arbitrarily chosen values of x0, r1 and r2 as discussed in section 8, we get 2579 sequences of 

period 255 over GF(2
8
) and when transformed to binary choosing bits in location i (i = 1 to 8) 

results in 2579 x 8 = 20632 sequences. Each of this sequence can be divided into 17 non-

overlapping segments of 15 bits as described in section 5. The first combination choosing bits in 

location i (i = 1 to 8) resulting in 1 x 8 = 8 sequences are tabulated in Table 16. As explained 

earlier, the pairwise CCR values of 15 bit segments are computed and if the pairwise CCR value 

exceeds α then those segments are discarded. 

Segment Number Binary Sequence Linear complexity 

2 100000110111001 6 

3 100011101011111 6 

4 101101000100001 6 

Segment Number Binary Sequence Linear complexity 

1 001010100100111 6 

2 100000110111001 6 

3 100011101011111 6 

4 101101000100001 6 
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The results are obtained for 15 bit non-overlapping segments with pairwise α ≤ 0.35, ≤ 0.5 and 

≤ 0.6 with the same (x8+x6+x5+x4+1) as primitive polynomial defining GF(28) using equation 

(3) which gives period of 255. The results obtained for different α for each bit selection are 

summarized in Table 16.  

Table 16. Number of sequences out of 17 sequences having pairwise α ≤ 0.35, ≤ 0.5 and ≤ 0.6 

with primitive polynomial x
8
+x

6
+x

5
+x

4
+1 with initial values x0 = g and r1 = g and r2 = 0 

Trial 

Number 

Bit Chosen 

       i 

Number of binary sequences having pairwise CCR 

value lessthan α 

α ≤ 0.35 α ≤ 0.5 α ≤ 0.6 

1 1 (MSB) 4 11 15 

2 2 3 8 15 

3 3 2 9 14 

4 4 3 9 16 

5 5 3 6 15 

6 6 2 10 13 

7 7 2 8 15 

8 8 (LSB) 2 11 15 

Details of Trail 1 are given below. The linear complexity (LC) of the four binary sequences 

along with their segment number corresponding to trial number 1 in Table 16 with pairwise α ≤ 

0.35 is given in Table 17.  

Table 17. LC of 4 binary sequences having pairwise α ≤ 0.35 along with segment number 

 

 

 

Likewise sequences having pairwise α ≤ 0.5 are identified. The segment number of these 11 

binary sequences and their linear complexity for trial number 1 in Table 16 is given in Table 18. 

Likewise segment numbers of 15 sequences whose pairwise α ≤ 0.6, the corresponding binary 

sequence and computed linear complexity for trial number 1 in Table 16 are given in Table 19.  

From Table 17, Table 18 and Table 19, it is seen that the linear complexity varies between 7 and 

9, for binary sequences of length 15 bits generated using equation (3). Also it is possible to 

generate some sequences of length 15 bits with pairwise α ≤ 0.35 or 0.5.  

Table 18. LC of 11 binary sequences having pairwise α ≤ 0.5 along with segment number 

 

 

 

 

 

 

 

Segment Number Binary Sequence Linear complexity 

8 111001100011000 7 

10 110100010100001 9 

11 001000001111001 8 

14 011011011001111 8 

Segment Number Binary Sequence Linear complexity 

1 000000011011110 8 

2 101100000101010 8 

4 101001100110100 8 

7 010111011010010 7 

8 111001100011000 7 

9 011100100111101 7 

10 110100010100001 9 

11 001000001111001 8 

13 101111101100010 8 

16 011101111111010 8 

17 011100001011110 8 
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Table 19. LC of 15 binary sequences having pairwise α ≤ 0.6 along with segment number 

 

 

 

 

 

 

 

 

 

 

8.3. Mapping in to binary using Trace function  

Consider the logistic map given by equation (2). For 5184 input combinations we get only 18 

sequences of period 63 over GF(28) as discussed in section 8 and when transformed to binary 

using trace function, the period is 63. This results in 4 non-overlapping segments of length 15 

bits. The values of x0, r1 and r2 for the 18 sequences of period 63 is given in Table 20. The 15 bit 

segments are numbered as Segment1, Segment2, Segment3 and Segment4 as explained in 

section 5. The pairwise CCR values of segment 1 with all other segments are computed using 

equation (4). If the maximum pairwise CCR value exceeds α, then those segments are discarded 

and if the maximum pairwise CCR value is ≤ α then those segments are selected. This is 

repeated for remaining segments. The results are obtained for 15 bit binary sequences with 

pairwise α ≤ 0.35, ≤ 0.5 and ≤ 0.6 using equation (2) which gives maximum period of 63 bits. 

The results obtained for different α are summarized in Table 20.  

Table 20. Number of sequences out of 4 sequences having pairwise α ≤ 0.35, ≤ 0.5 and ≤ 0.6 

with primitive polynomial x
8
+x

6
+x

5
+x

4
+1 

Trial 

Number 

Initial 

Value x0 

chosen 

r1 

chosen 

r2 

chosen 

Number of binary sequences 

having pairwise CCR value α ≤ 0.35 α ≤ 0.5 α ≤ 0.6 

1 g g
23

 g
24

 2 3 3 

2 g
2
 g

23
 g

24
 2 3 4 

3 g3 g23 g24 2 3 4 

4 g4 g23 g24 2 3 4 

5 g
5
 g

23
 g

24
 2 4 4 

6 g
6
 g

23
 g

24
 2 4 4 

7 g
7
 g

23
 g

24
 2 3 4 

8 g8 g23 g24 3 3 4 

9 g9 g23 g24 3 3 4 

10 g g
24

 g
23

 2 3 4 

11 g
2
 g

24
 g

23
 2 2 4 

12 g
3
 g

24
 g

23
 2 3 4 

13 g4 g24 g23 2 3 3 

Segment Number Binary Sequence Linear complexity 

1 000000011011110 8 

2 101100000101010 8 

3 100011111001110 9 

4 101001100110100 8 

6 001000110101011 8 

7 010111011010010 7 

8 111001100011000 7 

9 011100100111101 7 

10 110100010100001 9 

11 001000001111001 8 

13 101111101100010 8 

14 011011011001111 9 

15 110001011011100 8 

16 011101111111010 8 

17 011100001011110 8 
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14 g5 g24 g23 3 3 3 

15 g6 g24 g23 2 3 3 

16 g
7
 g

24
 g

23
 2 3 4 

17 g
8
 g

24
 g

23
 3 3 4 

18 g9 g24 g23 2 4 4 

Details of Trail 1 are given below. The linear complexity (LC) of the 2 binary sequences along 

with their segment number corresponding to trial number 1 in Table 20 with pairwise α ≤ 0.35 is 

given in Table 21.  

Table 21. LC of 2 binary sequences having pairwise α ≤ 0.35 along with segment number 

Segment Number Binary Sequence Linear complexity 

1 000011111011010 7 

2 011110101100111 7 

Likewise sequences having pairwise α ≤ 0.5 are identified. The segment number of these 3 

binary sequences and their linear complexity for trial number 1 in Table 21 is given in Table 22.  

Table 22. LC of 3 binary sequences having pairwise α ≤ 0.5 along with segment number 

 

 

Likewise segment numbers of 3 sequences whose pairwise α ≤ 0.6, the corresponding binary 

sequence and computed linear complexity for trial number 1 in Table 20 are given in Table 23. 

From Table 21, Table 22 and Table 23, it is seen that the linear complexity of binary sequences 

of length 15 bits generated using equation (2) is 7. However using the proposed scheme the 

number of sequences is limited to only 4 whose length is 15 bits.  

Table 23. LC of 3 binary sequences having pairwise α ≤ 0.6 along with segment number 

 

 

 

Next we consider equation (3). Out of 5184 sequences generated using equation (3) for 

arbitrarily chosen values of x0, r1 and r2 as discussed in section 8, we get 2579 sequences of 

period 255 over GF(2
8
) and when transformed to binary using trace function results in 2579 x 1 

= 2579 sequences. Each of this sequence can be divided in to 17 non-overlapping segments of 

15 bits as described in section 6. The first 16 sequences among 2579 sequences of period 255 

are considered and the results are tabulated in Table 24. As explained earlier, the pairwise CCR 

values of 15 bit segments are computed and if the pairwise CCR value is ≤ α then those 

segments are selected. 

The results are obtained for 15 bit binary non-overlapping segments with pairwise α ≤ 0.35, ≤ 

0.5 and ≤ 0.6 using equation (3) which gives maximum period of 255 bits for arbitrarily chosen 

values of initial values x0 and r1 and r2. The results obtained for different α using trace function 

are summarized in Table 24.  

 

Segment Number Binary Sequence Linear complexity 

1 000011111011010 7 

3 011011010011101 7 

4 111100011000110 7 

Segment Number Binary Sequence Linear complexity 

1 000011111011010 7 

3 011011010011101 7 

4 111100011000110 7 
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Table 24. Number of sequences out of 17 sequences having pairwise α ≤ 0.35, ≤ 0.5 and ≤ 0.6 

with primitive polynomial x8+x6+x5+x4+1 

Trial 

Number 

x0 chosen r1 

chosen 

r2 

chosen 

Number of binary sequences having 

pairwise CCR value lessthan α α ≤ 0.35 α ≤ 0.5 α ≤ 0.6 

1 g g g 2 6 12 

2 g2 g g 3 7 11 

3 g
3
 g g 4 6 14 

4 g
4
 g g 2 6 14 

5 g5 g g 3 7 14 

6 g6 g g 3 5 14 

7 g7 g g 5 7 13 

8 g
8
 g g 2 6 10 

9 g
9
 g g 3 6 14 

10 g g2 g 3 6 11 

11 g2 g2 g 4 7 12 

12 g3 g2 g 3 6 13 

13 g
4
 g

2
 g 3 7 11 

14 g
5
 g

2
 g 3 8 14 

15 g6 g2 g 4 9 13 

16 g7 g2 g 2 6 12 

Details of Trail 1 are given below. The linear complexity (LC) of the two binary sequences 

along with their segment number corresponding to trial number 1 in Table 24 with pairwise α ≤ 

0.35 is given in Table 25.  

Likewise sequences having pairwise α ≤ 0.5 are identified. The segment number of these 6 

binary sequences and their linear complexity for trial number 1 in Table 24 is given in Table 26.  

 

Table 25. LC of 2 binary sequences having pairwise α ≤ 0.35 along with segment number 

  

 

Table 26. LC of 6 binary sequences having pairwise α ≤ 0.5 along with segment number 

 

 

 

 

Likewise segment numbers of 12 sequences whose pairwise α ≤ 0.6, the corresponding binary 

sequence and computed linear complexity for trial number 1 in Table 24 are given in Table 27. 

From Table 25, Table 26 and Table 27, it is seen that the linear complexity of binary sequences 

of length 15 bits generated using equation (3), varies between 6 and 9. There are no Gold 

sequences of length 15 bits and pairwise α ≤ 0.35 or 0.5. However using the proposed scheme it 

is possible to obtain some sequences having pairwise α ≤ 0.35 and 0.5 whose length is 15 bits.  

 

Segment Number Binary Sequence Linear complexity 

1 010010001010001 7 

6 110001101111010 8 

Segment Number Binary Sequence Linear complexity 

6 110001101111010 8 

7 011101101100101 8 

9 101111110111111 6 

10 000100011101111 7 

12 101010011111001 7 

16 100000011100110 8 
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Table 27. LC of 12 binary sequences having pairwise α ≤ 0.6 along with segment number 

 

 

 

 

 

 

 

 

The generated binary sequences are investigated for cross correlation and linear complexity 

properties for sequences of length 15 bits and found to have good cross correlation values.  

9. CONCLUSIONS 

In this paper, we have proposed a scheme for generation of binary sequences using logistic map 

equation defined over GF(2
8
). Some segments of length 15 bits of the generated chaotic binary 

sequences are tested for cross correlation and linear complexity properties. The investigation is 

done for 15 bit binary sequences and compared with Gold sequences. From the results it is 

observed that there are segments of 15 bit with pairwise CCR value less than that of Gold 

sequences. There are 17 Gold sequences of length 15 bits that can be generated using two 4 

stage Linear Feedback Shift Register (LFSR) and hence the linear complexity is 8. But the 

proposed sequences have linear complexity varying between 6 and 11. Some of the segments of 

15 bits have linear complexity more than that of Gold sequences.  

Gold sequences of length 15 have maximum pairwise CCR value of 0.6 [38] and [39]. Using the 

proposed model it is possible to generate few sequences with pairwise CCR value lessthan that 

of Gold sequences.  

In general we can conclude that it is possible to generate binary sequences of length 15 bits 

using equations (2) and (3) with good cross correlation value compared to Gold sequences of 

the same length 15. Similar results for binary sequences derived from chaotic sequences over 

reals are reported in [25]. 
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