
International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.5, September 2011 

DOI : 10.5121/ijdps.2011.2511                                                                                                                  115 

AN APPROACH TO PROVIDE TYPE SAFETY OF 

LANGUAGES FOR PROGRAMMING WIRELESS 

SENSOR NETWORKS 

Jayesh Rathod1 and Rashmi Agrawal2 

1
Computer Science and Engineering Department, 

Laxmi Narain Institute of Technology 

Indore, India 

jnrathod@aits.edu.in 
2
Computer Science and Engineering Department, 

Thakral College of Technology 

Bhopal, India 

Rashmi.agrawal@aits.edu.in 

 

ABSTRACT 

On the design of a reliable programming model for wireless sensor networks (WSN), we must deal with 

various concerns, such as heterogeneousness of sensors, different sensing capabilities, dynamic updates 

and power consumption. The adhoc-networking characteristic of WSNs, its nonviable physical access, and 

the fact that WNS's are typically programmed in low-level paradigms, and the nonexistence of a robust 

semantic for existing languages are features that burden the task of programming sensor networks.  

A more efficient approach to program WSN is using a high-level programming language combined with 

robust semantics. This combination is not provided by any existing programming languages. 

Consequently, it is not possible to prove the equivalence between the semantics of the language and its 

implementation. Therefore, a semantic gap is induced.  

This paper proposes the creation of a calculus for a specific programming language and the 

corresponding virtual machine. Furthermore, it provides the semantic equivalence between the calculus 

and the virtual machine, thus the type-safety of the language. The main contribution of this paper is the 

design and the implementation of a virtual machine for the Callas language, as derived from the base 

calculus 
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1. INTRODUCTION  

Wireless Sensor Networks (WSNs) are collections of small and low-cost sensors, also called 

motes, as a result of their small size. These sensors can be deployed over wide areas and 

programmed to sense their environment. Wireless Sensor Networks have been challenging the 

research community with an efficient programming model for them [3]. This programming 

model must deal with various concerns, such as: a heterogeneous mix of sensors, motes with 

different sensing capabilities, dynamic updates and power consumption [9]. WSNs have some 

very specific characteristics that are significantly different from other wireless networks, 

essentially: 

• The design of a sensor network is mostly driven by the target application [5];  
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• Sensor nodes are highly constrained in terms of CPU speed, memory availability and power 

consumption;  

  • Large-scale sensor networks require self-configuration and automatic software updates 

without human intervention [5]. 

Moreover, the reliability in communication and lifetime of a WSN and its nodes is inferior 

compared to more conventional networks [16].  

Wireless sensor networks have no rigid structure, and their granularity can vary from tens to 

thousands of nodes.  

2. PROGRAMMING SENSOR NETWORKS 

In this we have given a brief overview of a different variety of programming models for wireless 

sensor networks, focusing on their relative advantages and disadvantages.  

The models can be broadly classified as high-level and low-level programming languages or 

tools [9].  

a. Low-level Programming 

The low-level programming of sensor networks can be done in distinct layers: directly using 

binary code, on top of a hardware abstract layer such as a virtual machine, and as part of a more 

generous middleware framework [15]. I have briefly described each approach, giving examples 

of programming languages/systems for each layer, and focusing on their advantages and 

disadvantages. 

 

b. Virtual Machines 

There are few virtual machine implementations for sensor networks. One of the better known 

in the literature is Mat, a communication-centric virtual machine [14].  

 

The main focus of this virtual machine is the communication between sensors in the network 

[17]. Programming sensor networks with Mat´ can be done using the Tiny Script e language or 

using a higher level programming language called Mottle [10]. Programs are called capsules and 

they may be injected in the network, when needed, to achieve specific tasks [11]. These 

programs have the capability to move between sensors. There are also mechanisms that allow 

the installation of ad-hoc routing algorithms and data aggregation.  

 

c. High Level Programming 

At network level, the high-level programming can be divided in microprogramming or 

sensor-based programming [14]. The main idea of microprogramming systems is that 

applications for sensor networks should be developed as typical distributed applications without 

the need for the programmer to specify the role of each computing node individually [14]. The 

approach taken by these systems allows the programmer to focus on the application in a high-

level fashion neglecting network architecture and communication details [7]. A compiler or a 

bundle of run-time libraries should take care of those details [13]. Applications in this kind of 

systems can be implemented using two types of behavior: global behavior and local behavior.  

 

In systems using the local behavior approach, the network is partitioned in regions to specify 

a computation [17]. Abstract Regions, HOOD, Regiment, Kairos and SNACK are examples of 
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systems and programming languages that are based on a local behavior approach. Regiment is a 

great example of this kind of language, as it uses network regions and data streams as the 

elemental programming abstractions. It is a functional language that does not permit input, 

output, or direct manipulation of a program state. The run-time environment is based on DTM 

virtual machine, previously described in this chapter [16].  

On sensor-based programming systems, the responsibility to specify the role of each sensor 

(implementation, compilation and deployment) belongs to the programmer [10]. Also in this line 

of work, our project tackles the problem of providing the WSN with a robust programming 

model in the sense that the languages obtained are type-safe and that the semantics of the virtual 

machine matches that of the formal model [9]. The type-safety property of the Callas language 

allows programs to be verified statically and a significant set of would-be run-time errors to be 

detected prematurely [8]. Higher level programming in our project is achieved by encoding 

high-level constructs in the core programming model, thus preserving semantics. 

 

3. THE PROGRAMMING MODEL 

 

Callas is a calculus for programming sensor networks that provides primitives for sensor 

computation, communication, code mobility, and updates. It provides a type-safe framework for 

developing programming languages and run-time systems [14]. 

 

A network is represented as S or as 0, being the later the representation of an empty network 

[7]. A network is a concurrent composition of sensors devices, represented as 

 

 
 

Each sensor device comprises the following elements [12]: 

 

•C - a call-stack for the running process;  

• R - a priority queue of runnable processes;  

• M - a table with the installed code modules; 

• T - a table of timers for function calls;  

• I - a queue of incoming messages from the network;  

• O - a queue of outgoing messages for the network;  

• p - the current position;  

• t - the current time.  

 

The running process uses the C stack, while the runnable processes are located at R. The 

interface between low-level networking is done with I and O queues. These queues buffer the 

messages between sensor devices in the network. Messages are serialized or packaged function 

calls of the form l [5]. The devices are not only capable of measuring their position, p, but can 

also sense a few physical properties of the environment (e.g. temperature, humidity), by calling 

external routines. The code installed in each sensor is represented by M and it consists of a set of 

named functions. The later are represented by l = (x) P, where l is the name of the function, x are 

the parameters, and P the code for the function. T is a set of timed function calls to functions in 

M. Each timed call is a tuple formed by the call to be triggered, the timer period, the time after 

which the timer expires and, the time of the next call.  

A process P can: call a function (v .l (v)), call an external function (extern l (v)), install a 

module (M.install M′), send a message (send l(v)), receive a message (receive ), program a timed 

call (timer l(v) every v expire v), or assign values to variables (the let construct). In the module 

installation, the process adds the set of functions in M′ to M. send l (v) takes a call, packages it, 

and places it at the outgoing-queue, to be sent over the network. On the other hand, a receive 
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gets a packaged call from the incoming-queue, unpacks it, and places it in the run-queue. In a 

timed-call timer l (v) every v expire v, the call l (v) is executed periodically until the timer 

expires. A timed call that does not expire is written as timer l (v) every v forever. Finally, the let 

construct permits the processing of intermediate values in computations [15]. 
 

3 .2 Semantics 

The operational semantics is defined with the help of a structural congruence as usually in 

process calculus the congruence rules are given in Figure 3.2 [17]. 

Standard rule is [C, R : M, T ] Ip, , O≡ [C, R : M, T ]Ip, ,O {0 }, which provides a conceptual 

membrane to the sensor. This membrane is an artifice to prevent sensors from receiving 

duplicate copies of a message during a broadcast [3]. 

 

All sensor’s reductions are carried out without any interference. The installation of a module 

on a sensor is controlled by the rules R- INSTALL- INTERFACE and R-INSTALL – MODULE 

 

S1 | S2 ≡ S2 | S1, S | 0 ≡ S, S1 | (S2 | S3) ≡ (S1 | S2) | S3 (S-monoid-Sensor) 

 
           Figure 3.2: Structural congruence for sensors. 

 

The first one is responsible for the installation of a module on the sensor’s interface, and the 

second one is responsible for the installation of a module on an anonymous module. 

 

3.3 Language Syntax 

We have presented some examples written in a concrete syntax derived from the calculus for 

the Callas language. The syntax does not use braces to delimit blocks. It is inspired in the Python 

programming language and its indentation style, which makes use of white space to delimit 

blocks. The grammar for the concrete syntax may be consulted in [18]. In the Callas Language, 

lines which end with (:) delimit the start of a block of code and the consequent lines with the 

same indentation constitute the body of the block.  

The first example is the sampling program presented in the previous section, the second one 

is a simple Ping, and the last one computes a maximum value of a data attribute in a network 

[15]. 
#Sink 

run: 

module Sampling as sampling 

def gather(self ,x ,y); 

extern log(x ,y); 

def receiver(self ,x ,y); 

 

receive sensor. install(sampling); 

send setup(period, interval); 

timer receiver() every dt forever 

 Figure 3.3: Sampling program – Sink 
 
#Sensor 

run: 

 module Sampling as sampling 

 def setup(self ,x ,y): 

  fire self. sample() every x ,require y  

def sample(self); 

 x=extern time() 

 y=extern data() 
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send gather(x ,y) 

        def receiver(self ,x ,y): 

   receive 

sensor. install(sampling); 

timer receiver() every dt forever 

    Figure 3.4: Sampling program – Sensor 

 

4. VIRTUAL MACHINE 

The idea is to prove, in future work, the equivalence between the semantics of the calculus 

and that of the virtual machine, thus establishing the soundness of the virtual machine. The 

virtual machine we present serves as the specification for the run-time environment of the Callas 

programming language.  

The programming language chosen to implement the virtual machine was Java. This choice 

was a result of the adoption of SunSPOTR platform for the development. The SunSPOTR devices 

run a compact version of a Java virtual machine, called Squawk.  
 

A. Format of byte-code 

In the byte-code format, a program (p) has as its constituents: a magic-number, a version, a 
list of modules, and a list of types. Both magic-number and version are basic types [13].  

A module (m) is a list of functions (f ), and each function is composed by a string with its 
name, the number of local variables, the code with its instructions, and a set of constant symbols 
[13]. All the instructions are given by c, and each constant symbol is given by u, that can be one 
of the follow: BOOL k, INTEGER n, FLOAT e, STRING k l,  

 

B. Specification 

The syntactic categories of the virtual machine are defined in Figure 4.2. A byte-array of 
Callas byte-code is represented by b of a set B. A word w of set (W) used in the virtual machine 
can be a boolean, an integer, a float, a string, or a module m of set M, which is a map String 7→ 
B representing a set of functions [11]. The virtual machine has both incoming, and outgoing 
queues of sets I and O for network purposes. Both queues manipulate frames of set F, which are 
sequences of words. A priority queue, of set R, is also present. This queue is a sequence of 
runnable processes of set H [12]. A runnable process is composed of a tuple with: an operand-
stack of set S and a byte-array of set B. On the other hand, the running-process is executed in a 
call stack of set C that contains tuples, of set G, with: an operand-stack, byte-code, an 
environment frame, and a program counter [7]. Finally, timed-calls are represented as tuples, of 
set T, with an operand-stack and tree integers representing the period, expire time, and the time 
of the next call. Finally, a machine state is a tuple of set: 

 
Int ×M× T × C × R × I × O {halt} 
 

C. Semantics 

In this section we present the operational semantics of the Callas virtual machine. The semantics 
is based on the reduction semantics for the calculus presented in [5], and is parametric in the 
program p. 

byte array         b  : B 
word        w : W = Bool : Int : Float : String :M 
frame                 F = h ~W i 
operand-stack    S = ~W 
timer         T = S × Int × Int × Int 
incoming-queue      I = ~F 
outgoing-queue       O = ~F 
runnable process  H = S × B 
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run-queue   R = ~H 
running process G = S × F × Int × B 
call-stack  C =~G 
module   m : M= String 7→ B 
machine state  Int ×M× T × C × R × I × O : {halt} 

Figure 4.2: The syntactic categories of the virtual machine. 
 
n-initialized           h<w>k≡<w1,...,wn, 01, . . . . . . , 0k>, k ≥ 0 
k-extra frame           
 
frame     <w> ≡ <w>0 
stacks of syntactic category   α α1 : ........ : αn |Q 
queues of syntactic category  α α1 :......... : αn | Q 

Figure 4.3: Notation for the components of the virtual machine. 

 

D. Implementation 

In this section we focus on the implementation of the virtual machine. The main objective 
was to use the virtual machine’s operational semantics as a specification. 
The data-structures we require map one-to-one with those of the formal semantics (Table 
4.4). The implementation was done in the Java programming language, to run on the Squawk 
virtual machine installed in SunSPOT

R 
devices [9]. The source code of the virtual machine is 

provided with this thesis in Appendix A. 

 
The virtual machine’s primary structure is the class Program, which keeps run-time 
information about the program’s byte-code p. 
 
Class  Program  
{ 
private  int  magicNumber ; 
private byte version ; 
private  Vector modules ; 
private   Vector types; 
private  byte [ ] byteCode ; 
Program(int magicNumber ,byte version,Vector modules ,Vector typesbyte [ ] byteCode) 
{  
. . .  
} 
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} 

 
Class Program has the following elements: a magic number, a version, a vector that keeps the 
program’s modules, and a vector that keeps the type information. The number of modules 
and types can be extracted from the Vector object. 
 
As we saw, a Program has a list of modules and each element of this list has its own 
structure. Next, we present the definition of the Module class. 
 
Class Module { 
protected byte open ; 
protected Vector functions; 

 Module( )  
{ . . .  
} 

} 

 
The class Module has only two elements: a byte that indicates whether a module has free 
variables, and a vector with the functions that make up the module [16]. To be more 
conservative in terms of memory we use a vector instead of a hash table, we consider that we 
do not have a large number of functions in a module. In future work, the use of a hash table 
will be preferable. 
 
Class Function has the following attributes: the name, the number of locals, the bytecode, and 
the symbols. The function’s symbols are constants that can be referred to in the byte-code 
and can be one of the following types: integer, float, boolean, string, or a module [9]. We 
extract the symbols associated with every function from its byte code to make the 
implementation simpler. The field byteCode of the class Function should then be understood 
as composed of the machine instructions for the body of the function. 
 
Class Function  
{ 
private  String name ; 
private byte [ ] byteCode ; 
private Vector symbols ; 
private byte numberOfLocals; 
Function( ) 
{ . . . } 
} 

 
These data-structures completely describe the program’s byte code. 
 
We now turn to the virtual machine data-structures. One of these structures is represented by 
class RunnableProcess, which represents a run-queue tuple H for a given function and 
environment frame. 
 

E. Developing and Running Callas applications 

For the development of the virtual machine for the Callas language and of Callas applications 
we have chosen the Eclipse platform [13]. The reasons behind this choice were the fact that it 
runs on multiple platforms and has an excellent support for Java based development. 
 
Here, we have presented a small example session that builds Callas applications and runs it 
on the SunSPOTR simulation tool Solarium. We will use the Ping program, and two sensors: 
Sensor and Sink. Both are Java projects, and have an embedded Callas virtual machine. 
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In Figure 4.5 we see the SunSPOT SDK libraries used by the virtual machine and the 
applications. 

 
Figure 4.5: Referenced libraries. 

 
Each project has a build.xml file (same as the Demos application projects supplied with the 
SunSPOT SDK), and a MANIFEST.MF file with the following configuration: 

 
MIDlet−Name: VirtualMachine 
MIDlet−Version: 1. 0. 0 
MIDlet−Vendor: Sun MicrosystemsInc 
MIDlet −1:, , org.callas.vm.VirtualMachine 
MicroEdition−Profile: IMP−1.0 
MicroEdition−Configuration: CLDC−1.1 

 
This indicates the entry point to the application. 
 
An application is formed by the Java code of the virtual machine plus a byte-array that holds 
the Callas program byte-code. Upon initialization in the sensor, the virtual machine reads the 
byte-array and extracts this data into a run-time representation of the program. 
 
To proceed with the Ping example we hit the Deploy MIDlet bundle action (Figure 4.8), 
which allow us to deploy an application onto the virtual SPOT.We select the build.xml file 
corresponding to the project, or an existing project’s jar file that we want to deploy to the 
virtual SPOT. Another action that we use, the Display application output, allows us to view 
the output from applications running on the virtual device. We can also use the Set Name 
command to label virtual SPOTs, in this case sensor or sink (Figure 4.9). 
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(a) Sensor      (b) Sink 
                         Figure 4.9: Set the name of the virtual SPOTs. 

 
The application consists of two projects with the source of the Callas virtual machine and the 
byte-code to be executed. 
 
Next, we set the name of each virtual SPOT: one as Sensor, the other as Sink. In Figure 4.9 
we can view that the left virtual SPOT is the Sensor and the right is the Sink. 
 
After this, we deploy both projects in their respective virtual SPOT (Figures 4.10 and 4.11) 
by selecting the appropriate build.xml files in each of the ping project/sensor and ping 
project/sink directories. 

 

 
Figure 4.10: Deploy Sink project. 

 

 
Figure 4.11: Deploy Sensor project. 
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The first one is responsible for the installation of a module on the sensor’s interface, and the 
second one is responsible for the installation of a module on an anonymous module. 
 

5. CONCLUSIONS 

In this thesis we have presented the base calculus, presenting its reduction semantics, proved 
before being type-safe. 
 
We have worked on specifying an operational semantics for a virtual machine for Callas 
based on the same calculus, maintaining as closest as possible from that of the calculus. 
Based on this operational semantics, we have developed an implementation of a virtual 
machine for the SunSPOT platform, which runs on top of a Squawk virtual machine. 
 
We have written some programs in Callas language and created correspondent projects, and 
tested them in the SunSPOT devices, and in the Solarium tool. All of the programs written 
are type-safe. 
 
For future work, we are intending to create high-level programming languages, add more 
abstractions to the semantics (e.g. regions), and prove the semantic equivalence between the 
calculus and the virtual machine, thus proving the type-safety of the language. 
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