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Abstract:  

This paper discusses the linear complexity property of binary sequences generated using matrix 

recurrence relation defined over Z4. Generally algorithm to generate random number is based on 

recursion with seed value/values. In this paper a linear recursion sequence of matrices or vectors over Z4 

is generated from which random binary sequence is obtained. It is shown that such sequences have large 

linear complexity. 
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1. INTRODUCTION 

Today’s modern cryptography needs to deal with many aspects of security issues.In addition to 

providing confidentiality, it has to provide data integrity, authentication and non repudiation 

[1].Ever increasing computing power of potential attackers endangers even well-researched 

encryption algorithms [ 2]. 

Cryptography systems can be broadly classified into symmetric-key systems such as DES, AES 

and RC4 that use a single key that both the sender and recipient have to encrypt and decrypt 

respectively. Public-key or asymmetric systems such as RSA, ElGamal and Elliptic curve 

cryptograchy that use two keys, a public key known to everyone and a private key that only the 

recipient of messages uses [3], [4, [5]. Symmetric cryptosystem is usually divided into block 

ciphers and stream ciphers. Block ciphers operate with a fixed transformation on large blocks of 

plain-text data; stream ciphers operate with a time-varying transformation on individual plain-

text digits [1], [5].This classification is not absolute, and any block cipher can be used as a 
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stream cipher by using certain modes of operation. Cipher Feedback mode (CFB), Output 

Feedback mode and Counter mode operation on block cipher system can be used to turn a block 

cipher into a stream cipher. They can be proven secure under the assumption that the block 

cipher is secure [1], [3], [4]. 

 

 In block cipher data is devided into blocks and encrypt and decrypt block wise, where in a 

stream cipher encryption or decryption is  bit-by-bit or character by character. Both block 

ciphers and stream ciphers are in common use today. Generally in stream encryption system, a 

binary message is encrypted by adding bit by bit modulo 2 a binary random sequence called key 

sequence. Stream cipher system has the advantage that both encryption and decryption occurs at 

real time. Stream ciphers are especially prevalent in business and military applications [2], [3], 

[4] [5] [6], [7]. 
 

Security of stream cipher system depends on the randomness properties of the sequence called 

key sequence. Therefore key sequence generator is very important building block for stream 

cipher system. A random bit generator can be used to generate binary random bit sequences with 

desirable statistical properties which are important in cryptographic applications.The need for 

design of efficient and secure pseudorandom sequence generators remains an ongoing challenge 

and an important field in cryptographic research up to the present day. 

 

A method of generation of random binary sequences using matrix recurrence relation defined 

over Z4 is discussed in [8].There are standard tests like FIPS-1 and NIST-SP-800-2 revision 1 [9] 

test suites to test the randomness properties of binary sequences. It is shown in [8] that 

sequences generated using matrix recurrence relation pass these test suites. It is also found that 

such sequences exhibit good autocorrelation and cross correlation properties [10].  

In this correspondence, we discuss the generation of random sequence defined over Z4 using 

matrix recurrence relation and corresponding binary sequence is derived from it. Linear 

complexity of the binary sequences so generated is determined using Massey - Berlekamp 

algorithm [11] and results are analyzed. It is shown that such sequences exhibit large linear 

complexity which is desirable characteristics of random sequences required for key sequences in 

stream cipher systems.  

Organization of the rest of the paper:  

In Section 2 we introduce random sequence generator. Section 3 introduces a method of 

generation of random sequence using matrix recurrence relation defined over Z4. Section 4 

discusses the results. Section 5 contains concluding remarks. 

2. RANDOM SEQUENCE GENERATORS 

Random binary sequences are used as running key sequence in stream cipher system. Here 

message is in the form of binary sequence is encrypted by adding bit by bit modulo 2 a binary 

random sequence called key sequence and decrypted at the receiver using the same random key 

sequence generated at the receiver. 
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Linear Feedback Shift Registers (LFSRs) are important building blocks for generating key 

sequences. Maximum length sequences called m- sequences generated by an n stage Linear 

Feedback Shift Registers have very good randomness properties such as long period, ( 2
n
-1), 

balance, ideal autocorrelation  and good statistical properties which are desirable 

characteristic[6]. Also LFSR can be easily implemented both in hardware and software.However 

m-sequences have low linear complexity. For an m-sequence of length 2
n
-1 the linear 

complexity is n. In this case only 2n consecutive bits are required to determine the feedback 

polynomial of the LFSR and hence the entire sequence. In the practical stream cipher designs, a 

large linear complexity of the key stream is obtained by a nonlinear transformation of the LFSR 

output sequence or nonlinear feedback shift register. 

The use of non linear feedback mechanism to produce pseudorandom sequence is discussed in 

[3], [4]. Some of the methods of transformation define three general design categories: 

combination generators; filter generators and clock controlled generators [3]. 

The linearity complexity properties of LSFR’s can be improved by feeding the outputs of several 

parallel LFSRs into a non-linear Boolean function to form a combination generator. The various 

properties of such a combining function are critical for ensuring the security of the resultant 

scheme, like avoiding correlation attacks. 

Clock controlled generators [17] serve the function of introducing non-linearity in LFSRs. This 

non-linearity is achieved by having LFSR clocked irregularly by being driven by the output of 

some other LFSR. Several generators based on this principle have been proposed like stop-and-

go, alternating step generator [12] and the shrinking generator [3], [4], [13], [14][15][16] 

 

Another approach of improving the linearity complexity of sequence generated by LFSR is to 

use Filtering Boolean functions [5]. Although, not sufficient to be resistant enough against 

several attacks, certain characteristics are supposed to be necessary in stream ciphers with this 

structure. These characteristics include: high non-linearity, balance, and algebraic immunity 

[17].  

Some of the widely used random sequence generators are generator based on recurrence modulo 

2 [11],[18], linear feedback shift register generator (LFSR) [4], [20],[21],[22], feedback with 

carry shift registers (FCSR) [23],[24], nonlinear combination generators [3],[4], non linear 

feedback shift registers (NLFBSR) [3],[4], Marsaglia random number generators [25]-[26], and 

elliptic curve based pseudorandom random sequence generator [28] etc. Examples of 

cryptographically secure pseudorandom bit generators are RSA pseudorandom bit generator 

[29], Micali-Schnorr pseudorandom bit generator [30, 31], Blum-Blum-Shub pseudorandom bit 

generator (x
2 

mod N generator) [32], [33]. Generally in all these schemes a random sequence is 

generated using seed key.Generally stream cipher systems are fast and easy to implement both in 

hardware and software. 

The proposed scheme describes a method of obtaining binary sequences with large linear 

complexity. 
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3. PROPOSED   RANDOM SEQUENCE GENRATOR USING 

MATRIX RECURRENCE RELATION 

The proposed   random sequence generator defined over Z4 is based on Matrix Recurrence 

Relation defined by, 

Uj= 1ij

1n

0i

i UA −−

−

=

∑ ,      j ≥ n, arithmetic modulo 4                                                                        (1)   

Where Ais  , i = 0,1,…………..,n-1are k×k matrices  called co-efficient matrices , Uis , i = 

0,1,……………,n-1are  k×k initial matrices called seed matrices over Z4 .With U0,U1, 

U2,……………....Un-1 known,Un,Un+1,……….… satisfies the recurrence relation (1), where n is 

called order of the recurrence relation. 

A  Vector recurrence relation can also be defined as follows  

Vj = 1ij

1n

0i

iVA
−−

−

=

∑ ,      j ≥ n , arithmetic modulo 4                                                                     (2)                                       

Where, as in equation (1) Ai s, i = 0,1,…,n-1 are k×k matrices  called co-efficient matrices . Vi s , 

i = 0,1,…,n-1 are k×1 vector  called seed values .With V0,V1,V2,…..Vn-1 known,Vn,Vn+1,…… 

satisfies the recurrence relation  (2) . 

Based on recurrence relation (1),with n arbitrary initial k×k seed matrices U0,U1,U2, ……..Un-

1,random sequence of k×k matrices  U0,U1,U2,…..Uj over Z4 is generated as follows 

Un=A0Un-1+A1 Un-2,……..+ An-1 U0      modulo 4,                                                                          (3) 

Un+1=A0Un+A1 Un-1,……..+ An-1 U1,   modulo 4                                                                          (4) 

.  .  .  .  .  .  .  .  .  .  .  .  .  . 

.  .  .  .  .  .  .  .  .  .  .  .  .  . 
In general for j ≥ n  

Uj=A0Uj-1+ A1Uj-2,……... + An-1 Uj-n , modulo 4                                                                          (5) 

It can be shown that the sequence generated is strictly periodic if k× k coefficient matrix An-1 is 

nonsingular [8]. 

3.1. General Case of Sequence over Z4  
                                                                                                                                                                                                           

The method of generation of sequences of matrices and sequences of vectors over Z4 is 

described below. 
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Case I: Generation of Sequences of Matrices over Z4 

In this case the n coefficients Ai s, i = 0, 1……….. n-1are k×k matrices over Z4 which are 

arbitrarily chosen with An-1 nonsingular to get strictly periodic sequence. The n initial matrices 

Ui s, i = 0, 1… ……..n-1are also k×k matrices over Z4.  Random sequence of k× k matrices is 

generated using equation (1) by randomly selecting the coefficient matrices and initial matrices 

over Z4. Different sequences are generated for different coefficients and initial matrices. The 

properties of the sequences generated depend on coefficient matrices, initial seed matrices and n, 

order of recurrence relation given in expression (1). 

To obtain Binary Sequence from Matrix Sequence over Z4 

Coefficient matrices Uis are over Z4, the elements are from the set {0, 1, 2, 3}. Sequence over Z4 

can be derived from the sequence of k× k matrices by concatenation of the rows of Ui s .Then a 

sequence of N matrices each having k
2 
elements from Z4 gives rise to a sequence of Nk

2 
elements 

over Z4. By representing the elements 0, 1, 2, and 3 in binary as 00, 01, 10, and 11 respectively 

the length of the corresponding binary sequence is 2Nk
2
. 

Consider k×k seed matrices, each having k
2
 elements.  

The number of possible seed matrices over Z4 for each stage = 4 
k**2

                                      (6) 

For k=2, number of possible matrices = 4
4
=256                                                                       (7) 

For n stages the number of possible seed matrices over Z4 is 4
n k**2

. If all the possible states are 

in one cycle, then the corresponding length of sequence is 4
nk**2

, which is the maximum possible 

length. Corresponding maximum possible length of binary sequence is equal to 2(4
nk**2

). 

However the actual length of the sequence generated is always less than the maximum possible 

value and depends on the coefficient matrices and seed matrices. 

Case 2: Generation of Sequence of Vectors over Z4 

By having k×k coefficient matrices as above and with the initial values from a set of k×1vectors 

over Z4 instead of k×k matrices, the sequences of k×1 vectors over Z4 are generated. The number 

of possible seed vectors for one stage is 4
k
 and for n stages it is 4

kn
. 

To obtain Binary Sequence from Vector Sequence over Z4 

The recurrence relation given by equation (2) is used to generate sequence of k×1 vectors {Vi}, 

over Z4.The seed values V0,V1,V2, Vn-1 are k×1 vectors over Z4.Seed vectors along with known n 

coefficient matrices are used to obtain random vector sequence {Vi}. As mentioned earlier with 

An-1, a k×k nonsingular coefficient matrix, the sequence generated is strictly periodic. Sequence 

over Z4 is generated by concatenating the transpose of vectors in sequence {Vi}.  
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Consider vector sequence of length N.The corresponding sequence over Z4 is then of length Nk. 

The corresponding binary sequence is of length 2Nk. For a vector sequence of size k×1, with n 

number of stages the maximum possible length of the sequence will be equal to 4
nk

 and the 

corresponding maximum possible length of binary sequence is equal to 2(4
nk

). 

 

In this case also the actual length of sequences depends on number of stages n, choice of 

coefficient matrices and seed values and is less than the maximum possible value. 

 

3.2. Linear Complexity Measure 
 

One of the most useful concepts in the study of key sequences used in stream ciphers is that of 

linear complexity. The linear complexity of a binary sequence is defined as the length of the 

shortest linear feedback shift register that generates it. If a sequence has small linear complexity, 

then the synthesis of a linear equivalent of the sequence generator becomes computationally 

feasible. The linear complexity of a finite sequence is determined using Massey –Berlekamp 

algorithm [11]. The algorithm is briefly described below. 

 

Algorithm:  

 

INPUT: A binary sequence sn = s0, s1, s2,….., sn−1 of length n. 

 

OUTPUT: Linear complexity L(s
n
) of sn, 0 ≤ i ≤ n.  

 

Initialization: C (D) = 1= 0, l= 0, m= −1, B(D) =1, N= 0. 

2.  While (N < n) do the following: 

2.1  Compute the next discrepancy d. 

 d = (sN+
1N

L

1i
i
sc

−

=

∑ ) mod2, 

2.2  If d = 1 then do the following: 

T (D) = C (D), C (D) =C (D) + B (D)  D
N−m

. 

If L ≤ N/2 then L =N + 1 − L, m= N, B (D) =T (D). 

2.3  N= N + 1. 

3.  Return (L). 

 

Where C (D) is connection polynomial, L is linear complexity. 

 

It is desirable that random sequence which can be used as key sequence in stream cipher systems 

to have a large linear complexity. The necessary (but not sufficient) condition to be secure in 

running key stream cipher is to have large linear complexity [11], [34], [35].. 

 

Even for a given order n, for different arbitrarily chosen n coefficient matrices and seed values, 

the generated sequence of length m, need not necessarily have same linear complexity. Further 
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just by knowing n coefficient matrices and initial values, linear complexity cannot be predicted 

.Hence linear complexity can be treated as a random variable. Thus to study the statistical 

behavior of the linear complexity, number of sequences are generated and their linear 

complexity is computed. From these data we compute Mean, µx Variance, σx
2
, and Standard 

deviation, σx
 
of linear complexity. The definition of Mean, Variance, and Standard deviation are 

available in [37].The definitions are repeated here. 

Mean 

Let X1, X2, X3…XN be N linear complexity values of N sequence of same length.The mean value, 

µx or expected value of linear complexity is defined as   

Mean=µx= ∑
N

1=i

iX
N

1
                                                                                                                                (8) 

Variance and standard deviation, σx
2
 

Variance of random variable X is a measure of how far the value of random variable deviates 

from its mean value. It is defined as  

σx
2
=

N

)X(

N

1 =i

2
xi∑ µ−

                                                                                                                                 (9)     

Very small value of variance indicates that X takes values almost equal to µx. The standard 

deviation σx is the positive square root of its variance σx
2
. Standard deviation is a widely used 

measure of the variability or dispersion from mean value. It shows how much variation there is 

from the "average" (mean or expected) value. A low standard deviation indicates that the values 

tend to be very close to the mean, whereas high standard deviation indicates that the values are 

spread out over a large range of values, around the mean value. 

Through simulation it is seen that by proper choice of size, k of matrix and number of stages, n it 

is possible to generate random binary sequences of large linear complexity. 

 

4. SIMULATION RESULTS AND DISCUSSIONS 

In general the binary sequence generated will have its linear complexity which depends 

on 

i) n , the order of recurrence relation  

ii) choice of n coefficient matrices and 

iii) the n seed value 
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4.1. CASE 1: Matrix Sequences and Corresponding Binary Sequences 

In the following studies k = 2 is chosen. From equation (6), the number of 2×2 matrices over Z4 

is 256.As n increases the linear complexity of the sequence also increases. This is verified by 

means of computer simulation. For n=5,10,15,20,25 and 30, the corresponding number of 2×2 

coefficient matrices are arbitrarily chosen from a set of 256 , 2×2 matrices. Likewise the n seed 

values are also chosen arbitrarily. In each case, 10 different sequences of length m = 5000 bits 

are considered. Linear complexities of these 10 sequences are computed using Berlekamp- 

Massey algorithm [11].The statistical behavior of linear complexity X is found by computing its 

mean µx , variance, σx
2
 and standard deviation ,σx after the linear complexities of 10 sequences 

are computed. The results are tabulated in Table 1. 

Columns of Table 1shows the computed linear complexity of generated sequences using 

recurrence relation of order n =5, n=10, 15, 20, 25 and 30 respectively. It is observed from the 

Table 1 that the mean linear complexity µx for sequences of length 5000 bits for n = 5 are found 

to be 556. Similarly the mean linear complexities µx, for n=10, 15, 20, 25, and 30 are found to be 

1875.8, 2495.8, 2493, 2498.3, 2499.3 respectively. The corresponding variance σx
2 
is found to be 

125.7777, 126.4, 130.4889, 52, 11.3444 and 0.9111 respectively. Likewise the corresponding 

standard deviation σx
 
is found to be11.2150, 11.2427, 11.4231, 7.2111, 3.3681 and 0.6749 

respectively. From these results it is evident that the linear complexity value is increasing with 

the order n of recurrence relation and approaches m/2 for n≥ 15.Correspondingly variance, and 

standard deviation decreases .This implies that the sequences generated have mean value of 

linear complexity µx almost equal to m/2 with high probability for m=5000 bits and n≥15.  

Similarly Table 2 and Table 3, list the linear complexities X , mean µx, variance σx
2 
and standard 

deviation σx
 
for sequences of length 10000 bits and 20000 bits respectively , for different n = 

5,10,15,20, 25 and 30. It is seen from Table 2 and Table 3 that for m= 10000 and 20000 and for 

n ≥20 the linear complexity approaches m/2 which is desirable for random sequences [36]. 

The variation of mean µx, variance σx
2 

and standard deviation σx
 
with different m and n are 

depicted in Figure.1, Figure.2 and Figure.3.respectively. For different length of sequence m 

=5000, 10000 and 20000 it is also seen that the values of variance and standard deviation are 

decreasing as n increases.  

From the above results it is seen that for n ≥ 15 the mean value of linear complexity µx is almost 

equal to m/2 and hence the generated sequences have linear complexity m/2 with high 

probability for m=5000 bits. It is also seen that variance σx
2 

and standard deviation σx
 
are small. 

The same behavior of linear complexity, variance and standard deviation of linear complexity 

are observed for m = 10000 and 20000 bits. These are depicted in Figure.1, Figure.2 and 

Figure.3 respectively. 
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Table 1: List of Linear Complexity of Binary Sequences Generated Using Matrix Recurrence Relation 

Defined by equation (1), CASE 1 with k = 2 

Length of Sequence = 5000 bits 

Stage , n 5 10 15 20 25 30 

LC of Sequence 1 544 1897 2500 2500 2499 2500 

LC of Sequence 2 545 1871 2500 2489 2500 2500 

LC of Sequence 3 567 1881 2498 2499 2500 2499 

LC of Sequence 4 567 1855 2500 2489 2499 2499 

LC of Sequence 5 565 1881 2500 2500 2500 2500 

LC of Sequence 6 546 1877 2497 2488 2500 2498 

LC of Sequence 7 539 1881 2500 2479 2498 2499 

LC of Sequence 8 561 1879 2488 2489 2489 2499 

LC of Sequence 9 567 1865 2488 2497 2498 2499 

LC of Sequence 10 559 1871 2487 2500 2500 2500 

Mean, µx 556 1875.8 2495.8 2493 2498.3 2499.3 

Variance, σx
2
 125.7777 126.4 130.4889 52 11.3444 0.9111 

Standard  Deviation, σx 11.2150 11.2427 11.4231 7.21110 3.3681 0.6749 

 
Table 2: List of Linear Complexity of Binary Sequences Generated Using Matrix Recurrence Relation 

Defined by equation (1), CASE 1 with k = 2 

Length of Sequence = 10000 bits 

 
Table 3: List of Linear Complexity of Binary Sequences Generated Using Matrix Recurrence Relation 

Defined by equation (1), CASE 1 with k = 2 

Length of Sequence = 20000 bits 

Stage , n 5 10 15 20 25 30 

LC of Sequence 1 544 1897 3650 5000 5000 5000 

LC of Sequence 2 545 1871 3662 4990 5000 5000 

LC of Sequence 3 567 1881 3665 5000 5000 5000 

LC of Sequence 4 567 1855 3664 5000 5000 5000 

LC of Sequence 5 565 1881 3653 4997 4999 4999 

LC of Sequence 6 546 1877 3650 5000 5000 5000 

LC of Sequence 7 539 1881 3660 5000 4999 5000 

LC of Sequence 8 561 1879 3655 4994 4998 4999 

LC of Sequence 9 567 1865 3654 5000 5000 5000 

LC of Sequence 10 559 1871 3643 5000 5000 5000 

Mean, µx 556 1875.8 3655.6 4998.1 4999.6 4999.8 

Variance, σx
2
 125.7778 126.4 50.0444 12.1 0.4888 0.1777 

Standard  Deviation, σx 11.2150 11.2427 6.71118 3.4785 0.6992 0.4216 

Stage , n 5 10 15 20 25 30 

LC of Sequence 1 544 1897 3650 9989 9998 10000 

LC of Sequence 2 545 1871 3662 9989 9998 10000 

LC of Sequence 3 567 1881 3665 9988 9998 9998 

LC of Sequence 4 567 1855 3664 9989 9997 9998 

LC of Sequence 5 565 1881 3653 10000 10000 10000 

LC of Sequence 6 546 1877 3650 9989 9999 10000 

LC of Sequence 7 539 1881 3660 9987 9987 9997 

LC of Sequence 8 561 1879 3655 9988 9989 9998 

LC of Sequence 9 567 1865 3654 9999 9999 10000 



International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010 

77 

 

 

 

Figure 1: Plot of Mean Linear Complexity, µx 

v/s Number of Stages,n 

Case 1 Matrix sequence with k=2 

Figure 2: Plot of Variance of Linear Complexity, σx
2 

v/s Number of Stages,n 

Case 1 Matrix sequence with k=2 

 

 

 

Figure 3: Plot of Standard Deviation of Linear 

Complexity, σx v/s Number of Stages,n 

Case 1 Matrix sequence with k=2 
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4.2. CASE 2: Vector Sequences and Corresponding Binary Sequences. 

 
For this case also k= 2 is chosen. 

The simulation study is carried out with seed values of 16 possible 2×1 vectors over Z4 instead 

of matrices. For n=5,10,15,20,25 and 30, the corresponding number of 2×2 coefficient matrices 

are arbitrarily chosen from a set of 256 possible  2×2 matrices over Z4.  

In each case, 10 different sequences of length m = 5000 bits are generated after binary 

transformation of sequences over Z4 as discussed in section 3.1. Linear complexities of these 10 

sequences are computed using Berlekamp- Massey algorithm [11].The statistical behavior of 

linear complexity is found by computing its mean value, variance and standard deviation.The 

results are tabulated in Table 4.Columns of Table 4 shows the computed linear complexity of 10 

sequences generated using recurrence relation of order n =5, 10, 15, 20, 25 and 30 respectively. 

The corresponding mean linear complexity µx, variance σx
2 
and corresponding standard deviation 

σx
 
are also listed. From these results it is evident that the linear complexity value is increasing 

with the order n of recurrence relation and approaches m/2 for n≥ 15.Correspondingly variance 

and standard deviation decreases .This implies that the  sequence generated have linear 

complexity almost equal to m/2 with high probability for m=5000 bits and n≥15. 

Similarly in Table 5 linear complexities X, mean value of  linear complexity µx, variance σx
2 
and 

corresponding standard deviation σx
 
for sequences of length 10000 bits for n = 5, 10,15,20,25 

and 30 are listed. 

Likewise in Table 6 linear complexities X, mean valueof linear complexity µx, variance σx
2 

and 

corresponding standard deviation σx
 
for sequences of length 20000 bits for n = 5, 10,15,20,25 

and 30 are also listed. It is seen from Table 5 and Table 6 that for m= 10000 and 20000 and for n 

≥20 the linear complexity approaches m/2. 

The variation of mean µx, variance σx
2 

and standard deviation σx
 
with different m and n are 

depicted in Figure.4, Figure.5 and Figure.6.respectively for different length of sequence m 

=5000, 10000 and 20000. It is seen that the values of variance and standard deviation are 

decreasing as n increases.  

From the above results it is seen that for n ≥ 15 the mean value of linear complexity µx is almost 

equal to m/2 and hence the generated sequences have linear complexity m/2 with high 

probability for m=5000 bits. It is also seen that variance σx
2 

and standard deviation σx
 
are small. 

The same behavior of linear complexity, variance and standard deviation of linear complexity 

are observed for m = 10000 for n ≥ 20 and for m = 20000.For n≥30, linear complexity nearly 

m/2. 

Table 4: List of Linear Complexity of Binary Sequences Generated Using Vector Recurrence Relation 

Defined by equation (2), CASE 2 with k = 2 

Length of Sequence = 5000 bits 

Stage , n 5 10 15 20 25 30 

LC of Sequence 1 251 789 2497 2500 2500 2500 

LC of Sequence 2 254 765 2500 2500 2500 2500 

LC of Sequence 3 245 778 2475 2489 2499 2499 
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LC of Sequence 4 254 754 2498 2489 2499 2499 

LC of Sequence 5 257 775 2500 2478 2489 2498 

LC of Sequence 6 251 779 2500 2500 2500 2500 

LC of Sequence 7 255 765 2500 2500 2500 2500 

LC of Sequence 8 243 770 2475 2489 2500 2498 

LC of Sequence 9 254 764 2497 2489 2499 2498 

LC of Sequence 10 255 775 2500 2500 2500 2500 

Mean, µx 251.9 771.4 2494.2 2493.4 2498.6 2499.2 

Variance, σx
2
 20.7666 97.6 103.955 59.1555 11.6 0.8444 

Standard  Deviation, σx 4.5570 9.8792 9.6726 7.6912 3.4058 0.9189 

 
Table 5: List of Linear Complexity of Binary Sequences Generated Using Vector Recurrence Relation 

Defined by equation (2), CASE 2 with k = 2 

Length of Sequence = 10000 bits 
 

Stage , n 5 10 15 20 25 30 

LC of Sequence 1 251 789 2680 4989 5000 5000 

LC of Sequence 2 254 765 2670 4988 5000 5000 

LC of Sequence 3 245 778 2680 4979 4999 4999 

LC of Sequence 4 254 754 2689 4998 4999 5000 

LC of Sequence 5 257 775 2686 4993 5000 5000 

LC of Sequence 6 251 779 2690 4985 4997 4998 

LC of Sequence 7 255 765 2697 4999 5000 5000 

LC of Sequence 8 243 770 2680 4983 5000 5000 

LC of Sequence 9 254 764 2697 4989 5000 5000 

LC of Sequence 10 255 775 2690 4989 4999 4998 

Mean, µx 251.9 771.4 2685.9 4989.2 4999.4 4999.5 

Variance, σx
2
 20.7666 97.6 71.8777 38.8444 0.93333 0.7222 

Standard  Deviation, σx 4.5570 9.8792 8.0430 6.2325 0.9660 0.8498 

 
Table 6: List of Linear Complexity of Binary Sequences Generated Using Vector  Recurrence Relation 

Defined by equation (2), CASE 2 with k = 2 

Length of Sequence = 20000 bits 

Stage , n 5 10 15 20 25 30 

LC of Sequence 1 251 789 3650 4989 6600 7560 

LC of Sequence 2 254 765 3662 4988 6600 7568 

LC of Sequence 3 245 778 3665 4979 6612 7569 

LC of Sequence 4 254 754 3664 4999 6604 7565 

LC of Sequence 5 257 775 3653 4993 6602 7565 

LC of Sequence 6 251 779 3650 4985 6603 7564 

LC of Sequence 7 255 765 3660 4999 6603 7560 

LC of Sequence 8 243 770 3655 4983 6603 7564 

LC of Sequence 9 254 764 3654 4989 6602 7562 

LC of Sequence 10 255 775 3643 4989 6601 7560 

Mean, µx 251.9 771.4 3655.6 4989.3 6603 7563.7 

Variance, σx
2
 20.7666 97.6 50.0444 40.9 11.7777 10.4555 

Standard Deviation, σx 4.5570 9.8792 7.0742 6.3953 3.4318 3.2335 
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Figure 4:Plot of Mean Linear Complexity, µx 

v/s Number of Stages,n 

Case I Matrix sequence with k=2 

Figure 5: Plot of Variance of Linear 

Complexity, σx
2 
v/s Number of Stages,n 

Case I Matrix sequence with k=2 

 

 

 

Figure 6: Plot of Standard Deviation of Linear 

Complexity, σx
2
 v/s Number of Stages,n 

Case I Matrix sequence with k=2 

 

 

The statistical results µx, σx
2 

based on 10 trials in each case are used to get the bound on 

probability of linear complexity X lying within the range µx-25 ≤ X ≤ µx+25 using Chebychev 

inequality [20]. First Chebychev inequality as defined in [38] is given below. 
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 P ( | X- µx| ≥ δ ) ≤ σx
2
/ δ

2
 ; δ > 0                      (10)                                                                

                                                                                                 

Where P ( | X- µx| ≥ δ ) is the probability that X lies outside the range (µx -  δ ) ≤  X ≤ (µx + δ). 

This probability is always less than or equal to σx
2
/ δ

2
. 

Chebychev inequality is generally expressed as in equation (8). It can also be interpreted as, 

 

P ( | X- µx| ≤ δ ) ≥ 1- σx
2
/ δ

2
 ; δ> σx             (11)   

                                                                                                                                                                                                   

where P ( | X- µx| ≤ δ ) is the probability that X lies inside the range (µx -  δ ) ≤  X ≤ (µx + δ 

).This probability is always greater than or equal to 1- σx
2
/ δ

2
 

 

Equation.11 is used to observe the change in probability bound with increase in n from 15.The 

probability bound is computed for n = 15,20,25 and 30 using Table 1 to table 6. In all these cases 

δ is taken as 25.The results are tabulated in Table 7, 8, 9, 10, 11 and 12, corresponding to  matrix 

and vector recurrence relations. 

Table 7: Statistics computed for Matrix Sequences 

Length of the sequence: 5000 

 
Number of stage, n  15 20 25 30 

Corresponding mean, µx 2495.8 2493 2498.3 2499.3 

Corresponding variance , σx
2
 130.4889 52 11.3444 0.9111 

P ( | X- µx| ≤ 25 ) ≥ 1- σx
2
/ 625 0.7912 0.9168 0.9818 0.9985 

 

Table 8: Statistics computed for Matrix Sequences 

Length of the sequence: 10000 

 

Number of stage, n  15 20 25 30 

Corresponding mean, µx 3655.6 4998.1 4999.6 4999.8 

Corresponding variance , σx
2
 50.04444 12.1 0.488889 0.177778 

P ( | X- µx| ≤ 25 ) ≥ 1- σx
2
/ 625 0.9199 0.9806 0.9992 0.9997 

 

Table 9: Statistics computed for Matrix Sequences 

Length of the sequence: 20000 

 
Number of stage, n  15 20 25 30 

Corresponding mean, µx 3655.6 9990.7 9996.5 9999.1 

Corresponding variance , σx
2
 50.0444 22.0111 21.1666 1.4333 

P ( | X- µx| ≤ 25 ) ≥ 1- σx
2
/ 625 0.9193 0.9648 0.9661 0.9977 

 

Table 10: Statistics Computed for Vector Sequences 

Length of the sequence: 5000 

 
Number of stage, n  15 20 25 30 

Corresponding mean, µx 2494.2 2493.4 2498.6 2499.2 

Corresponding variance , σx
2
 103.955 59.1555 11.6 0.8444 

P ( | X- µx| ≤ 25 ) ≥ 1- σx
2
/ 625 0.8336 0.9053 0.9814 0.9986 
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Table 11: Statistics Computed for Vector Sequences 

Length of the sequence: 10000 
 

Number of stage, n  15 20 25 30 

Corresponding mean, µx 2685.9 4989.2 4999.4 4999.5 

Corresponding variance , σx
2
 71.8777 38.8444 0.93333 0.7222 

P ( | X- µx| ≤ 25 ) ≥ 1- σx
2
/ 625 0.8849 0.9378 0.9985 0.9988 

 

Table 12: Statistics Computed for Vector Sequences 

Length of the sequence: 20000 

 

 

5. CONCLUSIONS 

Use of matrix recurrence relation (1) and (2) defined over Z4 for the generation of random binary 

sequences derived from sequences over Z4, results in random sequences with large linear 

complexity determined using Massey- Berlekamp algorithm. To study the statistical properties 

of the linear complexity, mean µx, variance σx
2 

and standard deviation σx
 
are determined by 

considering randomly chosen sequences of different lengths. Six cases for n=5, 10,15,20,25 and 

30 are considered.In each case sequences of length 5000, 10000 and 20000 bits is considered. 

For each combination of n and m, by randomly chosing different initial matrices and coefficient 

matrices 10 sequnces are generated and their linear complexity property is investigated. 

It is seen from the Tables 7 to12, that for n ≥ 15 the probability that the linear complexity X 

differ by mean value µx by 25 always increases with n and m. For m = 20000 and n = 30 

probability that linear complexity X is within (10000 ± 25) is always greater than or equal to 

0.9977 in case of random binary sequence derived from recursion relation (1). Similarly it is 

greater than 0.9832 for random binary sequence derived from recursion relation (2). 

The proposed method of generation of sequences over Z4 is linear; the corresponding binary 

sequence with binary conversion 0,1,2,3 to 00,01,10,11 respectively turns out to be nonlinear. 

Hence the linear complexity of the sequence is increased compared to m- sequence. Algorithm is 

simple with modulo4 arithmetic. It is possible to implement both in hardware and 

software.There are large choices for number of stages,n initial content ( Ui’s or Vi’s) of different 

size and the  different coefficient  matrices (Ai’s) which can be chosen to generate large number 

of sequences. 
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