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ABSTRACT 

This paper describes a general technique to identify control flow errors in parallel programs, which can 

be automated into a compiler. The compiler builds a system of linear equations that describes the global 

control flow of the whole program.  Solving these equations using standard techniques of linear algebra 

can locate a wide range of control flow bugs at compile time. This paper also describes an 

implementation of this control flow analysis technique in a prototype compiler for a well-known parallel 

programming language. In contrast to previous research in automated parallel program analysis, our 

technique is efficient for large programs, and does not limit the range of language features. 
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1. INTRODUCTION 

One of the major problems in the field of parallel computing is the difficulty of software 

development. Parallel programs are inherently more complex than sequential programs, and 

therefore require significantly more time to write and debug. Also, the execution of parallel 

programs is fundamentally nondeterministic in nature, making it even more difficult to locate 

program errors through the standard testing and debugging techniques used for sequential 

programs. 

Any automated technique for helping to detect errors in parallel programs could be very 

valuable to aid in parallel software development. In this paper, we give an overview of one such 

promising technique:  analysis of global control flow properties of a parallel program using a 

system of linear equations. This system of equations, derived from what we call the flow matrix 

of the program, can be solved using standard methods of linear algebra to detect control flow 

errors in the overall structure of a parallel program. This technique can be used by a parallel 

program compiler or debugging system to help the programmer locate structural errors in the 

program. 

Over the years, a considerable amount of research has been published on techniques for 

automated debugging of concurrent programs. However, these techniques have not seen 

widespread practical application because each technique suffers from one or more of the 

following problems: 

1. The computational complexity of the technique is too great for application to large programs. 

2. To apply the technique to a real programming language, some of the commonly used 

language features must be eliminated. 

3. The technique cannot be completely automated in a compiler. The programmer must create 

an abstract model of the program for analysis purposes. 
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The flow matrix technique presented in this paper does not suffer from any of these three 

problems. The technique is computationally tractable:  the worst case time complexity is O(n
3
), 

with a wide range of parallel programs requiring only O(n) time. The technique can be 

automatically applied by a compiler to parallel programs that use the full range of language 

features. We have already developed a prototype compiler that analyzes real programs written in 

a well-known parallel programming language. 

The most common type of automated analysis technique found in the research literature is the 

finite-state verification technique. Typically, these techniques generate a reachability graph of 

all possible control states of the parallel program, then search the graph for pathological states, 

such as program deadlock. Since the number of reachable states is usually an exponential 

function of program size, these techniques focus on reducing the size of the reachability graph. 

Some examples can be found in Avrunin [1, 2], Godefroid and Wolper [3], Holzmann [4], 

Helmbold and McDowell [5], and Valmari [6]. 

 Avrunin [7] gives a good survey of finite-state verification techniques, and compares the 

performance of four of these techniques on a particular concurrent program. None of these 

techniques can be applied directly to the program source code, and all require the programmer 

to create a separate formal description of the program behavior. Whereas, our flow matrix 

technique is applied by a compiler directly to the parallel program source code. 

Much of the previous research has focused on deadlock analysis of concurrent tasking in the 

ADA programming language (e.g. Masticola and Ryder [8] and Schatz [9]). To reduce the 

number of reachable control states, the analyzed programs are usually limited to simple process 

synchronization for controlling access to shared resources. In contrast to this, the control flow 

analysis technique presented in our paper is intended for parallel programs written for multicore 

(or multiprocessor) computers. The interprocess communication in such parallel programs often 

creates such a large number of reachable control states, that the finite-state verification 

techniques presented by other researchers are just not practical.  

Flow graph techniques for detecting potential faults in parallel programs are continuing to be 

explored by other researchers. Schaeli and Hersch [10] use heuristics and previous execution 

information to reduce the state space of the flow graph for more efficient analysis. Baah, 

Podgurski, and Harrold [11] use estimates of program branch probabilities using a set of test 

inputs. Elkarablieh, Marinov, and Khurshid [12] use structural constraints to reduce the program 

state space for more efficient search. The Racer system presented by Bodden and Havelund [13] 

requires the programmer to add special primitives to the program to assist in the automated 

analysis. In contrast to these flow graph techniques, our flow matrix technique does not require 

any additional information beyond the source code of the parallel program itself. 

Some automated analysis techniques rely on dynamic analysis while the program is running or 

using statistics gathered during program execution. Two examples of recent research efforts in 

this area are Tian, et al. [14] and Chen and MacDonald [15]. Whereas, our technique is done 

completely at compile time without any need to actually execute the program. Our paper is an 

extension of an earlier summary paper we presented at the International Conference on Parallel 

and Distributed Computing and Systems [16]. This new paper presents significant new research 

findings and extends the earlier paper to the C programming language. 
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2. CONTROL FLOW GRAPHS 

It is well known that the execution frequencies of instructions in a computer program have a 

certain simple relationship. For example, consider the following fragment of a C program (the 

lines are numbered L1 – L5 for reference): 

 

L1     x = func(a, b); 

L2    if (x > y) 

L3          maxval = x; 

L4    else maxval = y; 

L5    z = 100 * maxval; 

For line L1, let [L1] denote the total number of executions of line L1 during a given execution 

of the whole program. Let us call [L1] the count for line L1. Clearly, [L1] = [L2] = [L3] + [L4] 

= [L5]. This relationship of the counts is seen even more clearly in the flowchart representation 

of these instructions as shown in Figure 1. A flowchart is a directed graph having an instruction 

associated with each vertex of the graph. The edges of the graph represent the paths for flow of 

control between the instructions. During execution of the flowchart, the flow of control can be 

represented by the movement of a control token (the execution point). For a given edge t, we 

use [t] to denote the total number of control tokens that have passed through that edge. [t] is 

called the count for edge t. Obviously, the following system of linear equations must hold for 

any properly terminating execution of the flowchart shown in Figure 1: 

[t1] – [t2]  =  0 

[t2] – ( [t3] + [t4] ) =  0 

[t3] – [t5]  = 0 

Figure 1.  Flow of Control. 
Figure 2.  Control Flow Error in Parallel Program 
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[t4] – [t6]  =  0 

[t5] + [t6] –  [t7]  =  0 

[t7] – [t8]  =  0 

Using the standard methods of linear algebra, these control flow equations can be solved to 

provide useful information about the relationship between the execution frequencies of the 

various instructions in the program. All of this is well known for ordinary sequential computer 

programs. However, these control flow equations become much more interesting for parallel 

programs because the equations sometimes do not have a solution. Furthermore, the lack of a 

solution will sometimes indicate the presence of control flow bugs in the parallel program.  

The flowchart form of an example parallel program is shown in Figure 2. A Fork operation 

creates two parallel processes that communicate using Send and Recv operations through a 

shared message buffer. The process on the right branch has two Recv operations, but the process 

on the left has only one Send. Assuming that Recv is blocking (i.e. it waits indefinitely for a 

message to arrive), this parallel program will result in an improper termination, sometimes 

called a deadlock. As was done for the sequential program in Figure 1, it is possible to 

determine the control flow equations for the parallel program of Figure 2. However, these 

control flow equations have no solution, which indicates an error in the flow of control in the 

parallel program. After this somewhat informal introduction, we will now give a more formal 

definition of control flow graphs, and describe how the resultant control flow equations can be 

used to detect control flow bugs in parallel programs. 

A control flow graph is defined as a finite, connected, directed graph. Associated with each 

vertex in the graph is a module that places local restrictions on the flow of control, expressed as 

a set of linear equations. For each module, its incoming edges are called input terminals, and its 

outgoing edges, output terminals. Control flows from one module to another by the movement 

of discrete control tokens along the terminals. The terminals do not have any capacity for 

storing control tokens. They just provide a path for movement of control tokens between 

modules. For a given terminal t, the count (denoted [t]) is defined as the total number of control 

tokens that have passed through that terminal since the start of the parallel program execution. 

Obviously, [t] will always be a nonnegative integer. 

Each module has two control states:  active and inactive. (Informally, we may think of an active 

module as one that is in the middle of an execution.) Initially, all modules are in the inactive 

state. A control flow graph has exactly one START module with two terminals:  an input 

terminal and an output terminal. This single START module combines the functions ordinarily 

associated with separate START and STOP modules. When in the inactive state, the START 

module outputs a single control token through its output terminal and enters the active state. 

Once in the active state, it will accept a single control token through its input terminal and then 

enter the inactive state. If all the other modules are also in the inactive state at this time, the 

control flow graph is said to have reached a proper termination.   

Definition: A control flow graph is defined as properly terminating if for each terminal t, there 

exists a properly terminating execution of the graph for which [t] > 0. 

Notice that the above definition allows the possibility that some portion of the program may not 

be executed during a specific terminating computation. However, for the control flow graph to 

be considered as properly terminating, every portion of the program must be executed in some 

properly terminating computation. 

Whenever a module is in the inactive state, the counts at its input and output terminals are 

constrained to satisfy a specific system of linear equations. More formally, each module M has 

an associated control flow matrix FM of rational numbers. If module M has n terminals, then the 
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flow matrix FM has m rows and n columns. Throughout the execution history of the control flow 

graph, whenever module M is in the inactive state, the counts at its terminals are constrained to 

satisfy the following system of linear equations: 

 FM T = 0 

where T denotes the n-element vector of terminal counts ( [t1] [t2] … [tn] ) for module M.  

Row i of the above system of linear equations will have the following general form: 

fi1[t1]  +  fi2[t2]  +   . . .   +  fin[tn] = 0 

These linear equations for the individual modules can be simply combined in the obvious way 

to create a system of linear equations and corresponding control flow matrix F for the whole 

control flow graph.  Consider the following system of linear equations: 

  F x  =  0 

where x is the vector ( x1, x2, …, xn ), and 0 is the n-vector of zeroes. 

Definition:  A control flow graph is defined as consistent if the above system of linear 

equations has a solution in which xi ≠ 0, for all i.  

We have now defined two possible properties of a control flow graph:  properly terminating and 

consistent. Properly terminating is a behavioral property based on valid executions of the 

program. Whereas, consistency is a mathematical property based on the linear equations 

associated with the modules. The following theorem relates these two properties. 

Theorem:  Any control flow graph that is not consistent is not properly terminating. 

Proof:  The proof follows easily from the definitions. Assume that a control flow graph P with 

control flow matrix F is properly terminating. For any given terminal t, there must be a properly 

terminating execution of P for which [t] > 0. Since all modules must be in the inactive state after 

any properly terminating execution, the terminal counts for this execution must satisfy the linear 

equations associated with each module. Therefore, the terminal counts for this execution 

provide a nontrivial solution to F x  =  0, in which xt > 0.   

For each terminal t in P, there exists such a solution. We simply sum these solutions to get 

another solution to F x = 0 in which xt > 0, for all t. Therefore, P is consistent. We have shown 

that P is properly terminating implies that P is consistent. Therefore, if P is not consistent, then 

P is not properly terminating. 

 (End of Proof) 

The number of rows and columns in the flow matrix F is proportional to the number of modules 

n in the control flow graph. Using standard techniques of linear algebra [17] to solve F x  =  0, 

the worst case time-complexity for determining consistency is O(n
3
). As we will see, the flow 

matrix F is usually very sparse, with only two or three nonzero entries in each row or column. 

Thus, sparse matrix techniques [18] can be applied to reduce the time to O(n).  

3. PARALLEL PROGRAMS 

In the previous section, we mathematically defined a graph model for flow of control in a 

parallel computation based on token flow. This approach to understanding parallel computation 

has been used frequently in the past. Lester [19] presents a similar model. Lester [20] shows 

how a linear algebra technique similar to the one presented in section 2 can be used to analyze 

Petri Nets. In a survey paper on Petri Nets, Murata [21] gives a definition of consistency for 

Petri Nets, which is similar to our definition in section 2. Lee [22] shows how consistency of 

token flow can be used to locate structural errors in parallel dataflow graphs. 
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The original contribution in our current paper now to this research area, is the ability to apply 

this technique in an efficient and automated manner to real parallel programs. When one 

attempts to apply a graphical token flow technique to a real parallel program, one quickly finds 

that it is not obvious how to convert the various programming language features into an 

equivalent token flow model. Analyzing real parallel programs in this way is still an open 

research problem. We feel that our effort in this paper now has made a significant contribution 

in this endeavor.   

In this paper, we report on our research in using control flow graphs to analyze parallel 

programs written in the language C*, a language developed mainly for education in parallel 

programming techniques (see The Art of Parallel Programming [23, 24]). The C* language 

consists of the C language with the addition of a few of the standard parallel programming 

primitives for creating parallel processes and exchanging messages between them. In this 

section and the next section, we describe the major features of the C* language, and techniques 

for creating equivalent control flow graphs. 

To promote a clearer understanding, it will be helpful to begin with an informal example of a 

C* program and its corresponding control flow graph. The Art of Parallel Programming [24] 

contains a simple parallel program to compute the histogram of a visual image. This program is 

shown in Table 1. The image is represented by a two-dimensional array of integers, representing 

the light intensity at each point of the image. The intensity ranges from 0 up to some maximum 

value. The histogram displays the total number of pixels at each possible intensity value. The 

forall statement creates n parallel processes, one for each row of the image array. Each process 

scans its own row and increments the appropriate element in the histogram array hist. Since the 

elements of hist are incremented in parallel by different processes, each element of hist has its 

own spinlock to provide mutual exclusion during the increment operation. 

Table 1   Parallel program for histogram. 

#define n 100    /*dimension of the image*/ 

#define max 20   /*maximum pixel intensity*/ 

int image[n][n]; /*image array*/ 

int hist[max+1]; /*computed histogram of image*/ 

spinlock L[max+1];  /*array of spinlocks*/ 

int i; 

 

main( )  { 

  ...  

  for (i = 0; i <= max; i++) 

    hist[i] = 0; /*initialize hist array*/ 

  forall i = 0 to n-1 do  { 

    /*create one process for each row of image*/ 

    int j, intensity;   

    for (j = 0; j < n; j++)  { 

      intensity = image[i][j]; 

      Lock(L[intensity]); 

        hist[intensity] = hist[intensity] + 1; 

      Unlock(L[intensity]); 

    } 

 } 
} 
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The flow of control in this Parallel Histogram program can be represented by the control flow 

graph shown in Figure 3. Each statement in the original program becomes a module in the 

control flow graph. The terminals of the control flow graph are labeled t1 to t14. The array of 

spinlocks L is also represented as a single module in the control flow graph. In this and 

subsequent control flow graph examples, we sometimes use dashed lines to represent the 

terminals rather than solid lines. This is just to make the examples more understandable. With 

respect to the mathematical analysis, there is no difference between solid lines and dashed lines. 

Looking at the first for statement labeled A, it is obvious that terminals t1 and t2 must have the 

same count for any properly terminating execution of the program. Similarly, terminals t3 and t4 

must have the same count. Therefore, module A has the following linear equations: 

[t1] – [t2]  =  0 

[t3] – [t4]  =  0 

 At runtime, the execution of the program will determine the exact relationship between the 

counts [t1] and [t3]. Since this relationship is not known at compile time, it is left unspecified in 

the above linear equations. Each of the other modules shown in Figure 3 also has its own linear 

equations governing the counts on its connecting terminals. Collecting all of these equations 
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Figure 3.   Control Flow Graph for Histogram Program. 
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results in the system of control flow equations shown in Table 2. Using the standard techniques 

of linear algebra, these control flow equations have a general solution with four arbitrary 

constants (a, b, c, d): 

[t1]  =  [t2]  =  [t5]  =  a 

[t3]  =  [t4]  =  b 

[t6]  =  [t7]  =  c 

[t8]  =  [t9]  =  [t10]  =  [t11]  =  [t12]  =  [t13]  =  [t14]  =  d 

According to the definition presented in section 2, the control flow graph of Figure 3 is 

therefore consistent. Now assume the programmer makes a slight error when typing the 

Histogram program of Table 1, and omits the Unlock statement. The resultant control flow 

graph will be similar to Figure 3, with module H and terminals t12 and t13 removed. This change 

will result in a small change to the control flow equations shown above. It is easy to show that 

the new control flow equations have only the trivial solution in which all terminal counts are 0. 

Thus, the control flow graph is not consistent. According to the Theorem presented in section 2, 

the control flow graph is therefore not properly terminating. Looking at Table 1, one can see 

that the removal of the Unlock statement does result in a program that is not properly 

terminating — the program will result in a deadlock. 

Table 2  Control Flow Equations for Histogram Program. 

Module Equations 

A 

 

[t1] – [t2]  =  0 

[t3] – [t4]  =  0 

B [t3] – [t4]  =  0 

C [t2] – [t5]  =  0 

[t6] – [t7]  =  0 

D [t6] – [t7]  =  0 

[t8] – [t9]  =  0 

E [t8] – [t10]  =  0 

F [t10] – [t11]  =  0 

[t10] – [t14]  =  0 

G [t11] – [t12]  =  0 

H [t12] – [t9]  =  0 

[t12] – [t13]  =  0 

Spinlock L [t13] – [t14]  =  0 

Start [t1] – [t5]  =  0 
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4. C* LANGUAGE 

Now we will describe a practical technique for determining the control flow graph 

corresponding to any parallel program written in the C* language. The techniques described in 

this section are easily automated into a compiler, and form the basis of a prototype C* compiler 

developed by the author. Let us begin with a simple assignment statement. This can be 

represented as a module with one input terminal and one output terminal as shown in Figure 4. 

When a virtual processor begins to execute this assignment statement, this can be represented in 

the control flow graph as the movement of a token through the input terminal a. This puts the 

module into the active state. When execution is complete, the token representing the virtual 

processor moves out of terminal b, returning the module to the inactive state. Therefore, 

whenever this assignment statement is in the inactive state, we know that the total control token 

count at terminal a exactly equals the token count at terminal b: 

[a] – [b]  =  0 

For some programs, it may be possible to have multiple simultaneous executions of an 

assignment statement. In this case, the module will remain in the active state until all of these 

executions are complete. Therefore, when the module is in the active state, the count [a] may 

exceed the count [b], but in the inactive state, the above equality of [a] and [b] is always true. 

Thus, a linear equation of the above form is associated with every assignment statement in the 

C* program. 

 

Now let us consider a conditional statement in C* of the form:   

if (condition) statement1;  else statement2; 

When showing the general form of C* statements as in the above, we use bold to indicate 

keywords in the language. This conditional statement can be represented as a module with one 

input terminal and two output terminals as shown in Figure 5. The situation is similar to the 

assignment statement, except the virtual processor may exit through either the T or F output 

terminals. Thus, the conditional module will constrain the counts to satisfy the following linear 

equation whenever it is in the inactive state: 

[a] – ( [T] + [F] )  =  0 

Parallel processes in C* are created with a forall statement of the following general form: 

forall  i  =  initial  to  final  do  statement; 

Let us first consider a forall statement in which the initial and final values are constants, and 

therefore known at compile time: 

b 

a 

Figure 4.  Module for Assignment Statement. 
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a 

 ? 

statement1 statement2 

Figure 5.  Module for Conditional Statement. 
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forall i = 1 to 3 do statement; 

This forall can be represented by a module with one input terminal and three output terminals as 

shown in Figure 6. 

For each token entering through terminal a, this forall module outputs a token through each of 

the output terminals. When the module is in the inactive state, the count at each output terminal 

equals the count at terminal a, as expressed in the following three equations: 

 

[a] – [1]  = 0      [a] – [2]  = 0      [a] – [3]  =  0 

The particular value of the forall index variable i (in this case, 1, 2, or 3) is substituted for i as a 

constant in the statement body of each process. Since a process often uses its own forall index 

extensively in control statements, these three parallel processes may result in control flow 

graphs that are considerably different from each other. 

Now consider a forall statement in which the initial or final value is a program variable, not 

known at compile time: 

forall i = 1 to n do statement 

The corresponding module is shown in Figure 7. Since the control flow analysis of the program 

is done at compile time, we do not know how many parallel processes will be created. 

Therefore, the linear equations for this module do not constrain the count at terminal b. 

However, we do know that each token entering terminal a will eventually produce a token at 

terminal c after all modules have re-entered the inactive state. Thus, we have the following 

linear equation for this forall module: 

[a] – [c]  =  0 

These two different representations of the forall statement illustrate the general approach we 

have used to create the control flow graph from the C* program. We use whatever information 

is available at compile time, to create a more accurate model of the behavior of the program. 

This will allow the consistency analysis of the resultant control flow graph to detect a wider 

range of control flow errors. However, if some information is not known at compile time, we 

can still proceed with the analysis using whatever information we do have.  

3 
2 
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forall 

statement statement statement 

Figure 6.  Forall Statement Module. 
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statement 

Figure 7.  Forall Statement with Variable Range. 
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5. FUNCTIONS AND COMMUNICATION STREAMS 

The C* parallel programming language has shared variables that are accessible to all processes. 

The language also has stream variables for message passing between processes. Stream 

variables are a separate data type and must be explicitly declared: 

    float stream inchan;     /* inchan is stream of float values */ 

    float  myval; 

To write a number into a stream in C* use the Send operation. The stream acts as a FIFO queue 

of numbers with new values being added at the end: 

     Send(inchan,  23.6);      /* write 23.6 into stream */ 

To read a value from the stream, use the Recv operation, as in the following example that reads 

a single value from stream inchan into variable myval: 

     Recv(inchan, myval);  

If the stream inchan is empty when the above Recv operation is executed, the execution of the 

process will be suspended until another process puts a value into the stream. In this way, it is 

possible to use streams for interprocess communication and synchronization. We also see that 

streams introduce the possibility of circular waits and deadlocks if improperly used.   

A Send operation statement can be represented as a module with one input terminal and two 

output terminals as shown in Figure 8. The flow of control equations are similar to a simple 

assignment statement, with an additional output terminal: 

[a] – [b]  =  0 

[a] – [c]  =  0 

A Recv operation statement results in the same module as the Send, except the terminal c goes in 

the opposite direction. 

The stream itself must also be represented as a separate module in the control flow graph. The 

Send operations to this stream form the input terminals of the module, and the Recv operations 

form the output terminals. For most programs, each steam will have a relatively small number 

of terminals. However, it is possible for some stream to have a very large number of terminals. 

Figure 9 shows an example module corresponding to a stream. 

For a stream module, each data value written into the module is represented as a token that 

flows in through one of the input terminals. Reading a value from the stream is represented as 

c 

a 

b 

Send(inchan, 23.6) to stream inchan 

Figure 8.  Module for Send Operation. 

b e 

d 

c a 

inchan Figure 9.  Module for Stream. 
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the flow of a token out of one of the output terminals. A stream module is considered to be in 

the inactive state whenever it is empty. In the C* language, all streams are initially empty. For 

every individual stream module, the control flow equation is simply:  the sum of the input flows 

equals the sum of the output flows. For the above stream module, this is as follows: 

( [a] + [b] )  –  ( [c] + [d] + [e] )  =  0 

C* also allows an array of streams. If all references to a particular stream array have indexes 

known at compile time, then each element of the array is represented as a separate module. 

Otherwise, the whole array of streams is treated as a single module. This choice is automatically 

made for each stream at compile time while the control flow graph is being created. 

Another important control structure in the C* parallel programming language is the for loop: 

for ( expression1 ;  expression2 ;  expression3 ) statement; 

The corresponding module in the control flow graph is shown in Figure 10. Independent of the 

particular details of the three controlling expressions, we always know that the control flow into 

terminal a is equal to the control flow out of terminal b. Similarly, the flow out of terminal c 

equals the flow into terminal d: 

 

[a] – [b]  =  0                  [c] – [d]  =  0 

C* program loops created using while statements or do-while statements will also have a similar 

control flow graph with four terminals. Since the number of iterations of the loop is not known 

at compile time, the above two equations capture all the information that is known at compile 

time. 

Now let us consider C* function calls.  We have two different techniques for converting 

functions into control flow graphs, depending on whether the function is recursive. For each call 

to a non-recursive function, the function call is expanded inline using the source code of the 

function body. This individual expansion is necessary because parallel processes often pass their 

own forall index value as a parameter to the functions. Therefore, the same function call 

appearing in different processes may expand into different control flow graphs. 

This inline expansion technique will obviously not work for a call to a recursive function. We 

expand a recursive function into a control flow graph only once. A special Entry module is 

added to the start of the function, which sums all input control flows. A special Exit module is 

added to the end of the function, which sums all output control flows. Each call to the recursive 

function creates the module type shown in Figure 11. The control flow equations for this 

function call are as follows: 

c 

d 

b 

a 

  for-loop 

statement 

Figure 10.  Module of For Loop. 

from Exit 

d 

c 

a 

b 

Function Call 
to Entry 

Figure 11.  Module for Function Call. 
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[a] – [b]  =  0      [a] – [c]  =  0      [a] – [d]  = 0 

In the C* language, a statement may be spawned into a separate parallel process using the Fork 

operator: 

 Fork  statement; 

This can be represented in the control flow graph with a Fork module (see Figure 12). The 

control flow equations for this Fork module are as follows: 

[a] – [b]  =  0 

[a] – [c]  =  0 

One final module to consider is the START module. In the control flow graph, the output 

terminal of the START module is connected into the input terminal of the first statement of the 

main function body of the C* program. The output terminal of the last statement of the main 

function body is connected to the input terminal of the START module. The control flow 

equation for the START module is simply: the count at the input terminal equals the count at the 

output terminal. In the informal example of a control flow graph shown in Figure 3, a separate 

Stop module is shown to make the Figure easier to understand. However, strictly speaking the 

Stop module should be eliminated, and the terminal t5 should terminate on the Start module. 

As we can see from the modules and equations described in this section for the C* 

programming language, the control flow matrix will be very sparse. Almost all of the rows and 

columns will have only two or three non-zero elements. The number of rows and columns will 

be a small multiple of n, the number of statements in the program. If the control flow matrix is 

represented as an ordinary two-dimensional array, consistency can be determined using standard 

Gaussian Elimination in time O(n3). 

This execution time can be considerably reduced by using a standard sparse matrix 

representation:  a linked list for each row containing only the non-zero entries, and similarly for 

each column. In Gaussian Elimination, there are three nested loops, each with O(n) 

repetitions—hence the O(n3) overall time complexity. However, the two inner loops only 

operate on non-zero entries. Therefore, this sparse matrix representation can be used to reduce 

the time complexity of the two inner loops to a constant independent of n. Thus, the overall time 

for determining consistency through Gaussian Elimination is reduced to O(n).  

6. EXAMPLE:  PARALLEL JACOBI RELAXATION 

In our research, we have developed techniques for creating a corresponding module and control 

flow equations for all of the statements in the C* language.  However, due to lack of space in 

this short paper, we have not presented all these statements in detail. To test the validity and 

practical application of our technique, we modified an existing compiler for the C* parallel 

programming language to include a control flow consistency test, as defined in section 2. We 

began with a C* compiler originally developed to accompany the textbook The Art of Parallel 

Programming [24]. It is a recursive descent compiler consisting of a single pass through the C* 

source code. The output of this pass is an executable program consisting of a series of pseudo-

code instructions of the following form:  

operator     operand1, operand2 

b 

c 

a 

Fork 

statement 

Figure 12.  Module for Fork Operation. 
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There are a total of 115 different pseudo-code operators, most of which are standard machine 

language operations such as add, multiply, branch, store, and load. However, there are also 

some higher level operations, such as create a process, request a lock, or read a value from a 

stream. 

To perform a control flow consistency test, we added a second pass to the compiler that scans 

through the pseudo-code program and builds the control flow matrix F. After completing this 

second pass, the compiler then submits the matrix F to a linear equation solver that uses 

standard Gaussian Elimination to solve the system of equations F x = 0. If a solution exists for 

which all xi ≠ 0, then the C* program is consistent. Otherwise, the compiler issues a warning 

message to the programmer that the program has a control flow error that will result in an 

improper termination. 

Now let us consider a brief example:  a parallel program to solve Laplace’s Equation using the 

Jacobi Relaxation algorithm. Consider a simple application problem to compute the voltage 

distribution on the surface of a two-dimensional conducting metal sheet when a known voltage 

is applied along the four boundaries. The voltage distribution v(x, y) on the metal sheet can be 

computed by solving Laplace’s Equation: 

    0
2

2

2

2

=
∂

∂
+

∂

∂

y

v

x

v
   

This equation can be solved numerically by considering a two-dimensional grid of points on the 

Table 3   Parallel Jabobi Relaxation program. 

#define n 100          /* size of array */ 

#define numiter 1000   /* number of iterations */ 

float A[n+2][n+2];     /* array of points */ 

float stream C[n+2][n+2]; /*array of streams: one for each process*/ 

int i, j; 

main( ) { 
  /* create processes to hold boundary points constant */ 
  fork LeftBoundary( ); 

  fork RightBoundary( ); 

  fork TopBoundary( ); 

  fork BottomBoundary( ); 

  /* create processes for interior points */ 

  forall  i = 1 to n do 

    forall  j = 1 to n do { 

      int m;   /* local variable*/ 

      float sum,inval;  /* local variables */ 

        for (m = 1; m <= numiter; m++)  {   /* 1000 iterations */ 
          /* send my point to four neighbors */ 

          Send(C[i][j-1], A[i][j]);   /* send left  */ 

          Send(C[i][j+1], A[i][j]);   /* send right */ 

          Send(C[i-1][j], A[i][j]);   /* send up    */ 

          Send(C[i+1][j], A[i][j]);   /* send down  */ 

          /* receive values sent by my four neighbors */ 

          Recv(C[i][j], inval);   sum = sum + inval; 

          Recv(C[i][j], inval);   sum = sum + inval; 

          Recv(C[i][j], inval);   sum = sum + inval; 

          Recv(C[i][j], inval);   sum = sum + inval; 
          A[i][j] = sum / 4.0;  /*average of neighboring points*/ 

        } 

    } 

} 
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surface of the metal sheet. The voltage at all the boundary points is known and held constant. 

Initially, the voltage at each internal point is arbitrarily set to 0. Then the voltage at each internal 

points is iteratively recomputed as the average of the four neighboring points:  above, below, 

left, and right. This computational method is called Jacobi Relaxation. It is easily parallelized 

by partitioning the points and assigning a different process to each partition. For simplicity, we 

will assign just a single point to each process. 

The main data structure is a two-dimensional array of points A. Each of the points is assigned to 

a separate parallel process that iteratively recomputes the value of the point using the average of 

the four immediate neighboring points. The processes exchange values using an array of 

streams C, with one stream assigned to each process. The main body of the program is shown in 

Table 3. The nested forall statements create n
2 = 10,000 parallel processes. Process (i, j) is 

assigned point A[i][j] and uses stream C[i][j] to receive values from its four neighbors. Each 

process sends the current value of its own point to all four neighbors, then receives and 

computes the average of the four values sent by the neighbors. The points along the four 

boundaries are held constant by the special processes created by the four procedures (Table 4). 

The control flow graph for this C* program has a total of 49 modules and 81 terminals. The 

corresponding control flow equations F x = 0 do have a solution for which all xi ≠ 0. Therefore, 

the control flow graph is consistent. Now assume the programmer has made a slight error when 

writing the program and has omitted the “Send Left” instruction:  Send(C[i][j-1], A[i][j]). This 

will disrupt the global data flow and eventually result in a massive deadlock of all processes 

Table 4   Boundary Processes for Jacobi Relaxation. 

void LeftBoundary( ) { 

  int k; 

  forall k = 1 to n do { 

      int m;  float z;  

      for (m = 1; m <= numiter; m++)  {    

        Send(C[k][1], A[k][0]); 

        Recv(C[k][0], z); 

      } 

  } 

} 

void RightBoundary( ) { 

   // ... not shown 

} 

void TopBoundary( ) { 

  int k; 

  forall k = 1 to n do { 

      int m; float z;  

      for (m = 1; m <= numiter; m++)  {    

        Send(C[1][k], A[0][k]); 

        Recv(C[0][k], z); 

      } 

  } 

} 

void BottomBoundary( ) { 

   / ... not shown 

} 

 

main( ) {  /* main function shown in Table 3 */  } 
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during program execution.  Using an ordinary compiler, this error will not be detected because 

the program does not have any syntax errors.  However, using our new prototype compiler, the 

programmer will be informed that the control flow in the program is not consistent and therefore 

will result in an improper termination. Thus, this new analysis technique for parallel programs is 

capable of identifying program errors at compile-time that would otherwise not be noticed until 

the program is executed.  

7. IDENTIFYING PROGRAM ERRORS 

The previous sections of this paper have outlined a technique to create a corresponding control 

flow graph for any C* program, and then determine whether the control flow graph is consistent 

by solving the control flow equations. If the control flow graph is not consistent, what will 

happen when the C* program is executed? In this context, we will use the following new 

definitions with respect to a particular execution of a control flow graph: 

(i) Non-Termination:  control flow never reaches the input terminal of the START module, or 

  

(ii) Improper Termination:  when the control flow does reach the input terminal of the START, 

one or more modules is still in the active state.  

A series of test executions E1, E2, …, Ek of a C* program is said to cover the program if every 

statement in the program is executed at least once during this series. Now consider such a series 

of test executions. According to the Theorem presented in section 2, if a control flow graph is 

not consistent, then it is not properly terminating. Therefore, at least one Ei in this series will 

result in either non-termination or improper termination.  

Non-termination indicates that the program either has a deadlock or an infinite internal 

execution cycle, both of which are certainly pathological and should be reported to the 

programmer as control flow errors. To understand improper termination, we must analyze what 

it means for a module to still be in the active state after the program has reached its end. There 

are two basic categories of modules: executable and non-executable. The executable modules 

are used to represent the executable statements of the C* program, such as assignments, loop 

control statements, forall statements, function calls, etc. The non-executable modules are used 

to represent stream variables. An executable module is active if it is in the midst of an 

execution. A stream is active if it contains at least one unread message.  

Using the C* language, it is not possible for control flow to reach the end of the program while 

some statement is still in the midst of an execution (see reference [24]). Therefore, improper 

termination indicates that the C* program will terminate with one or more unread messages in 

the streams. We claim that this should be considered as pathological, and reported to the 

programmer as a warning during program compilation.  

However, some programmers may want the option of writing C* programs that terminate with 

some unread messages in the streams. The C* language allows this without generating a runtime 

error message. Therefore, it will be useful to have some mathematical technique to differentiate 

between  non-termination and improper termination. The control flow equation for each stream 

module uses a sum property:  

 sum of the input terminal counts  –  sum of the output terminal counts  =  0 

To allow unread messages in a stream, we introduce an additional slack variable xs representing 

the unread messages in the stream. The modified control flow equation is as follows: 

 sum of the input terminal counts  –  sum of the output terminal counts  –  xs  =  0 

  (subject to the positivity constraint xs ≥ 0) 
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Furthermore, the stream module is always in the inactive state, which means this equation is 

true at all times. (This corresponds to the defined behavior of streams in the C* language.) The 

control flow equations for the non-stream modules remain the same as before. Collecting these 

equations together, we get the following modified system of control flow equations: 

 G x  =  0 

 x  ≥  0       

Assume that xn is the variable corresponding to the count at the input terminal of the START 

module, which corresponds to termination of the program. A solution to the above equations 

can be found using the following linear programming problem: 

 minimize xn 

 subject to  G x  =  0  (control flow equations) 

       x  ≥  0      (positivity constraint) 

                               xj  ≥  1,  for all terminal count variables 

A control flow graph is said to be weakly consistent if the above linear programming problem 

has a feasible solution (a feasible solution is one that satisfies all the constraints, but does not 

necessarily optimize the objective function). A linear programming problem can be solved using 

the standard simplex algorithm, the first step of which is to find a feasible solution, or report 

that no feasible solution exists [25]. Although linear programming can be exponential in the 

worst case, the simplex algorithm almost always requires only polynomial execution time.  

Theorem:  Let E1, E2, …, Ek be series of test executions that cover a given C* program. If the 

corresponding control flow graph is not weakly consistent, then at least one Ei in this series will 

result in non-termination. 

Proof: The proof follows easily from the definitions. We use proof by contradiction. Assume 

the control flow graph is not weakly consistent, but all the test executions in the series are 

terminating. Using the modified control flow equations for stream modules, an improper 

termination is not possible for a control flow graph derived from a C* program. Therefore, each 

execution Ej in the series results in a proper termination. Thus, the terminal counts for each Ej 

provide a particular integral solution to the modified control flow equations G x = 0, where 

x ≥ 0. To construct this solution, use xp = [p] for each terminal variable xp; and for each stream 

variable s, set the corresponding slack variable xs to the number of unread messages remaining 

in the stream at the end of the execution Ej. 

Since the series of executions cover the C* program, each specific terminal t has an associated 

execution Ej in the series such that [t] ≥ 0, and therefore [t] ≥ 1. This provides a solution to 

G x = 0, in which  x  ≥  0 and xt  ≥  1. We simply sum these solutions across all the terminals to 

get another solution to G x = 0 in which x  ≥  0 and xt  ≥  1 for all terminals t. Therefore, the 

control flow graph is weakly consistent. This contradicts the original assumption that the control 

flow graph is not weakly consistent. 

(End of Proof) 

c 

a 

b 

Unlock(L) to spinlock L 

Figure 13.   Module for Unlock Operation. 
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We now have established two different properties of a C* program that can be automatically 

tested at compile time:  consistency and weak consistency. If the program fails the consistency 

test, then any series of test executions that cover the program will contain an execution with one 

of the following types of control flow errors:  

•  Deadlock 

•  Infinite internal execution cycle 

•  Unread messages in the streams at termination 

If the program fails the weak consistency test, then at least one execution in any covering series 

will result in deadlock or an infinite internal execution cycle.  

8. LOCKING OF SHARED DATA 

In addition to communication using stream variables, the C* language also allows parallel 

processes to interact by reading and modifying shared variables. Therefore, some mechanism is 

required to provide mutual exclusion during modification of the shared variables. This is done 

using a special spinlock data type. A spinlock variable has two states:  locked and unlocked. The 

initial state is unlocked. The Lock( ) operation changes the state from unlocked to locked. The 

Unlock( ) operation changes the state from locked to unlocked. Consider the following portion 

of a C* program: 

spinlock L;  /* declaration of L as spinlock variable */ 

Lock(L); 

   . . .    /* atomic modification to shared data */ 

Unlock(L); 

Frequently, the Lock and Unlock operations are used in matched pairs as shown above. 

However, this is not required in C*. The Art of Parallel Programming [24] contains several 

examples in Chapter 5 of programs in which Lock and Unlock operations are used in more 

complex ways. Bugs in the use of these operations can create program deadlocks. Therefore, it 

will be useful to include spinlocks in the control flow graph when determining consistency or 

weak consistency. As was illustrated in Figure 3, each spinlock variable can be represented in 

the control flow graph as a single module. An Unlock operation is represented with the module 

shown in Figure 13. The flow of control equations are as follows: 

[a] – [b]  =  0               [a] – [c]  =  0 

A Lock(L) operation results in the same module as Unlock, except terminal c goes in the 

opposite direction. Now let us consider the control flow equation for the spinlock module itself. 

For consistency testing, we need a linear equality. One possibility is to use a sum property as 

was done for the stream modules:  the sum of the inputs equals the sum of the outputs. Since the 

inputs are from Unlock operations, and the outputs go to Lock operations, this equation requires 

that the number of Lock operations on each spinlock exactly equals the number of Unlock 

operations. We can include this in the control flow equations used to determine consistency of 

the control flow graph. Therefore, an imbalance in the number of Lock and Unlock operations 

will be flagged as a control flow error. 

However, the C* language does not actually require that Lock and Unlock operations are exactly 

balanced. There can be one extra Lock operation, which will cause the spinlock to be in the 

locked state at program termination. There can also be any number of extra Unlock operations. 

After a spinlock enters the unlocked state, additional Unlock operations are just ignored. To 

allow this more liberal use of Lock and Unlock operations, the following linear inequality can 

be used as the control flow equation for each spinlock module: 
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 sum of input terminal counts  –  sum of output terminal counts  ≥  -1 

Since the control flow equations for testing weak consistency allow such linear inequalities, this 

new more liberal model of spinlocks can be used in the weak consistency test. Although we will 

not prove it formally, it is fairly easy to show that the Theorem proved in the previous section 

still holds:  if the control flow graph of a C* program is not weakly consistent, then any 

covering series of test executions will contain at least one non-terminating execution. Thus, 

weak consistency testing is still a very useful method of finding control flow errors in C* 

programs that use spinlocks and/or streams. We have already seen that the Parallel Histogram 

program of Table 1 is not consistent if the Unlock operation is removed. It also is not weakly 

consistent, and therefore should be non-terminating. We have seen that removal of the Unlock 

results in a deadlock, which is included in our definition of non-termination. 

9. CONCLUSIONS AND FUTURE RESEARCH 

In this paper, we have presented a simple and practical technique for analyzing the control flow 

properties of parallel programs at compile time. This technique is computationally efficient, and 

does not suffer from some of the limitations associated with previous research in automated 

program analysis. The next step in this research is to apply this technique to other parallel 

programming languages besides C*. 

Although we have compared our technique to automated verification techniques, strictly 

speaking it is not really an automated verification technique. Automated error-finding technique 

would perhaps be a better description. If the parallel program does pass the consistency test (or 

weak consistency test), this does not guarantee that the program will terminate properly. 

However, if the program fails the consistency test (or weak consistency test), then the program 

definitely has a control flow error. Therefore, testing these properties at compile time can save 

the programmer a great deal of work during program debugging. 

Compilers already perform some limited error-checking of programs. For example, if the 

programmer makes a typo and misspells a variable name, the compiler will flag it as an 

undefined identifier. Although this limited error-checking does not guarantee the program will 

work correctly, it is nevertheless very helpful to the programmer. The same is the case for the 

technique of control flow analysis presented in this paper. By identifying control flow errors at 

compile time, the effort required for program debugging is reduced. 

Using linear equations to analyze token flow models of parallel computation is not something 

new. As summarized at the beginning of this paper, there has been a great deal of past research 

in this area. However, the unique research contribution of this paper has been to apply this 

technique in a practical and efficient way to a real parallel programming language. We already 

have a working compiler for the C* language that determines whether the program is consistent. 

We are currently modifying this compiler to also perform a weak consistency test. As the next 

step in this research, we would like to apply this technique to MPI and OpenMP.  
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