
International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

DOI : 10.5121/ijdps.2010.1208 87

DETECTION OF CONTROL FLOW ERRORS

IN PARALLEL PROGRAMS AT COMPILE

TIME

Bruce P. Lester

Department of Computer Science

 Maharishi University of Management, Fairfield, Iowa, USA
blester@mum.edu

ABSTRACT

This paper describes a general technique to identify control flow errors in parallel programs, which can

be automated into a compiler. The compiler builds a system of linear equations that describes the global

control flow of the whole program. Solving these equations using standard techniques of linear algebra

can locate a wide range of control flow bugs at compile time. This paper also describes an

implementation of this control flow analysis technique in a prototype compiler for a well-known parallel

programming language. In contrast to previous research in automated parallel program analysis, our

technique is efficient for large programs, and does not limit the range of language features.

KEYWORDS

parallel programming; automated verification; parallel compilers; deadlock; control flow graph;

frequency analysis

1. INTRODUCTION

One of the major problems in the field of parallel computing is the difficulty of software

development. Parallel programs are inherently more complex than sequential programs, and

therefore require significantly more time to write and debug. Also, the execution of parallel

programs is fundamentally nondeterministic in nature, making it even more difficult to locate

program errors through the standard testing and debugging techniques used for sequential

programs.

Any automated technique for helping to detect errors in parallel programs could be very

valuable to aid in parallel software development. In this paper, we give an overview of one such

promising technique: analysis of global control flow properties of a parallel program using a

system of linear equations. This system of equations, derived from what we call the flow matrix

of the program, can be solved using standard methods of linear algebra to detect control flow

errors in the overall structure of a parallel program. This technique can be used by a parallel

program compiler or debugging system to help the programmer locate structural errors in the

program.

Over the years, a considerable amount of research has been published on techniques for

automated debugging of concurrent programs. However, these techniques have not seen

widespread practical application because each technique suffers from one or more of the

following problems:

1. The computational complexity of the technique is too great for application to large programs.

2. To apply the technique to a real programming language, some of the commonly used

language features must be eliminated.

3. The technique cannot be completely automated in a compiler. The programmer must create

an abstract model of the program for analysis purposes.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

88

The flow matrix technique presented in this paper does not suffer from any of these three

problems. The technique is computationally tractable: the worst case time complexity is O(n
3
),

with a wide range of parallel programs requiring only O(n) time. The technique can be

automatically applied by a compiler to parallel programs that use the full range of language

features. We have already developed a prototype compiler that analyzes real programs written in

a well-known parallel programming language.

The most common type of automated analysis technique found in the research literature is the

finite-state verification technique. Typically, these techniques generate a reachability graph of

all possible control states of the parallel program, then search the graph for pathological states,

such as program deadlock. Since the number of reachable states is usually an exponential

function of program size, these techniques focus on reducing the size of the reachability graph.

Some examples can be found in Avrunin [1, 2], Godefroid and Wolper [3], Holzmann [4],

Helmbold and McDowell [5], and Valmari [6].

 Avrunin [7] gives a good survey of finite-state verification techniques, and compares the

performance of four of these techniques on a particular concurrent program. None of these

techniques can be applied directly to the program source code, and all require the programmer

to create a separate formal description of the program behavior. Whereas, our flow matrix

technique is applied by a compiler directly to the parallel program source code.

Much of the previous research has focused on deadlock analysis of concurrent tasking in the

ADA programming language (e.g. Masticola and Ryder [8] and Schatz [9]). To reduce the

number of reachable control states, the analyzed programs are usually limited to simple process

synchronization for controlling access to shared resources. In contrast to this, the control flow

analysis technique presented in our paper is intended for parallel programs written for multicore

(or multiprocessor) computers. The interprocess communication in such parallel programs often

creates such a large number of reachable control states, that the finite-state verification

techniques presented by other researchers are just not practical.

Flow graph techniques for detecting potential faults in parallel programs are continuing to be

explored by other researchers. Schaeli and Hersch [10] use heuristics and previous execution

information to reduce the state space of the flow graph for more efficient analysis. Baah,

Podgurski, and Harrold [11] use estimates of program branch probabilities using a set of test

inputs. Elkarablieh, Marinov, and Khurshid [12] use structural constraints to reduce the program

state space for more efficient search. The Racer system presented by Bodden and Havelund [13]

requires the programmer to add special primitives to the program to assist in the automated

analysis. In contrast to these flow graph techniques, our flow matrix technique does not require

any additional information beyond the source code of the parallel program itself.

Some automated analysis techniques rely on dynamic analysis while the program is running or

using statistics gathered during program execution. Two examples of recent research efforts in

this area are Tian, et al. [14] and Chen and MacDonald [15]. Whereas, our technique is done

completely at compile time without any need to actually execute the program. Our paper is an

extension of an earlier summary paper we presented at the International Conference on Parallel

and Distributed Computing and Systems [16]. This new paper presents significant new research

findings and extends the earlier paper to the C programming language.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

89

2. CONTROL FLOW GRAPHS

It is well known that the execution frequencies of instructions in a computer program have a

certain simple relationship. For example, consider the following fragment of a C program (the

lines are numbered L1 – L5 for reference):

L1 x = func(a, b);

L2 if (x > y)

L3 maxval = x;

L4 else maxval = y;

L5 z = 100 * maxval;

For line L1, let [L1] denote the total number of executions of line L1 during a given execution

of the whole program. Let us call [L1] the count for line L1. Clearly, [L1] = [L2] = [L3] + [L4]

= [L5]. This relationship of the counts is seen even more clearly in the flowchart representation

of these instructions as shown in Figure 1. A flowchart is a directed graph having an instruction

associated with each vertex of the graph. The edges of the graph represent the paths for flow of

control between the instructions. During execution of the flowchart, the flow of control can be

represented by the movement of a control token (the execution point). For a given edge t, we

use [t] to denote the total number of control tokens that have passed through that edge. [t] is

called the count for edge t. Obviously, the following system of linear equations must hold for

any properly terminating execution of the flowchart shown in Figure 1:

[t1] – [t2] = 0

[t2] – ([t3] + [t4]) = 0

[t3] – [t5] = 0

Figure 1. Flow of Control.
Figure 2. Control Flow Error in Parallel Program

x = func(a, b)

if (x > y)

maxvalue = x maxvalue = y

Merge

z = 100 * maxval

t1

t2

t3 t4

t5 t6

t7

t8

Fork

Join

Stop

Start

Send Recv

Buffer

Recv

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

90

[t4] – [t6] = 0

[t5] + [t6] – [t7] = 0

[t7] – [t8] = 0

Using the standard methods of linear algebra, these control flow equations can be solved to

provide useful information about the relationship between the execution frequencies of the

various instructions in the program. All of this is well known for ordinary sequential computer

programs. However, these control flow equations become much more interesting for parallel

programs because the equations sometimes do not have a solution. Furthermore, the lack of a

solution will sometimes indicate the presence of control flow bugs in the parallel program.

The flowchart form of an example parallel program is shown in Figure 2. A Fork operation

creates two parallel processes that communicate using Send and Recv operations through a

shared message buffer. The process on the right branch has two Recv operations, but the process

on the left has only one Send. Assuming that Recv is blocking (i.e. it waits indefinitely for a

message to arrive), this parallel program will result in an improper termination, sometimes

called a deadlock. As was done for the sequential program in Figure 1, it is possible to

determine the control flow equations for the parallel program of Figure 2. However, these

control flow equations have no solution, which indicates an error in the flow of control in the

parallel program. After this somewhat informal introduction, we will now give a more formal

definition of control flow graphs, and describe how the resultant control flow equations can be

used to detect control flow bugs in parallel programs.

A control flow graph is defined as a finite, connected, directed graph. Associated with each

vertex in the graph is a module that places local restrictions on the flow of control, expressed as

a set of linear equations. For each module, its incoming edges are called input terminals, and its

outgoing edges, output terminals. Control flows from one module to another by the movement

of discrete control tokens along the terminals. The terminals do not have any capacity for

storing control tokens. They just provide a path for movement of control tokens between

modules. For a given terminal t, the count (denoted [t]) is defined as the total number of control

tokens that have passed through that terminal since the start of the parallel program execution.

Obviously, [t] will always be a nonnegative integer.

Each module has two control states: active and inactive. (Informally, we may think of an active

module as one that is in the middle of an execution.) Initially, all modules are in the inactive

state. A control flow graph has exactly one START module with two terminals: an input

terminal and an output terminal. This single START module combines the functions ordinarily

associated with separate START and STOP modules. When in the inactive state, the START

module outputs a single control token through its output terminal and enters the active state.

Once in the active state, it will accept a single control token through its input terminal and then

enter the inactive state. If all the other modules are also in the inactive state at this time, the

control flow graph is said to have reached a proper termination.

Definition: A control flow graph is defined as properly terminating if for each terminal t, there

exists a properly terminating execution of the graph for which [t] > 0.

Notice that the above definition allows the possibility that some portion of the program may not

be executed during a specific terminating computation. However, for the control flow graph to

be considered as properly terminating, every portion of the program must be executed in some

properly terminating computation.

Whenever a module is in the inactive state, the counts at its input and output terminals are

constrained to satisfy a specific system of linear equations. More formally, each module M has

an associated control flow matrix FM of rational numbers. If module M has n terminals, then the

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

91

flow matrix FM has m rows and n columns. Throughout the execution history of the control flow

graph, whenever module M is in the inactive state, the counts at its terminals are constrained to

satisfy the following system of linear equations:

 FM T = 0

where T denotes the n-element vector of terminal counts ([t1] [t2] … [tn]) for module M.

Row i of the above system of linear equations will have the following general form:

fi1[t1] + fi2[t2] + . . . + fin[tn] = 0

These linear equations for the individual modules can be simply combined in the obvious way

to create a system of linear equations and corresponding control flow matrix F for the whole

control flow graph. Consider the following system of linear equations:

 F x = 0

where x is the vector (x1, x2, …, xn), and 0 is the n-vector of zeroes.

Definition: A control flow graph is defined as consistent if the above system of linear

equations has a solution in which xi ≠ 0, for all i.

We have now defined two possible properties of a control flow graph: properly terminating and

consistent. Properly terminating is a behavioral property based on valid executions of the

program. Whereas, consistency is a mathematical property based on the linear equations

associated with the modules. The following theorem relates these two properties.

Theorem: Any control flow graph that is not consistent is not properly terminating.

Proof: The proof follows easily from the definitions. Assume that a control flow graph P with

control flow matrix F is properly terminating. For any given terminal t, there must be a properly

terminating execution of P for which [t] > 0. Since all modules must be in the inactive state after

any properly terminating execution, the terminal counts for this execution must satisfy the linear

equations associated with each module. Therefore, the terminal counts for this execution

provide a nontrivial solution to F x = 0, in which xt > 0.

For each terminal t in P, there exists such a solution. We simply sum these solutions to get

another solution to F x = 0 in which xt > 0, for all t. Therefore, P is consistent. We have shown

that P is properly terminating implies that P is consistent. Therefore, if P is not consistent, then

P is not properly terminating.

 (End of Proof)

The number of rows and columns in the flow matrix F is proportional to the number of modules

n in the control flow graph. Using standard techniques of linear algebra [17] to solve F x = 0,

the worst case time-complexity for determining consistency is O(n
3
). As we will see, the flow

matrix F is usually very sparse, with only two or three nonzero entries in each row or column.

Thus, sparse matrix techniques [18] can be applied to reduce the time to O(n).

3. PARALLEL PROGRAMS

In the previous section, we mathematically defined a graph model for flow of control in a

parallel computation based on token flow. This approach to understanding parallel computation

has been used frequently in the past. Lester [19] presents a similar model. Lester [20] shows

how a linear algebra technique similar to the one presented in section 2 can be used to analyze

Petri Nets. In a survey paper on Petri Nets, Murata [21] gives a definition of consistency for

Petri Nets, which is similar to our definition in section 2. Lee [22] shows how consistency of

token flow can be used to locate structural errors in parallel dataflow graphs.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

92

The original contribution in our current paper now to this research area, is the ability to apply

this technique in an efficient and automated manner to real parallel programs. When one

attempts to apply a graphical token flow technique to a real parallel program, one quickly finds

that it is not obvious how to convert the various programming language features into an

equivalent token flow model. Analyzing real parallel programs in this way is still an open

research problem. We feel that our effort in this paper now has made a significant contribution

in this endeavor.

In this paper, we report on our research in using control flow graphs to analyze parallel

programs written in the language C*, a language developed mainly for education in parallel

programming techniques (see The Art of Parallel Programming [23, 24]). The C* language

consists of the C language with the addition of a few of the standard parallel programming

primitives for creating parallel processes and exchanging messages between them. In this

section and the next section, we describe the major features of the C* language, and techniques

for creating equivalent control flow graphs.

To promote a clearer understanding, it will be helpful to begin with an informal example of a

C* program and its corresponding control flow graph. The Art of Parallel Programming [24]

contains a simple parallel program to compute the histogram of a visual image. This program is

shown in Table 1. The image is represented by a two-dimensional array of integers, representing

the light intensity at each point of the image. The intensity ranges from 0 up to some maximum

value. The histogram displays the total number of pixels at each possible intensity value. The

forall statement creates n parallel processes, one for each row of the image array. Each process

scans its own row and increments the appropriate element in the histogram array hist. Since the

elements of hist are incremented in parallel by different processes, each element of hist has its

own spinlock to provide mutual exclusion during the increment operation.

Table 1 Parallel program for histogram.

#define n 100 /*dimension of the image*/

#define max 20 /*maximum pixel intensity*/

int image[n][n]; /*image array*/

int hist[max+1]; /*computed histogram of image*/

spinlock L[max+1]; /*array of spinlocks*/

int i;

main() {

 ...

 for (i = 0; i <= max; i++)

 hist[i] = 0; /*initialize hist array*/

 forall i = 0 to n-1 do {

 /*create one process for each row of image*/

 int j, intensity;

 for (j = 0; j < n; j++) {

 intensity = image[i][j];

 Lock(L[intensity]);

 hist[intensity] = hist[intensity] + 1;

 Unlock(L[intensity]);

 }

 }
}

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

93

The flow of control in this Parallel Histogram program can be represented by the control flow

graph shown in Figure 3. Each statement in the original program becomes a module in the

control flow graph. The terminals of the control flow graph are labeled t1 to t14. The array of

spinlocks L is also represented as a single module in the control flow graph. In this and

subsequent control flow graph examples, we sometimes use dashed lines to represent the

terminals rather than solid lines. This is just to make the examples more understandable. With

respect to the mathematical analysis, there is no difference between solid lines and dashed lines.

Looking at the first for statement labeled A, it is obvious that terminals t1 and t2 must have the

same count for any properly terminating execution of the program. Similarly, terminals t3 and t4

must have the same count. Therefore, module A has the following linear equations:

[t1] – [t2] = 0

[t3] – [t4] = 0

 At runtime, the execution of the program will determine the exact relationship between the

counts [t1] and [t3]. Since this relationship is not known at compile time, it is left unspecified in

the above linear equations. Each of the other modules shown in Figure 3 also has its own linear

equations governing the counts on its connecting terminals. Collecting all of these equations

t13

t14

for (i=0; i<=max; i++)

hist[i]=0

forall i=0 to n-1 do

for (j=0; j<n; j++)

intensity =

Lock(L[intensity])

hist[intensity]++

Unlock(L[intensity])

Start

Stop

Spinlock

L

t1

t12

t11

t10

t8

t9

t7

t6

t7

t5

t2

t3

t4

A

C

B

D

E

F

G

H

Figure 3. Control Flow Graph for Histogram Program.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

94

results in the system of control flow equations shown in Table 2. Using the standard techniques

of linear algebra, these control flow equations have a general solution with four arbitrary

constants (a, b, c, d):

[t1] = [t2] = [t5] = a

[t3] = [t4] = b

[t6] = [t7] = c

[t8] = [t9] = [t10] = [t11] = [t12] = [t13] = [t14] = d

According to the definition presented in section 2, the control flow graph of Figure 3 is

therefore consistent. Now assume the programmer makes a slight error when typing the

Histogram program of Table 1, and omits the Unlock statement. The resultant control flow

graph will be similar to Figure 3, with module H and terminals t12 and t13 removed. This change

will result in a small change to the control flow equations shown above. It is easy to show that

the new control flow equations have only the trivial solution in which all terminal counts are 0.

Thus, the control flow graph is not consistent. According to the Theorem presented in section 2,

the control flow graph is therefore not properly terminating. Looking at Table 1, one can see

that the removal of the Unlock statement does result in a program that is not properly

terminating — the program will result in a deadlock.

Table 2 Control Flow Equations for Histogram Program.

Module Equations

A

[t1] – [t2] = 0

[t3] – [t4] = 0

B [t3] – [t4] = 0

C [t2] – [t5] = 0

[t6] – [t7] = 0

D [t6] – [t7] = 0

[t8] – [t9] = 0

E [t8] – [t10] = 0

F [t10] – [t11] = 0

[t10] – [t14] = 0

G [t11] – [t12] = 0

H [t12] – [t9] = 0

[t12] – [t13] = 0

Spinlock L [t13] – [t14] = 0

Start [t1] – [t5] = 0

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

95

4. C* LANGUAGE

Now we will describe a practical technique for determining the control flow graph

corresponding to any parallel program written in the C* language. The techniques described in

this section are easily automated into a compiler, and form the basis of a prototype C* compiler

developed by the author. Let us begin with a simple assignment statement. This can be

represented as a module with one input terminal and one output terminal as shown in Figure 4.

When a virtual processor begins to execute this assignment statement, this can be represented in

the control flow graph as the movement of a token through the input terminal a. This puts the

module into the active state. When execution is complete, the token representing the virtual

processor moves out of terminal b, returning the module to the inactive state. Therefore,

whenever this assignment statement is in the inactive state, we know that the total control token

count at terminal a exactly equals the token count at terminal b:

[a] – [b] = 0

For some programs, it may be possible to have multiple simultaneous executions of an

assignment statement. In this case, the module will remain in the active state until all of these

executions are complete. Therefore, when the module is in the active state, the count [a] may

exceed the count [b], but in the inactive state, the above equality of [a] and [b] is always true.

Thus, a linear equation of the above form is associated with every assignment statement in the

C* program.

Now let us consider a conditional statement in C* of the form:

if (condition) statement1; else statement2;

When showing the general form of C* statements as in the above, we use bold to indicate

keywords in the language. This conditional statement can be represented as a module with one

input terminal and two output terminals as shown in Figure 5. The situation is similar to the

assignment statement, except the virtual processor may exit through either the T or F output

terminals. Thus, the conditional module will constrain the counts to satisfy the following linear

equation whenever it is in the inactive state:

[a] – ([T] + [F]) = 0

Parallel processes in C* are created with a forall statement of the following general form:

forall i = initial to final do statement;

Let us first consider a forall statement in which the initial and final values are constants, and

therefore known at compile time:

b

a

Figure 4. Module for Assignment Statement.

F T

a

 ?

statement1 statement2

Figure 5. Module for Conditional Statement.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

96

forall i = 1 to 3 do statement;

This forall can be represented by a module with one input terminal and three output terminals as

shown in Figure 6.

For each token entering through terminal a, this forall module outputs a token through each of

the output terminals. When the module is in the inactive state, the count at each output terminal

equals the count at terminal a, as expressed in the following three equations:

[a] – [1] = 0 [a] – [2] = 0 [a] – [3] = 0

The particular value of the forall index variable i (in this case, 1, 2, or 3) is substituted for i as a

constant in the statement body of each process. Since a process often uses its own forall index

extensively in control statements, these three parallel processes may result in control flow

graphs that are considerably different from each other.

Now consider a forall statement in which the initial or final value is a program variable, not

known at compile time:

forall i = 1 to n do statement

The corresponding module is shown in Figure 7. Since the control flow analysis of the program

is done at compile time, we do not know how many parallel processes will be created.

Therefore, the linear equations for this module do not constrain the count at terminal b.

However, we do know that each token entering terminal a will eventually produce a token at

terminal c after all modules have re-entered the inactive state. Thus, we have the following

linear equation for this forall module:

[a] – [c] = 0

These two different representations of the forall statement illustrate the general approach we

have used to create the control flow graph from the C* program. We use whatever information

is available at compile time, to create a more accurate model of the behavior of the program.

This will allow the consistency analysis of the resultant control flow graph to detect a wider

range of control flow errors. However, if some information is not known at compile time, we

can still proceed with the analysis using whatever information we do have.

3
2

1

a

forall

statement statement statement

Figure 6. Forall Statement Module.

b

c

a

forall

statement

Figure 7. Forall Statement with Variable Range.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

97

5. FUNCTIONS AND COMMUNICATION STREAMS

The C* parallel programming language has shared variables that are accessible to all processes.

The language also has stream variables for message passing between processes. Stream

variables are a separate data type and must be explicitly declared:

 float stream inchan; /* inchan is stream of float values */

 float myval;

To write a number into a stream in C* use the Send operation. The stream acts as a FIFO queue

of numbers with new values being added at the end:

 Send(inchan, 23.6); /* write 23.6 into stream */

To read a value from the stream, use the Recv operation, as in the following example that reads

a single value from stream inchan into variable myval:

 Recv(inchan, myval);

If the stream inchan is empty when the above Recv operation is executed, the execution of the

process will be suspended until another process puts a value into the stream. In this way, it is

possible to use streams for interprocess communication and synchronization. We also see that

streams introduce the possibility of circular waits and deadlocks if improperly used.

A Send operation statement can be represented as a module with one input terminal and two

output terminals as shown in Figure 8. The flow of control equations are similar to a simple

assignment statement, with an additional output terminal:

[a] – [b] = 0

[a] – [c] = 0

A Recv operation statement results in the same module as the Send, except the terminal c goes in

the opposite direction.

The stream itself must also be represented as a separate module in the control flow graph. The

Send operations to this stream form the input terminals of the module, and the Recv operations

form the output terminals. For most programs, each steam will have a relatively small number

of terminals. However, it is possible for some stream to have a very large number of terminals.

Figure 9 shows an example module corresponding to a stream.

For a stream module, each data value written into the module is represented as a token that

flows in through one of the input terminals. Reading a value from the stream is represented as

c

a

b

Send(inchan, 23.6) to stream inchan

Figure 8. Module for Send Operation.

b e

d

c a

inchan Figure 9. Module for Stream.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

98

the flow of a token out of one of the output terminals. A stream module is considered to be in

the inactive state whenever it is empty. In the C* language, all streams are initially empty. For

every individual stream module, the control flow equation is simply: the sum of the input flows

equals the sum of the output flows. For the above stream module, this is as follows:

([a] + [b]) – ([c] + [d] + [e]) = 0

C* also allows an array of streams. If all references to a particular stream array have indexes

known at compile time, then each element of the array is represented as a separate module.

Otherwise, the whole array of streams is treated as a single module. This choice is automatically

made for each stream at compile time while the control flow graph is being created.

Another important control structure in the C* parallel programming language is the for loop:

for (expression1 ; expression2 ; expression3) statement;

The corresponding module in the control flow graph is shown in Figure 10. Independent of the

particular details of the three controlling expressions, we always know that the control flow into

terminal a is equal to the control flow out of terminal b. Similarly, the flow out of terminal c

equals the flow into terminal d:

[a] – [b] = 0 [c] – [d] = 0

C* program loops created using while statements or do-while statements will also have a similar

control flow graph with four terminals. Since the number of iterations of the loop is not known

at compile time, the above two equations capture all the information that is known at compile

time.

Now let us consider C* function calls. We have two different techniques for converting

functions into control flow graphs, depending on whether the function is recursive. For each call

to a non-recursive function, the function call is expanded inline using the source code of the

function body. This individual expansion is necessary because parallel processes often pass their

own forall index value as a parameter to the functions. Therefore, the same function call

appearing in different processes may expand into different control flow graphs.

This inline expansion technique will obviously not work for a call to a recursive function. We

expand a recursive function into a control flow graph only once. A special Entry module is

added to the start of the function, which sums all input control flows. A special Exit module is

added to the end of the function, which sums all output control flows. Each call to the recursive

function creates the module type shown in Figure 11. The control flow equations for this

function call are as follows:

c

d

b

a

 for-loop

statement

Figure 10. Module of For Loop.

from Exit

d

c

a

b

Function Call
to Entry

Figure 11. Module for Function Call.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

99

[a] – [b] = 0 [a] – [c] = 0 [a] – [d] = 0

In the C* language, a statement may be spawned into a separate parallel process using the Fork

operator:

 Fork statement;

This can be represented in the control flow graph with a Fork module (see Figure 12). The

control flow equations for this Fork module are as follows:

[a] – [b] = 0

[a] – [c] = 0

One final module to consider is the START module. In the control flow graph, the output

terminal of the START module is connected into the input terminal of the first statement of the

main function body of the C* program. The output terminal of the last statement of the main

function body is connected to the input terminal of the START module. The control flow

equation for the START module is simply: the count at the input terminal equals the count at the

output terminal. In the informal example of a control flow graph shown in Figure 3, a separate

Stop module is shown to make the Figure easier to understand. However, strictly speaking the

Stop module should be eliminated, and the terminal t5 should terminate on the Start module.

As we can see from the modules and equations described in this section for the C*

programming language, the control flow matrix will be very sparse. Almost all of the rows and

columns will have only two or three non-zero elements. The number of rows and columns will

be a small multiple of n, the number of statements in the program. If the control flow matrix is

represented as an ordinary two-dimensional array, consistency can be determined using standard

Gaussian Elimination in time O(n3).

This execution time can be considerably reduced by using a standard sparse matrix

representation: a linked list for each row containing only the non-zero entries, and similarly for

each column. In Gaussian Elimination, there are three nested loops, each with O(n)

repetitions—hence the O(n3) overall time complexity. However, the two inner loops only

operate on non-zero entries. Therefore, this sparse matrix representation can be used to reduce

the time complexity of the two inner loops to a constant independent of n. Thus, the overall time

for determining consistency through Gaussian Elimination is reduced to O(n).

6. EXAMPLE: PARALLEL JACOBI RELAXATION

In our research, we have developed techniques for creating a corresponding module and control

flow equations for all of the statements in the C* language. However, due to lack of space in

this short paper, we have not presented all these statements in detail. To test the validity and

practical application of our technique, we modified an existing compiler for the C* parallel

programming language to include a control flow consistency test, as defined in section 2. We

began with a C* compiler originally developed to accompany the textbook The Art of Parallel

Programming [24]. It is a recursive descent compiler consisting of a single pass through the C*

source code. The output of this pass is an executable program consisting of a series of pseudo-

code instructions of the following form:

operator operand1, operand2

b

c

a

Fork

statement

Figure 12. Module for Fork Operation.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

100

There are a total of 115 different pseudo-code operators, most of which are standard machine

language operations such as add, multiply, branch, store, and load. However, there are also

some higher level operations, such as create a process, request a lock, or read a value from a

stream.

To perform a control flow consistency test, we added a second pass to the compiler that scans

through the pseudo-code program and builds the control flow matrix F. After completing this

second pass, the compiler then submits the matrix F to a linear equation solver that uses

standard Gaussian Elimination to solve the system of equations F x = 0. If a solution exists for

which all xi ≠ 0, then the C* program is consistent. Otherwise, the compiler issues a warning

message to the programmer that the program has a control flow error that will result in an

improper termination.

Now let us consider a brief example: a parallel program to solve Laplace’s Equation using the

Jacobi Relaxation algorithm. Consider a simple application problem to compute the voltage

distribution on the surface of a two-dimensional conducting metal sheet when a known voltage

is applied along the four boundaries. The voltage distribution v(x, y) on the metal sheet can be

computed by solving Laplace’s Equation:

 0
2

2

2

2

=
∂

∂
+

∂

∂

y

v

x

v

This equation can be solved numerically by considering a two-dimensional grid of points on the

Table 3 Parallel Jabobi Relaxation program.

#define n 100 /* size of array */

#define numiter 1000 /* number of iterations */

float A[n+2][n+2]; /* array of points */

float stream C[n+2][n+2]; /*array of streams: one for each process*/

int i, j;

main() {
 /* create processes to hold boundary points constant */
 fork LeftBoundary();

 fork RightBoundary();

 fork TopBoundary();

 fork BottomBoundary();

 /* create processes for interior points */

 forall i = 1 to n do

 forall j = 1 to n do {

 int m; /* local variable*/

 float sum,inval; /* local variables */

 for (m = 1; m <= numiter; m++) { /* 1000 iterations */
 /* send my point to four neighbors */

 Send(C[i][j-1], A[i][j]); /* send left */

 Send(C[i][j+1], A[i][j]); /* send right */

 Send(C[i-1][j], A[i][j]); /* send up */

 Send(C[i+1][j], A[i][j]); /* send down */

 /* receive values sent by my four neighbors */

 Recv(C[i][j], inval); sum = sum + inval;

 Recv(C[i][j], inval); sum = sum + inval;

 Recv(C[i][j], inval); sum = sum + inval;

 Recv(C[i][j], inval); sum = sum + inval;
 A[i][j] = sum / 4.0; /*average of neighboring points*/

 }

 }

}

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

101

surface of the metal sheet. The voltage at all the boundary points is known and held constant.

Initially, the voltage at each internal point is arbitrarily set to 0. Then the voltage at each internal

points is iteratively recomputed as the average of the four neighboring points: above, below,

left, and right. This computational method is called Jacobi Relaxation. It is easily parallelized

by partitioning the points and assigning a different process to each partition. For simplicity, we

will assign just a single point to each process.

The main data structure is a two-dimensional array of points A. Each of the points is assigned to

a separate parallel process that iteratively recomputes the value of the point using the average of

the four immediate neighboring points. The processes exchange values using an array of

streams C, with one stream assigned to each process. The main body of the program is shown in

Table 3. The nested forall statements create n
2 = 10,000 parallel processes. Process (i, j) is

assigned point A[i][j] and uses stream C[i][j] to receive values from its four neighbors. Each

process sends the current value of its own point to all four neighbors, then receives and

computes the average of the four values sent by the neighbors. The points along the four

boundaries are held constant by the special processes created by the four procedures (Table 4).

The control flow graph for this C* program has a total of 49 modules and 81 terminals. The

corresponding control flow equations F x = 0 do have a solution for which all xi ≠ 0. Therefore,

the control flow graph is consistent. Now assume the programmer has made a slight error when

writing the program and has omitted the “Send Left” instruction: Send(C[i][j-1], A[i][j]). This

will disrupt the global data flow and eventually result in a massive deadlock of all processes

Table 4 Boundary Processes for Jacobi Relaxation.

void LeftBoundary() {

 int k;

 forall k = 1 to n do {

 int m; float z;

 for (m = 1; m <= numiter; m++) {

 Send(C[k][1], A[k][0]);

 Recv(C[k][0], z);

 }

 }

}

void RightBoundary() {

 // ... not shown

}

void TopBoundary() {

 int k;

 forall k = 1 to n do {

 int m; float z;

 for (m = 1; m <= numiter; m++) {

 Send(C[1][k], A[0][k]);

 Recv(C[0][k], z);

 }

 }

}

void BottomBoundary() {

 / ... not shown

}

main() { /* main function shown in Table 3 */ }

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

102

during program execution. Using an ordinary compiler, this error will not be detected because

the program does not have any syntax errors. However, using our new prototype compiler, the

programmer will be informed that the control flow in the program is not consistent and therefore

will result in an improper termination. Thus, this new analysis technique for parallel programs is

capable of identifying program errors at compile-time that would otherwise not be noticed until

the program is executed.

7. IDENTIFYING PROGRAM ERRORS

The previous sections of this paper have outlined a technique to create a corresponding control

flow graph for any C* program, and then determine whether the control flow graph is consistent

by solving the control flow equations. If the control flow graph is not consistent, what will

happen when the C* program is executed? In this context, we will use the following new

definitions with respect to a particular execution of a control flow graph:

(i) Non-Termination: control flow never reaches the input terminal of the START module, or

(ii) Improper Termination: when the control flow does reach the input terminal of the START,

one or more modules is still in the active state.

A series of test executions E1, E2, …, Ek of a C* program is said to cover the program if every

statement in the program is executed at least once during this series. Now consider such a series

of test executions. According to the Theorem presented in section 2, if a control flow graph is

not consistent, then it is not properly terminating. Therefore, at least one Ei in this series will

result in either non-termination or improper termination.

Non-termination indicates that the program either has a deadlock or an infinite internal

execution cycle, both of which are certainly pathological and should be reported to the

programmer as control flow errors. To understand improper termination, we must analyze what

it means for a module to still be in the active state after the program has reached its end. There

are two basic categories of modules: executable and non-executable. The executable modules

are used to represent the executable statements of the C* program, such as assignments, loop

control statements, forall statements, function calls, etc. The non-executable modules are used

to represent stream variables. An executable module is active if it is in the midst of an

execution. A stream is active if it contains at least one unread message.

Using the C* language, it is not possible for control flow to reach the end of the program while

some statement is still in the midst of an execution (see reference [24]). Therefore, improper

termination indicates that the C* program will terminate with one or more unread messages in

the streams. We claim that this should be considered as pathological, and reported to the

programmer as a warning during program compilation.

However, some programmers may want the option of writing C* programs that terminate with

some unread messages in the streams. The C* language allows this without generating a runtime

error message. Therefore, it will be useful to have some mathematical technique to differentiate

between non-termination and improper termination. The control flow equation for each stream

module uses a sum property:

 sum of the input terminal counts – sum of the output terminal counts = 0

To allow unread messages in a stream, we introduce an additional slack variable xs representing

the unread messages in the stream. The modified control flow equation is as follows:

 sum of the input terminal counts – sum of the output terminal counts – xs = 0

 (subject to the positivity constraint xs ≥ 0)

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

103

Furthermore, the stream module is always in the inactive state, which means this equation is

true at all times. (This corresponds to the defined behavior of streams in the C* language.) The

control flow equations for the non-stream modules remain the same as before. Collecting these

equations together, we get the following modified system of control flow equations:

 G x = 0

 x ≥ 0

Assume that xn is the variable corresponding to the count at the input terminal of the START

module, which corresponds to termination of the program. A solution to the above equations

can be found using the following linear programming problem:

 minimize xn

 subject to G x = 0 (control flow equations)

 x ≥ 0 (positivity constraint)

 xj ≥ 1, for all terminal count variables

A control flow graph is said to be weakly consistent if the above linear programming problem

has a feasible solution (a feasible solution is one that satisfies all the constraints, but does not

necessarily optimize the objective function). A linear programming problem can be solved using

the standard simplex algorithm, the first step of which is to find a feasible solution, or report

that no feasible solution exists [25]. Although linear programming can be exponential in the

worst case, the simplex algorithm almost always requires only polynomial execution time.

Theorem: Let E1, E2, …, Ek be series of test executions that cover a given C* program. If the

corresponding control flow graph is not weakly consistent, then at least one Ei in this series will

result in non-termination.

Proof: The proof follows easily from the definitions. We use proof by contradiction. Assume

the control flow graph is not weakly consistent, but all the test executions in the series are

terminating. Using the modified control flow equations for stream modules, an improper

termination is not possible for a control flow graph derived from a C* program. Therefore, each

execution Ej in the series results in a proper termination. Thus, the terminal counts for each Ej

provide a particular integral solution to the modified control flow equations G x = 0, where

x ≥ 0. To construct this solution, use xp = [p] for each terminal variable xp; and for each stream

variable s, set the corresponding slack variable xs to the number of unread messages remaining

in the stream at the end of the execution Ej.

Since the series of executions cover the C* program, each specific terminal t has an associated

execution Ej in the series such that [t] ≥ 0, and therefore [t] ≥ 1. This provides a solution to

G x = 0, in which x ≥ 0 and xt ≥ 1. We simply sum these solutions across all the terminals to

get another solution to G x = 0 in which x ≥ 0 and xt ≥ 1 for all terminals t. Therefore, the

control flow graph is weakly consistent. This contradicts the original assumption that the control

flow graph is not weakly consistent.

(End of Proof)

c

a

b

Unlock(L) to spinlock L

Figure 13. Module for Unlock Operation.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

104

We now have established two different properties of a C* program that can be automatically

tested at compile time: consistency and weak consistency. If the program fails the consistency

test, then any series of test executions that cover the program will contain an execution with one

of the following types of control flow errors:

• Deadlock

• Infinite internal execution cycle

• Unread messages in the streams at termination

If the program fails the weak consistency test, then at least one execution in any covering series

will result in deadlock or an infinite internal execution cycle.

8. LOCKING OF SHARED DATA

In addition to communication using stream variables, the C* language also allows parallel

processes to interact by reading and modifying shared variables. Therefore, some mechanism is

required to provide mutual exclusion during modification of the shared variables. This is done

using a special spinlock data type. A spinlock variable has two states: locked and unlocked. The

initial state is unlocked. The Lock() operation changes the state from unlocked to locked. The

Unlock() operation changes the state from locked to unlocked. Consider the following portion

of a C* program:

spinlock L; /* declaration of L as spinlock variable */

Lock(L);

 . . . /* atomic modification to shared data */

Unlock(L);

Frequently, the Lock and Unlock operations are used in matched pairs as shown above.

However, this is not required in C*. The Art of Parallel Programming [24] contains several

examples in Chapter 5 of programs in which Lock and Unlock operations are used in more

complex ways. Bugs in the use of these operations can create program deadlocks. Therefore, it

will be useful to include spinlocks in the control flow graph when determining consistency or

weak consistency. As was illustrated in Figure 3, each spinlock variable can be represented in

the control flow graph as a single module. An Unlock operation is represented with the module

shown in Figure 13. The flow of control equations are as follows:

[a] – [b] = 0 [a] – [c] = 0

A Lock(L) operation results in the same module as Unlock, except terminal c goes in the

opposite direction. Now let us consider the control flow equation for the spinlock module itself.

For consistency testing, we need a linear equality. One possibility is to use a sum property as

was done for the stream modules: the sum of the inputs equals the sum of the outputs. Since the

inputs are from Unlock operations, and the outputs go to Lock operations, this equation requires

that the number of Lock operations on each spinlock exactly equals the number of Unlock

operations. We can include this in the control flow equations used to determine consistency of

the control flow graph. Therefore, an imbalance in the number of Lock and Unlock operations

will be flagged as a control flow error.

However, the C* language does not actually require that Lock and Unlock operations are exactly

balanced. There can be one extra Lock operation, which will cause the spinlock to be in the

locked state at program termination. There can also be any number of extra Unlock operations.

After a spinlock enters the unlocked state, additional Unlock operations are just ignored. To

allow this more liberal use of Lock and Unlock operations, the following linear inequality can

be used as the control flow equation for each spinlock module:

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

105

 sum of input terminal counts – sum of output terminal counts ≥ -1

Since the control flow equations for testing weak consistency allow such linear inequalities, this

new more liberal model of spinlocks can be used in the weak consistency test. Although we will

not prove it formally, it is fairly easy to show that the Theorem proved in the previous section

still holds: if the control flow graph of a C* program is not weakly consistent, then any

covering series of test executions will contain at least one non-terminating execution. Thus,

weak consistency testing is still a very useful method of finding control flow errors in C*

programs that use spinlocks and/or streams. We have already seen that the Parallel Histogram

program of Table 1 is not consistent if the Unlock operation is removed. It also is not weakly

consistent, and therefore should be non-terminating. We have seen that removal of the Unlock

results in a deadlock, which is included in our definition of non-termination.

9. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have presented a simple and practical technique for analyzing the control flow

properties of parallel programs at compile time. This technique is computationally efficient, and

does not suffer from some of the limitations associated with previous research in automated

program analysis. The next step in this research is to apply this technique to other parallel

programming languages besides C*.

Although we have compared our technique to automated verification techniques, strictly

speaking it is not really an automated verification technique. Automated error-finding technique

would perhaps be a better description. If the parallel program does pass the consistency test (or

weak consistency test), this does not guarantee that the program will terminate properly.

However, if the program fails the consistency test (or weak consistency test), then the program

definitely has a control flow error. Therefore, testing these properties at compile time can save

the programmer a great deal of work during program debugging.

Compilers already perform some limited error-checking of programs. For example, if the

programmer makes a typo and misspells a variable name, the compiler will flag it as an

undefined identifier. Although this limited error-checking does not guarantee the program will

work correctly, it is nevertheless very helpful to the programmer. The same is the case for the

technique of control flow analysis presented in this paper. By identifying control flow errors at

compile time, the effort required for program debugging is reduced.

Using linear equations to analyze token flow models of parallel computation is not something

new. As summarized at the beginning of this paper, there has been a great deal of past research

in this area. However, the unique research contribution of this paper has been to apply this

technique in a practical and efficient way to a real parallel programming language. We already

have a working compiler for the C* language that determines whether the program is consistent.

We are currently modifying this compiler to also perform a weak consistency test. As the next

step in this research, we would like to apply this technique to MPI and OpenMP.

REFERENCES

[1] G.S. Avrunin, et al., “Automated analysis of concurrent systems with the constrained expression

toolset,” IEEE Transactions on Software Engineering, 17(11), pp. 1204-1222, 1991.

[2] G.S. Avrunin, et al., “Finite-state verification for high performance computing,” in Proceedings

of the Second International Workshop on Software Engineering for High Performance

Computing System Applications, ACM Press, New York, NY, 2005, pp. 68-73.

[3] P. Godefroid, P. Wolper, “Using partial orders for the efficient verification of deadlock freedom

and safety properties,” Formal Methods in System Design, 2(2), pp. 149-164, 1993.

[4] G.J. Holzmann, The SPIN Model Checker, Addison-Wesley: Boston, MA, 2004.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

106

[5] D.P. Helmbold, C.E. McDowell, “Computing reachable states of parallel programs,” in:

Proceedings of the 1991 ACM/ONR Workshop on Parallel and Distributed Debugging, Santa

Cruz, California, 1991, pp. 76-84.

[6] A. Valmari, “A stubborn attack on state explosion,” in: Proceedings 2nd Int. Workshop on

Computer-Aided Verification, LNCS 531, Springer-Verlag, New York, NY, 1991, pp. 156-165.

[7] G. S. Avrunin, et al., “Comparing Finite-State Verification Techniques for Concurrent

Software,” Technical Report UM-CS-1999-069, Department of Computer Science, University of

Massachusetts, 1999.

[8] S. P. Masticola , B. G. Ryder, “A model of Ada programs for static deadlock detection in

polynomial times,” in: Proceedings of the 1991 ACM/ONR workshop on parallel and distributed

debugging, Santa Cruz, California, 1991, pp. 97-107.

[9] S. Shatz, et al, “An application of Petri Net reduction for Ada tasking deadlock analysis,” IEEE

Transcations on Parallel and Distributed Systems, 7(12), pp. 1307-1322, 1996.

[10] B. Schaeli and R. D. Hersch, “Dynamic testing of flow graph based parallel applications, ” in:

Proceedings of the 6th workshop on Parallel and distributed systems: testing, analysis, and

debugging, Seattle, Washington, 2008, pp. 1-10.

[11] G. K. Baah, et al., “The probabilistic program dependence graph and its application to fault

diagnosis, ” in: Proceedings of the 2008 international symposium on Software testing and

analysis, Seattle, Washington, 2008, pp. 189-200.

[12] B. Elkarablieh, D. Marinov,and S. Khurshid, “Efficient solving of structural constraints, ” in:

Proceedings of the 2008 international symposium on Software testing and analysis, Washington,

2008, pp. 39-50.

[13] B. Schaeli and R. D. Hersch, “Dynamic testing of flow graph based parallel applications, ” in:

Proceedings of the 2008 international symposium on Software testing and analysis, Seattle,

Washington, 2008, pp. 155-166.

[14] C. Tian, et al., “Dynamic testing of flow graph based parallel applications, ” in: Proceedings of

the 2008 international symposium on Software testing and analysis, Seattle, Washington, 2008,

pp. 143-154.

[15] J. Chen and S. MacDonald, “Towards a better collaboration of static and dynamic analyses for

testing concurrent programs, ” in: Proceedings of the 6th workshop on Parallel and distributed

systems: testing, analysis, and debugging, Seattle, Washington, 2008.

[16] B. P. Lester, “Automatic detection of control flow errors in parallel programs,” in Proceedings of

the IASTED International Conference on Parallel and Distributed Computing and Systems,

Cambridge, MA, 2004, pp. 368-373.

[17] B. Kolman, D.R. Hill, Elementary Linear Algebra, 7/E, Prentice Hall: Upper Saddle River, NJ,

2000.

[18] T.A. Davis, Direct Methods for Sparse Linear Systems, SIAM: Philadelphia, PA, 2006.

[19] B.P. Lester, “Coherent flow of information in parallel systems,” in: Proceedings of 1983

International Conference on Parallel Processing, Chicago, Illinois, 1983.

[20] B.P. Lester, “Analysis of firing rates in Petri Nets using linear algebra,” in: Proceedings of 1985

International Conference on Parallel Processing, Chicago, Illinois, 1985, pp. 217-224.

[21] T. Murata. “Petri nets: properties, analysis and applications,” Proceedings of the IEEE, 77(4),

pp. 451-480, 1989.

[21] E. A. Lee, “Consistency in dataflow graphs,” IEEE Transactions on Parallel and Distributed

Systems, 2(2), pp. 223-235, 1991.

[23] B.P. Lester, The Art of Parallel Programming, First Edition, Prentice Hall: Englewood Cliffs,

NJ, 1993.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

107

[24] B.P. Lester, The Art of Parallel Programming, Second Edition, 1st World Publishing: Fairfield,

Iowa, 2006.

[25] S.I. Gass, Linear programming: methods and applications, fifth edition, Dover Publications,

Mineola, NY, 2003.

Author

Dr. Bruce Lester received his Ph.D. in

Computer Science from M.I.T. in 1974. He was

a Lecturer in the Department of Electrical

Engineering and Computer Science at Princeton

University for two years. During 1979-1989,

Dr. Lester was a faculty member at Maharishi

University of Management (MUM) and served

as Chair of the Computer Science Department.

Beginning in 1989, Dr. Lester worked

independently as an author and software

engineering contractor. In 2007, he rejoined the

faculty of Maharishi University of Management,

where he is currently Professor of Computer

Science.

