
International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

DOI : 10.5121/ijdps.2010.1210 118

AN IMPLEMENTATION POSSIBILITIES FOR AODV

ROUTING PROTOCOL IN REAL WORLD

Nitiket N Mhala
1
and N K Choudhari

2

1
Associate Professor, Department of Electronics Engg., BDCOE, Sevagram,India

nitiket_m@rediffmail.com
2
Principal, Bhagwati Chadurvedi COE, Nagpur,India

drnitinchoudhari@gmail.com

ABSTRACT

Most of the adhoc routing protocol research work has been done using simulation only because of the

difficulty of creating real implementation. In simulation the developer controls the whole system, which is

in effect only a single component. An Implementation, on the other hand, needs to interoperate with a

large complex system and the system components. In this paper we focus on working implementation of

AODV routing protocol by means of certain design possibilities and possible opportunities for obtaining

needed AODV events. We discuss the socket based mechanism particularly when AODV routing daemon

communicates changes to the IP route table. The paper suggests the need of implementation of Generic

Netlink Family.

KEYWORDS

 AODV, netlink, routing daemon, Linux kernel, snooping, netfilter

1. INTRODUCTION

Mobile wireless devices are rapidly gaining popularity due to recent improvements in the porta-

bility and power of these products. There is a growing need for communication protocols which

allow users of these devices to communicate over wireless links. To allow such on-the-fly for-

mation of networks, the Ad hoc On-Demand Distance Vector (AODV) routing protocol has

been developed [1], [2], [3]. AODV has been designed for use in ad hoc mobile networks. It

allows users to find and maintain routes to other users in the network whenever such routes are
needed. Testing mobile wireless protocols in a real-world environment presents numerous diffi-

culties. These difficulties include creating repeatable scenarios with tens, hundreds, or even

thousands of mobile nodes. Creating multiple scenarios with only small variances is also quite

challenging. Because of these difficulties, simulations of AODV have been created to test the

protocol in a variety of repeatable scenarios [1] [3]. However, while simulating a protocol can

aid in the basic design and testing of the protocol, certain assumptions and simplifications can

be made in a simulation that are not valid in a real-world scenario. Hence, it is important to im-
plement the protocol, once the simulation is complete.

Creating a working implementation of an ad hoc routing protocol is non-trivial and more diffi-

cult than developing a simulation. In simulation, the developer controls the whole system, which

is in effect only a single component. An implementation, on the other hand, needs to interope-

rate with a large, complex system. Some components of this system are the operating system,

sockets, and network interfaces. Additional implementation problems surface because current

operating systems are not built to support ad hoc routing protocols. A number of required events
are unsupported; support for these events must be added. Because these events encompass many

system components, the components and their interactions must also be explored. For these rea-

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

119

sons it takes significantly more effort to create an ad hoc routing protocol implementation than a

simulation.

2. RELATED WORK

Conventional IP based routing protocols are not appropriate for ad hoc mobile networks because

of the temporary nature of the network links and additional constraints on mobile nodes i.e. li-

mited bandwidth and power [13, 14].Routing protocols for such environments must be able to

keep up with the high degree of node mobility that often changes the network topology drasti-

cally and unpredictably. The mobile ad hoc networking (MANET) working group has been
formed within the IETF to develop a routing framework for IP based protocols in mobile ad hoc

networks. AODV (Ad hoc On-demand Distance Vector routing) is one such protocol, which is

widely established. The AODV has been published as an experimental RFC [15].AODV is a

widely researched protocol among the research community. Most of the research effort has fo-

cused on simulations aimed at determining the performance of AODV [16,17] also in compari-

son to the performance of other ad hoc routing protocols [18].There exist currently several

AODV implementations [19] for different operating systems. These implementations comply

with a varying degree to the protocol description defined in [15]. Even though all are considered

protocol compliant, different design decisions (e.g., kernel level implementations perform effi-

ciently, compared to user level implementations) can give certain protocol handlers an advan-

tage over others. Recently there have been many AODV routing protocol implementations, in-

cluding Mad-hoc [20],AODV-UCSB [21], AODV-UU [22], Kernel-AODV [23] and AODV-

UIUC [24]. Each implementation was developed and designed independently; but, they all per-

form the same operations and many interoperate.

2. 1Brief AODV Protocol Overview

The AODV routing protocol [11][12] is a reactive routing protocol; therefore, routes are deter-

mined only when needed. Figure 1 shows the message exchanges of the AODV protocol. Hello

messages may be used to detect and monitor links to neighbors. If Hello messages are used,

each active node periodically broadcasts a Hello message that all its neighbors receive. Because

nodes periodically send Hello messages, if a node fails to receive several Hello messages from a

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

120

neighbor, a link break is detected. When a source has data to transmit to an unknown destina-

tion, it broadcasts a Route Request (RREQ) for that destination. At each intermediate node,

when a RREQ is received a route to the source is created. If the receiving node has not received

this RREQ before, is not the destination and does not have a current route to the destination, it

rebroadcasts the RREQ. If the receiving node is the destination or has a current route to the des-

tination, it generates a Route Reply (RREP). The RREP is unicast in a hop-by hop fashion to the

source. As the RREP propagates, each intermediate node creates a route to the destination.

When the source receives the RREP, it records the route to the destination and can begin send-

ing data. If multiple RREPs are received by the source, the route with the shortest hop count is

chosen. As data flows from the source to the destination, each node along the route updates the

timers associated with the routes to the source and destination, maintaining the routes in the

routing table. If a route is not used for some period of time, a node cannot be sure whether the

route is still valid; consequently, the node removes the route from its routing table. If data is

flowing and a link break is detected, a Route Error (RERR) is sent to the source of the data in a

hop-by hop fashion. As the RERR propagates towards the source, each intermediate node inva-

lidates routes to any unreachable destinations. When the source of the data receives the RERR,

it invalidates the route and reinitiates route discovery.

 2.2 Logical Structure of Implementation

While implementation in real world, certain changes are necessary both protocol and kernel in

order to allow to operate AODV correctly. The figure highlights where the modifications can

occur. We can choose to implement AODV in Linux kernel because of inherent mobility and

open loop characteristics of Linux.Similarly; the alternative to implementing a routing protocol

in user space is to incorporate the existing protocol into the existing kernel as in, [4]. Protocol

modifications suggest most basic changes made to AODV in route Reply and Route Table.

When a node receives a route request, it replies if it either is the destination or it has a current

route to the destination. In the simulation, RREPs were originally unicast from responding node

to the source. As the RREP was propagated, intermediate nodes update their routing tables to

include the routes to the destination. In implementation however this does not work, because if

RREP is unicast from responding node to the source, the intermediate nodes use IP forwarding

and do not process the packet. Hence the protocol needed to be changed so that RREPs are un-

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

121

icast on a hop-by-hop basis. Additionally, a source IP address field was added to the RREP so

that ultimate destination of the RREP would be retained. .Similarly, AODV routing daemon

communicates changes to the IP routing table through the use of netlink socket. Whenever

AODV has route addition, modification or deletion, it transmits a message to IP through this

socket and route is updated accordingly.

 2.3 Implementation Strategy

In order to function for AODV routing daemon, it is essential to determine when to trigger

AODV protocol events. The events must be extrapolated and communicated to the routing dae-

mon via other means. The events that must be determined are

When to initiate a route request:

 This is indicated by a locally generated packet that needs to be sent to a destination for which a

valid route is not known.

When and how to buffer packets during route discovery:
During route discovery packets destined for the unknown destination should be queued. If a

route is found the packets are be sent.

When to update the lifetime of an active route:
This is indicated by a packet being received from, sent to or forwarded to a known destination.

When to generate a RERR if a valid route does not exist:
If a data packet is received from another host and there is no known route to the destination, the

node must send a RERR so that the previous hops and the source halt transmitting data packets

along this invalid route.

When to generate a RERR during daemon restart:

After the AODV routing protocol restarts, it must send a RERR message to other nodes attempt-

ing to use it as a router. This behavior is required in order to ensure no routing loops occur.

3. IMPLEMENTATION DESIGN POSSIBILITIES

3.1 Possible opportunities for obtaining the said events include

• Snooping

• Netfilter

• Kernel Modification

3.1.1 Snooping

In order to determine the needed events is to promiscuously snoop all incoming and outgoing

packets.[5] The code to perform snooping is built into the kernel and is available to user space

programs. For e.g. An ARP packet is generated when a node does not know the MAC layer ad-

dress of the next hop. Using this interface, if an ARP request packet is seen for an unknown des-

tination and it is originated by the local host, then a route discovery needs to be in-
itiated.Similarly, all other AODV events may be determined by monitoring incoming and out-

going packets. The most important advantage of this solution is it does not require any code to

run in the kernel space. Hence it allows for simple installation and execution .But two disadvan-

tages are overhead and dependence over ARP.

3.1.2 Netfilter

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

122

Netfilter [6] is a set of hooks at a various points inside the Linux protocol stack. Netfilter redi-

rects packet flow through user defined code, which can examine, drop, discard, modify or queue

the packets for user space daemon. Using Netfilter is similar to snooping method however it

does not have the disadvantage of unnecessary overhead or dependence on ARP. This solution

has the strength such as there is no unnecessary communication; it is highly portable, it is easy

to install and user space daemon can determine all the required events. On the other hand, the

disadvantage of this solution is that it requires a kernel module. However kernel module is easi-

er than kernel modifications. A kernel module is more portable than kernel modifications be-

cause it depends only on the Netfilter interface. This interface does not change from one kernel

version to next.

3.1.3 Kernel Modification

In order to determine the AODV events is to modify the kernel. Code can be placed in the ker-

nel to communicate the events to an AODV user-space daemon. For example, to initiate route
discovery, code is added in the kernel at the point where route lookup failures occur. Given this

code in the kernel, if a route lookup failure happens, then a method is called in the user-space

daemon.

Figure shows the architecture of the AODV daemon and the required support logic. The advan-

tages of this solution are that the events are explicitly determined and there are no wasted over-

head. The main disadvantages of this solution are user installation and portability. Installation of

the necessary kernel modifications requires a complete kernel recompilation. This is a difficult
procedure for many users. Also, kernel patches are often not portable between one kernel ver-

sion and the next. Finally, understanding the Linux kernel [7] and network protocol stack re-

quires examining a significant amount of uncommented, complex code.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

123

 3.2 Basic Considerations in kernel modifications to meet out the required aodv

 Events

3.2.1 IP routing

 When a packet arrives at a node’s IP-Layer from the application layer, Ip checks whether it has

a route to the destination by consulting its routing table. If it has either a route or a default rou-
ter, it forwards the packet. If neither of these exists, IP informs the application that a route does

not exist, and the session is aborted. In adhoc routing, default routes typically does not exist,

except possibly for specific connections to an infrastructure. Often, due to node mobility and

specifically with on-demand protocols, a valid route is not known for a given destination. In-

stead of notifying the application, IP must be changed to notify the routing daemon that route

needs to be found for the destination.

3.2.2 Route Tables

AODV maintains its own route table of destination for which it has a route. Each route table
entry has associated with it a lifetime field. When an entry’s lifetime expires, that entry is inva-

lidated. Each time a route to a destination is used, the life time associated with that route is up-

dated so that the route table entry is not prematurely deleted. Because IP is responsible for for-

warding data packets, however, AODV does not know when route entries are used. Hence it

cannot accurately use this feature within the routing daemon. To enable this functionality of

AODV to be maintained , the kernel can be modified so that IP maintains a structure parallel to

the IP route table in which it stores a Last use field.

4. SOCKET BASED MECHANISM

The socket based mechanisms allow the applications to listen on a socket, and the kernel can

send those messages at any time. This leads to a communication mechanism in which user space

and kernel space are equal partners.

4.1 Netlink Sockets

Netlink is a special IPC used for transferring information between kernel and user space

processes, and provides a full-duplex communication link between the Linux kernel and user

space. It makes use of the standard socket APIs for user-space processes, and a special kernel
API for kernel modules. Netlink sockets use the address family AF_NETLINK, as compared to

AF_INET used by a TCP/IP socket.

Why Netlink sockets?

It is simple to interact with the standard Linux kernel as only a constant has to be added to the

Linux kernel source code. There is no risk to pollute the kernel or to drive it in instability, since

the socket can immediately be used.

• Netlink sockets are asynchronous as they provide queues, meaning they do not disturb

kernel scheduling.

• Netlink sockets provide the possibility of multicast.

• Netlink sockets provide a truly bidirectional communication channel: A message trans-

fer can be initiated by either the kernel or the user space application.

• They have less overhead (header and processing) compared to standard UDP sockets.

4.2 Role of Socket mechanism in AODV Implementation

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

124

AODV can be implemented as a routing daemon in use space. The daemon communicates with

the Linux kernel through the use of sockets. At initialization, AODV opens a UDP socket to the

kernel. This socket is used for both the transmission and reception of AODV control messages.

AODV has been issued port number 654 and hence binds to this port when opening the socket.

The AODV routing daemon communicates changes to the IP route table through the use of net-
link socket.[8] Whenever AODV has a route addition, modification or deletion, it transmits a

message to IP through this socket and the route is updated accordingly .In order to prevent the

premature deletion of routes in the kernel routing table, AODV’s route table maintenance is al-

tered to include a periodic refresh of the kernel route table entries .This may be accomplish

through the use of periodic timer. When the timer expires, AODV sends a message to IP on the

netlink socket telling it to update, or refresh, the route.

4.3 Identified drawbacks

• Each entity using netlink sockets has to define its own protocol type (family) in the ker-

nel header file include/linux/netlink.h, necessitating a kernel re-compilation before it

can be used.

• The maximum number of netlink families is fixed to 32. If everyone registers its own

protocol this number will be exhausted.

4.4 Implementation of Generic Netlink Family

In order to eliminate the above two drawbacks ,We suggest to implement “Generic Netlink

Family” It acts as a Netlink multiplexer, in a sense that different applications may use the gener-

ic netlink address family. Generic Netlink communications are essentially a series of different

communication channels which are multiplexed on a single Netlink family. Communication

channels are uniquely identified by channel numbers which are dynamically allocated by the

Generic Netlink controller. Kernel or user space [9] users which provide services, establish new

communication channels by registering their services with the Generic Netlink controller. Users

of the service, then query the controller to see if the service exists and to determine the correct

channel number. Each generic netlink family can provide different "attributes" and "com-

mands". Each command has its own callback function in the kernel module and may receive

messages with different attributes. Both commands and attributes, are "addressed" by an iden-

tifier

4.5 User Space Sending Phase

1. Create a socket

2. Connect to the NETLINK_GENERIC socket family.

3. Resolve the ID for the particular generic netlink family we want to talk with.

4. Create the generic netlink message header. This specifies which callback function of

your kernel module gets executed.

5. Put the data into the message. The second argument is used by the kernel module to

distinguish which attribute was sent.

6. Send the message to the kernel

4.6 Receiving Phase

1. Add a callback function to the socket. This callback function gets executed when the

socket receives a message. In the callback function the message needs to be decoded.

2. Wait until a message is received.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

125

4.7 Recommendations

The Generic Netlink mechanism is a very flexible communications mechanism and as a result

there are many different ways it can be used. The following recommendations are based on

conventions within the Linux kernel and should be followed whenever possible. While not all

existing kernel code follows the recommendations outlined here all new code should consider

these recommendations [10] as requirements.

4.7.1 Attributes and Message Payloads

The Netlink attribute mechanism has been carefully designed to allow for future message ex-

pansion while preserving backward compatibility. There are also additional benefits to using

Netlink attributes which include developer familiarity and basic input checking

4.7.2 Operation Granularity

While it may be tempting to register a single operation for a Generic Netlink family and multip-

lex multiple sub-commands on the single operation this is strongly discouraged for security rea-

sons. Combining multiple behaviors into one operation makes it difficult to restrict the opera-
tions using the existing Linux kernel security mechanisms

4.7.3 Acknowledgment and Error Reporting

 It is often necessary for Generic Netlink services to return an ACK or error code to the client.

5. CONCLUSION

AODV is a widely researched protocol among the research community. Most of the research
effort has focused on simulations aimed at determining the performance of AODV. However,

while simulating a protocol can aid in the basic design and testing of the protocol, certain as-

sumptions and simplifications can be made in a simulation that are not valid in a real-world sce-

nario. Currently several AODV implementations exist for different operating systems. In real

sense, creating a working implementation of an ad hoc routing protocol is non-trivial and more

difficult than developing a simulation. In view of this, our paper efforts implementation possi-

bilities for AODV routing protocol in a real world. Here, we first identified the unsupported
events needed for AODV to perform routing. We then examined the advantages and disadvan-

tages of three strategies for determining this information. Among the three implementation

strategies, we emphasizes on kernel modifications strategy. This paper strongly interpreted on

the basic considerations should be carefully considered for kernel modifications to meet out the

required AODV events. Therefore, we briefly introduced Socket Based Mechanism and explain

its major role in AODV implementation which is most important when AODV routing daemon

communicates changes to the IP route table through the use of netlink socket. In conclusion for

future kernel modification, we suggest the implementation of Generic Netlink Family.

ACKNOWLEDGEMENTS

The authors would like to thank everyone, including the anonymous reviewers.

REFERENCES

[1] C.E Perkins and E.M. Royer. Ad-hoc On-Demand Distance Vector Routing.Proceeding of the

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

126

 2nd IEEE Workshop on mobile Computing systems and Applications,pages 90-100.New

 Orleans,L.A.February 1999.

[2] C.E Perkins and E.M. Royer and S.R. Das.Ad-hoc On Demand Distance Vector (AODV)

 routing.IETF Internet Draft,draft-ietf-manet-aodv-05.txt,March 2000.

[3] E.M. royer and C.E. Perkins Multicast Operation of Adhoc distance vector Routing Protocol.

 Proceedings of the 5th ACM/IEEE International Conference on Mobile Computing and Net

 working,pages 207-218 ,Seattle,WA,august,1999.

[4] D.A. Maltz ,J.Broach and D.B.Jonson Experiences Designing and Building, a Multihop Wire

 less Adhoc Test Bed Technical Report CMU, CMU school of computer science

[5] F. Lilieblad, O. Mattsson, P. Nylund, D. Ouchterlony, and A. Roxenhag. Mad-hoc AODV

 Implementation and Documentation. http://mad-hoc.flyinglinux.net.

[6] J. Kadlecsik, H. Welte, J. Morris, M. Boucher, and R. Russell. The netfilter/iptables Project.

 http://www.netfilter.org/

 [7] http://www.kernel.org

 [8] www.linuxjournal.com/article/

 [9] http://people.ee.ethz.ch/~arkeller/linux/kernel_user_space_howto.html

 [10] http://lwn.net/Articles/

 [11] C.E.Perkins,E.M. Belding-Royer and S.Das. Adhoc On Demand Distance vector (AODV)

 Routing.RFC3561,July 2003.

 [12] C.E.Perkins & E.M. Royer,The Adhoc On Demand Distance Vector Protocol In C.E

 Perkins,editor,Adhoc networking pages 173-219.Addision-Westly,2000.

 [13] Perkins, C.E., Ad Hoc Networking. 2000, NJ: Addison-Wesely.

 [14] Royer, E.M. and C.-K. Toh, A Review of Current Routing Protocols for Ad-Hoc Mobile Wireless

 Networks.IEEE Personal Communications Magazine, 1999: p. 46-55.

 [15] Perkins, C., B.-R. E., and D. S., Ad hoc On-demand Distance Vector routing. 2003, Request For

 Comments (Proposed Standard) 3561, Internet Engineering Task Force.

 [16] Lee, S.J., E.M. Royer, and C.E. Perkins, Scalability Study of the Ad Hoc on-Demand Distance

 Vector Routing. ACM/Wiley International Journal of Network Management, 2003: p. 97-114.

 [17] Ramarathinam, V. and M.A. Labrador. Performance Analysis of TCP over Static Ad Hoc Wire

 Less Networks. in In Proceedings of the ISCA 15th International Conference on Parallel and

 Distributed Computing Systems (PDCS). 2002.

 [18] Samir R. Das, et al., Performance Comparison of Two On-demand routing Protocols for Ad hoc

 Networks.IEEE Personal Communications Magazine special issue on Ad hoc Networking, 2001:

 p. 16-28.

 [19] Implementations, P.A., available at http://moment.cs.ucsb.edu/AODV/aodv.html #Implementa

 tions. 2002.

 [20] F. Lilieblad, O. Mattsson, P. Nylund, D. Ouchterlony, and A. Roxenhag. Mad-hoc AODV Imple

 mentation and Documentation. http://mad-hoc._yinglinux.net.

 [21] I. D. Chakeres. AODV-UCSB Implementation from University of California Santa Barbara.

 http://moment.cs.ucsb.edu/ AODV/aodv.html

 [22] H. Lundgren, D. Lundberg, J. Nielsen, E. Nordstr¨om, and C. F. Tschudin. A Large-scale

 Testbed for Reproducible Ad hoc Protocol Evaluations. In IEEEWireless Communications

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

127

 and Networking Conference 2002 (WCNC), March 2002.

 [23] L. Klein-Berndt. Kernel AODV from National Institute of Standards and Technology (NIST).

 http://w3.antd.nist.gov/wctg/aodv kernel/.

 [24] V. Kawadia, Y. Zhang, and B. Gupta. System Services for Implementing Ad-Hoc Routing: Archi

 tecture, Implementation and Experiences. In Proceedings of the 1st International Conference on

 Mobile Systems, Applications, and Services (MobiSys), pages 99.112, San Francisco, CA, June 2003.

Authors

Mr. Nitiket N. Mhala is PhD student and also working as Associate Profes-

sor & Head in the Department of Electronic Engineering, Sevagram, India.

He received his ME Degree from RM Institute of Research and Technology,
Badnera, Amravati University and BE Degree from Govt. College of Engi-

neering, Amravati, Amravati University. He published a Book Entitled PC

Architecture and Maintenance. He published research papers at National

and International level. He is a member of Institute of Electronics and Tele-

communication Engineer (IETE). His area of interest spans Data communi-

cation, Computer network and Wireless Ad hoc networks.

Dr. N. K. Choudhari is a Professor and completed his Ph.D degree in

Electronics Engineering from J.M.I., New Delhi and received his M.Tech

in Electronics Engineering from Visveswaraya regional Engineering Col-

lege, Nagpur. He received his BE in Power Electronics from B.D.C.O.E.,

Sevagram. Presently he is Principal at Smt.Bhagwati Chaturvedi COE,

Nagpur, India. He is guiding few research scholars for persuing Ph.D de-

gree in RTM Nagpur University, Nagpur, India. He has worked as mem-

bers of different advisory committees and was a member of Board of Stu-

dies Electronics Engg. of RTM Nagpur University, Nagpur, India.

