
International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

DOI : 10.5121/ijdps.2011.2601 1

HYBRID HEURISTIC-BASED ARTIFICIAL

IMMUNE SYSTEM FOR TASK SCHEDULING

Masoomeh sanei
1
 and Nasrollah Moghaddam Charkari

2

1
Department of Electrical and Computer Engineering, Tarbiat Modares University, Iran,

Tehran.

Masoomeh.sanei@modares.ac.ir
21

Department of Electrical and Computer Engineering of Tarbiat Modares University,

Iran, Tehran.

charkari@modares.ac.ir

ABSTARCT

Task scheduling problem in heterogeneous systems is the process of allocating tasks of an application to

heterogeneous processors interconnected by high-speed networks, so that minimizing the finishing time of

application as much as possible. Tasks are processing units of application and have precedence-

constrained, communication and also, are presented by Directed Acyclic Graphs (DAGs). Evolutionary

algorithms are well suited for solving task scheduling problem in heterogeneous environment. In this

paper, we propose a hybrid heuristic-based Artificial Immune System (AIS) algorithm for solving the

scheduling problem. In this regard, AIS with some heuristics and Single Neighbourhood Search (SNS)

technique are hybridized. Clonning and immune-remove operators of AIS provide diversity, while

heuristics and SNS provide convergence of algorithm into good solutions, that is balancing between

exploration and exploitation. We have compared our method with some state-of-the art algorithms. The

results of the experiments show the validity and efficiency of our method.

KEYWORDS

Heuristic-based Artificial Immune System, task scheduling problem, Single Neigburhood Search

http://www.airccse.org, http://www.airccj.org.

1. INTRODUCTION

With increasing the complexity of signal, image and control processing algorithms in embedded

applications, high computational power to satisfy real-time constraints is vital. This can be

achieved by parallel multiprocessors which are often heterogeneous in embedded and

Distributed Computing Systems (DCS) [1].

The performance of a parallel application on distributed system is highly dependent on both the

application characteristics, means the execution cost and data communication costs between

tasks etc., and the platform features that are computational capacities of the processors, the
number of processors, interprocessor communication bandwidth, memory size etc. To

effectively exploit distributed systems, an important challenge is how to map some tasks to

processors in order to achieve some objectives, such as load balancing, minimization of

interprocessor communication, battery saving or some combination of them for computationally

demanding tasks with diverse computing needs. The widespread use of distributed computers in

many computational-intensive applications makes the problem of mapping programs in

distributed computers more crucial. The task assignment (or mapping) problem, also called as
task scheduling problem, is the tasks assignment of an application to different processors in a

distributed computer system in order to reduce the program turnaround time (or makespan) and

to increase the system throughout [2-5].

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

2

Reducing the makespan leads to load balancing and minimization of interprocessor

communication automatically. The scheduling problem is NP-complete for most of its variants

except for a few simplified cases. These cases are (1) scheduling tree-structured task graphs
with uniform computational costs on an arbitrary number of processors, (2) scheduling arbitrary

task graphs with uniform computational costs on two processors and (3) scheduling an interval-

ordered task graph with uniform node weights to an arbitrary number of processors. However,

the communication time among tasks of the parallel program is assumed zero [6]. Given these

observations, the general scheduling problem cannot be solved in polynomial time unless P =

NP [7].Thus, a proper algorithm for the optimal solution in polynomial time is unlikely to exist.

The remainder of this paper is organized as follows; in section two, we review some related
works. The third section contains task scheduling problem definition. In this section the input

task graph, processor environment and objective of problem are explained. The Artificial

Immune System is presented in section four. Discussion of our purposed algorithm is carried out

in section five. The experimental results are illustrated and analyzed in section six. The last

section provides conclusions and future works on this problem.

2. RELATED WORK

 Methods in literature for solving static task scheduling are categorized into different classes

based on the characteristics of both the decomposed tasks and the interconnected multiprocessor

[6]. These methods can be classified into three categories in general: (1) deterministic based

methods, that intuitively use some properties of a problem (heuristics) to solve it, (2) non-

deterministic methods, which use random search techniques, namely metaheuristics, reach to

solution, and (3) the hybrid of deterministic and non-deterministict methods.

 The first category can be further classified in to three groups: list-scheduling heuristic

algorithms, clustering heuristic algorithms and task duplication heuristic algorithms. List-

scheduling methods are included of two classes, static list-scheduling and dynamic list-

scheduling. In list-scheduling methods [8-10], at first, one priority list of tasks is created with

respect to some heuristics. Then, one task is selected from the list and given to processors on the

bases of some other heuristics (for example task is designated on a processor with minimum

processor time) and the limitation of problem (preference conditions). In static list-scheduling

algorithms, the initial priority list does not change until the algorithm finishes, but in dynamic

List-scheduling algorithms, the priority of tasks that still are not allocated to one processor, is

calculated. Furthermore, the arrangement of them is changed in priority list which leads to better

results. The deterministic based methods due to the use of heuristics, reach the solution in better

complexity time comparing to non-deterministic ones. However, the drawback of these methods

is that they are unlikely to produce consistent results for a wide range of problems. The reason is

that some heuristics are not persistent due to changing of properties of the problem. There are

various list-scheduling heuristic studies for static task scheduling problem such as Modified

Critical Path (MCP) [10], Mapping Heuristic (MH) [11] and Dynamic Critical Path (DCP) [12].

Clustering heuristic algorithms attempt to allocate a group of tasks with high communication

data dependency, namely one cluster task, on the same processor even other processors are idle,

Hence, with reducing interprocessor communication cost, the makespan of scheduling will be
improved. In these methods, it is assumed that unbounded number of processors are available in

the beginning and then be decreased to real number with merging cluster tasks on different

processors [13]. Some examples of these methods are Dominant Sequence Clustering (DSC)

[14], Linear Clustering method [15] and Clustering and Scheduling System (CASS) [13]. Task

duplication heuristic algorithms allocate duplication of some tasks on more than one processor,

redundantly, thereby the interprocessor communication cost will be reduced [16, 17].

The second category includes population-based algorithms such as PSO, Genetic, AIS [17-20]

and also includes trajectory algorithms like Variable Neighbourhood Search (VNS), simulated

annealing algorithms [21, 22]. These methods find the solution in longer time in comparison to

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

3

the above mentioned methods. But they are applicable for wide range of problems due to their

random searching nature.

In the third category, hybridization of two previous categories is proposed. Accordingly, the
useful properties of each category are employed and combined to overcome the drawbacks.

Some related methods in the literature are introduced [21]. We will use hybridization approach

in this paper.

3. Problem Definition

Task scheduling problem involves an application decomposed into smaller tasks with

precedence constrains and data communications among them, heterogeneous computing

environment that tasks of the application must run on them, and the makespan objective that

should be optimized.

4.1 Application

In this regard, we present the application by a Directed Acyclic Graph (DAG), because it can

display precedence constrains and communications among tasks. The DAG is specified by (T,

E, W) collection as:

• T, is the set of nodes of graph that shows tasks of the application. Ti depicts the i-th task

of graph.

• E, is the set of arrow edges of graph that shows the precedence of tasks so that one task

cannot start before all its predecessors. eij depicts the edge between vi and Tj. It also
indicates that vi is the predecessor of Tj and Tj is the successor of Ti. As illustrated in

figure 1.a, T2 is the predecessor of T3 and T4, T3 and T4 are successors of T2.

• W, is the set of labels on edges that shows data communication among tasks. wij depicts

the data value required Tj from task Ti. This value is labeled on eij edge, see figure 1.a.

The task without any predecessors is called entry task. On the other hand, the task without any

successors is called an exit task. In this study, we consider that only one task is entry task. To

reach this consideration, we add one task (T0) to the T that has zero processor time on each

processor, and put it as predecessor of all of the entry tasks of graph. We put one arrow edge

between T0 and each of entry tasks, and set the initial data communication value between it and

each of them to zero. Therefore, we provide the status that only one task of graph, is the entry

task. Figure 1.a represents an example of one application modeled by DAG G= (T, E, C), where
T = {T1, T2, T3, T4, T5}, E = {e12, e23, e24, e35, e45}, W = {10, 5, 2, 2, 7}, T1 is the entry task and

T5 is the exit task. Also we show the number of tasks with Tc.

(a)

(b)

 P0 P1 P2 P3

T1 5 7 4 5

T2 5 4 4 6

T3 6 7 5 5

T4 7 5 5 4

T5 7 6 6 4

 (c)

1. a) an example of DAG with 5 tasks, b) an example of fully connected network with 4

processors, c) the required processing time of each task on all processor.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

4

Various type of DAGs have been introduced which indicate macro data-flow of parallel

programs written in a SPMD style for distributed-memory systems to serve task scheduling

problems, such as Fast Fourier Transformation (FFT) [23], Guess-Jordan (G-J) [24], Guess-
elimination (G) [25], LU-decomposition [26] and Laplace equation solver [27]. Random Task

Graph that produces random data flow graphs is also used in test beds [28]. In this paper, we

assume that each task of DAG needs different processing time.

4.2 Environment

The environment in this problem is the Cluster Of Workstation (COW) which involves

processing capability of each processors, bandwidth of communication links among them, and

some other properties such as communication methods among processors, the probability of

link/node failure, fully or not-fully connected processors. Environment in the primary studies is

considered homogenous (a COW with the same processor and bandwidth of interprocessor

communication links). However, the recent methods consider more real environment in which

the COW has different processors and bandwidth of communication links (heterogeneous). In
this study, we assume heterogeneous environment with fully connected processors, message-

passing method for data communication and link and node failure. Assume, P is the set of

processors, pi depicts the i-th processor and Pc is the number of processors. Figure 1.b illustrates

one fully connected COW with four processors {p0, p1, p2, p3}. Figure 1.c illustrates the

processing time of each task on all the four heterogenous processors.

4.3 The objective of this paper

We consider the task scheduling problem with makespan objective and formally display it as

function F : T � P , that maps tasks on processors. Let Vi = {Tj ∈ T | F(Tj) = pi} depict the set of

all tasks that is allocated on processor i. So, the completion time of the processor i is the time

that the last scheduled task on it be finished and given by;

Ci = AFT(Tj); where Tj ∈ Vi is the last

scheduled task on pi.

(1)

Where AFT(Tj) is the Actual Finish Time of Tj defined as;

AFT�Tj� � 	
����� � �� ��, ������ (2)

Where PT (Tj, pi) is the Processor Time of task Tj on the processor pi. Similarly, AST is the

Actual Start Time that a task actually is started on this time. A task is ready when all its

predecessor tasks are finished and its required data is met. In this time, the task can be started to

execute. This time is called Earliest Start Time (EST). EST can formally be expressed as
follows;

EST�Ti� � ��� 	AFT�Tj� � wij � ProcessorComm�F�Ti�, F�Tj�� | Tj
∈ predecessor�Ti��

(3)

Where

ProcessorComm�'(, '� �) 0, (+ (�
,(, (+ (- .

(4)

rij is the processor communication cost between two processors i and j, the AST(Tj) is the time

that task is ready to processing and processor has not any other higher priority ready tasks to

run. So AST(Tj) can be given by:

����� � 	/�����
� 0�(1(23�(45����

(5)

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

5

waitingTime(Tj) is the time that the ready task Tj is waiting for higher priority ready tasks on the

processor to their processing are finished.

So, the makespan of the problem is calculated by;

64�� � ���	6(�where i=0,1,…,p (6)

 Up to now, we have formulated the makespan. To formulate a function that provides a good

decision about the better solutions, we used the fitness function as bellow;

+(12577 � �1 9�(2_�1
���_�1 9 �(2_�1

(7)

Accordingly, we put F1 = Cmax from (6) (makespan) and The Min_F1 and Max_F1 are the

minimum and maximum value of makespan index of the solutions respectively.

4. Artificial Immune System (AIS)

The natural immune system is one of the most important organs of our body that protect it from

the infectious foreign elements (pathogens) and some abnormal behaviors of self elements of

body. White blood cells, also called lymphocytes, are very important constituents of the immune

system. These cells are created in the bone marrow, flow in the blood and lymph system, and

exist in various lymphoid organs to do immunological functions. B and T cells constitute the

main population of lymphocytes [29]. The surface of B-cells and T-cells are covered with

receptors. When a pathogen is recognized by B-cell receptors, it is proliferated by cloning and

differentiated. Some of these cloned cells are plasma cells, also known as antibody, that combat
with antigens (or pathogens) and destroy them. Some others are memory cells that memorize the

type of attack and lead to more speedy reactions of immune system when it faces on the same

attacks later. Also, T-cells when recognized the pathogen, are proliferated by cloning. After the

cloning, the affinity between antibodies and antigens is improved by the mutation of antibodies

called as hypermutation. Hence the antibodies bind to antigens better and hence, combat with

them better. The cloning, hypermutation and selection processes are the essential parts of the

Clonal Selection Principle. Another important concept of immune system is the Immune
Network (IN) theory introduced by Niels K. Jerne [30]. This theory tells that antibodies are also

stimulated and recognized by each other. When an antibody recognizes another one, it is

stimulated and cloned, whereas recognized antibody is suppressed. This cloning and

suppression (immune-remove) lead the immune system to remain stable by avoiding inordinate

antibodies is produced. The Immune Network Theory and Clonal Selection Principle are two

main inspired concepts of immune system that make it proper for MOO problems. As the IN

and Clonal Selection Principle cause to the diversity of population while provide the good

search to find solutions simultaneously.

5. The proposed Method

The proposed method consist of two parts: (1) heuristic-based Artificial Immune System (figure
2), and (2) Single Neighbourhood Search. The SNS operation is done during scheduling.

5.1. Heuristic-based AIS algorithm

We start the AIS algorithm with the random population. This population improves in the various

stages. Each individual named antibody, represent a candidate solution for the task scheduling

problem. Antibodies are encoded as the strings of integers. Cell-indexes of the string depict task

numbers and value of each cell of string represents the processor which task is allocated to it.

Suppose there are Tc tasks and Pc processors, so the strings composed of Tc cells and each cell

of the string has the number between 0 and Pc-1. The example of two antibodies for one

problem with 6 tasks and 4 processors is illustrated in figure 4. Each antibody has 6 cells which

value of each cell is between 0 and 3.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

6

After generating the initial random population, the order of task execution (as describe bellow)

is determined for each antibody of population, and the makespan be calculated. Then, the clonal

selection phase of the AIS is performed. The Clonal selection leads to widespread search around
one point in the solution space and selection the best point (solution) from them, that it is

tradeoff between exploration and exploitation.

After the Clonal selection, the immune-remove phase (immune network) of AIS is performed.

This phase provides the elitism. The elitism and random population insertion of the algorithm in

the step 2.f of figure 2 provide the diversity for the next population. The algorithm is iterated K

times, where K is the input value of the algorithm, and eventually, the best antibody which is the

best of the all population and the order of task execution, is returned as the answer.

Antibody(i):
T0 T1 T2 T3 T4 T5

3 2 0 2 1

Antibody(j):
T0 T1 T2 T3 T4 T5

3 1 0 3 2

Figure4. The example of two antibodies.

5.1.1. Clonal Selection

The Clonal selection phase of AIS is shown in steps 2.a.v until 2.a.ix of the algorithm in figure

2. First, the antibody, which is undergoing the cloning process, Cclone times is cloned, where

Cclone is a positive integer value and the input parameter of the algorithm. Then, each clone is

mutated, that is two random cells of the clone are selected and their values are swapped. The

order of task execution of mutated clone is determined, and its makespan be calculated. After

this, the minimum and maximum makespan among the antibody and mutated clones are found.

Now, according to (7) the fitness of the antibody and each mutated clone will be calculated, and

that solution which has the best fitness is replaced to the antibody in the population.

5.1.2. Immune-remove

The B number of the antibodies of the population that have better fitness is selected, where the

B is a positive integer value and the input parameter of algorithm. When an antibody is selected,

the affinity between the selected antibody and all of the other antibodies in the population is

calculated. If the affinity between one antibody of the population and the selected antibody is
lower than Aff , it is removed from the population, because this similar antibody is ignored in

the next searching for the best. The Aff value is a non-negative integer and the input parameter

of the algorithm. The affinity between two antibodies i and j is calculated as;

�++(2(1;�(, � � <(71�2=5�(, �
�=

(8)

 The distance between one pair of antibodies is computed according to Hamming distance, so

that two antibodies are compared cell by cell with each other and if the k-th cell of antibodyi is

different from the k-th cell of antibodyj where k=0,…, Tc-1, then the distance increases a unit.
For example in the figure 5, the distance between antibodyi and antibodyj which is displayed by

distance (i, j) is equal to 3.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

7

Inputs; K: an integer; Popsize: an integer; Clone: an integer; B: an integer; Aff: a positive

real value lower than1;

Outputs; An antibody with order of tasks execution of it.

Algorithm:

1. Initialize a random population of antibodies

2. Repeat the following K times

a. For each antibody in population

i. Map the tasks on processors on the basis of encoded antibody.
ii. Schedule the order of task execution for the antibody.

iii. Calculate the makespan of antibody.

iv. Calculate the reliability of antibody.

v. Clone the antibody Cclone times and for each Clone

1. Perform the mutation operator.

2. Map the tasks on processors on the basis of mutated Clone.

3. Determine the order of task execution for the Clone.
4. Calculate the makespan of Clone.

vi. Determine the maximum and minimum makespan among Clones and

the antibody.

vii. Calculate the fitness of antibody and Clones base on (7).

viii. Select one that has the best fitness as the antibody of population.

b. Repeat the following, B times

i. Select the best antibody from the population.
ii. Calculate the distance between the best antibody and the each other

antibodies of population.

iii. If distance between best antibody and that antibody is lower than Aff

then remove it from the population.

iv. Save best antibody in memory.

c. Insert all the memory’s antibodies in the next population.

d. Add random antibodies in next population until the size of it gets the Popsize.

3. Return best antibody and order of task execution of it as output.

Figure2. The hybrid heuristic-based AIS algorithm.

5.1.3. Heuristic approach for determining the order of task execution of one solution

The detailed heuristic procedure of determining the order of task execution is:

Input; The solution string; Task graph;

Output; The order of task execution of the solution;

Algorithm:

1. Calculate the rank of each task of the encoded solution.

2. For each processor in the parallel of other processors do

a. Create an empty priority queue.

b. The task which has no predecessor, adds in the queue of processor base on

solution string.

c. If the queue is not empty, perform the SNS and take one task from the first

of priority queue and execute it.

d. For all tasks of this processor which all the predecessors of them are

executed, insert them in the proper place of queue.
e. Repeat the steps 2.c and 2.d until all tasks which are allocated on this

processor are executed.

Figure 3. The heuristic procedure of schedule the order of task execution.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

8

The rank of each task in one solution is calculated on the basis of sum of b-level value of

successors of it as:

,�2>��(� � ?@ 9 A5B5A���
C

; � ∈ successor�Ti� (9)

The b-level(Ti) in one solution is the length of a longest path from Ti to an exit task node of the

task graph. The b-level is accounted as:

Inputs; The task graph with precedent constrains and data flow communications(W); The

processing time of tasks on processors; The solution string;

Output The b-level of each task of graph for the solution;

Algorithm:

1. Construct a list of tasks in reversed topological order. Call it RevTopList.

2. For each Ti in the RevTopList
a. max = 0.

b. If Ti has some successors

i. max = Max {wij * ProcessorComm (Ti, Tj) + b-level(Tj) | Tj ∈

successor of Ti}.

ii. b-level(Ti) = max + PT(Ti, F(Ti)).

c. else

i. b-level(Ti) = PT(Ti, F(Ti)).

Figure 4. the algorithm of calculation b-level of each task respect to the solution.

After calculation the b-level of tasks, one priority queue of tasks that all predecessors of them

are executed will be constructed for each processor. For all processors, the following actions are

performed simultaneously. First, the task which has no any predecessors (T0) adds in the queue
of the proper processor according to solution string. When one task is processed, the data

streams from it, is flowed to the successor tasks. Each time some tasks which allocated on this

processor for insertion in the queue are prepared, they are inserted in to the proper places in the

priority queue. The insertion does on the basis of the rank of tasks and the time of processor.

The tasks in the priority queue are ordered on the basis of their ranks. The impact of giving the

time of processor in proper place is that there may some tasks of queue was processed in this

time and so the new entry tasks in the queue cannot be inserted before those processed task,

although the rank of new task is further from them. This insertion of tasks is continued until all

tasks insert in their queues.

Before the selection of one task from the queue, the SNS is performed on the queue and then

one task is selected.

5.2. Single Neighbourhood Search (SNS)

There may some processors be idle as waiting for data flow from other processors. Therefore,

there are not any ready tasks for processing. However, sometimes processors have some ready

tasks for processing, but the order of task execution on one processor leads to the processor that

is being idle. In this situation, some tasks with lower ranks could be processed in the idle times.

This drawback can be recognized during the scheduling and can be eliminated by SNS.

However, the idle time of processors cannot be eliminated completely by using SNS, because it

is considered that the tasks processing are non-preemptive, but SNS tries to reduce the problem

as possible as. In one solution, the priority queue of each processor determines the order of task

execution of it. In each priority queue, if the difference between AFT of task that are processing

and AST of the next task for processing in the queue is bigger than or equal to the processing

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

9

time of each other waiting tasks in the queue, the task which has higher priority from these

waiting tasks be selected to run as next task.

6. Experiments

To test the effectiveness of our algorithm, we obtain the solutions for the applications of some

realistic problem task graphs comparing to some other recent methods. In addition, we have

compared these methods with HAIS to show the effect of SNS. We use the parameter settings
shown in table 1 in all runs.

Table 1. Parameter settings used in the experiment.

parameter value

Number of iterations(K) 100

Population size (Popsize) 400

Number of clones(Clone) 50

Selection rate (B) 0.25

 At first, we consider 18 nodes Gaussian Elimination test graph in [12] which is shown in figure

7. Figure 8 shows the example of task graph with 9 tasks. The Gantt chart of one found solution

of our purposed algorithm for this graph is illustrated in figure 9.Table 2 shows that the results

of our purposed algorithm for graph in figure 7. These results predicate that proposed method is

better than MPC, DSC, MD, DCP, HAIS, and acts as well as the PMC-GA [31] and [32]

methods. These results also show the impact of SNS in purposed algorithm. Furthermore this
table shows that our algorithm finds the better result than MPC, DSC, MD, DCP, HAIS, and are

as well as PMC-GA and [32] for graph in figure 8. The results in table 3 also indicate the

effectiveness of the proposed method for solving this problem.

Figure 7. 18 nodes Gaussian Elimination test graph[12].

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

10

Table 2. Comparative results of purposed algorithm with others for 18 Gaussian Elimination test graph.

Algorithm MCP DSC MD DCP PMC-

GA

[32] HAIS Purposed

algorithm

No. processors 4 6 3 3 2 2 2 2

Finish Time for

fig. 7

520 460 460 440 440 440 450 440

No. processors 3 4 2 2 2 2 2 2

Finish Time for

fig. 8

29 27 32 32 23 21 21 21

Figure 8. Example of task graph with 9 tasks [33].

Figure 9. Gantt chart of purposed algorithms.

7. Conclusions
In this paper we purposed the hybrid heuristic AIS algorithm for task scheduling problem in

a COW. This algorithm has applied the two main operators of AIS in compose of one

ranking method. Then a local search method that is SNS for utilization results is done. The

results show that this algorithm can effectively solve this problem with various graphs. Our

futures work is to apply our algorithm to solve multiobjective scheduling problem, since the

AIS algorithm is capable for solving multiobjective problems. Furthermore, the finishing

time of scheduling algorithms is serious. Some cells of immune system memorized the

improved antibodies (solutions) for rapid defense in next attack of the same antigen. This

property of immune system (memorization) can also use in scheduling problem for time

saving to find solution.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

11

References

[1] Y. Sorel, (1994), “Massively parallel computing systems with real time constraints, the algorithm

architecture adequation methodology”, In Proc. of the Massively Parallel Computing Systems.

[2] Ayed Salman, Imtiaz Ahmad, Sabah Al-Madani, (2002), “Particle swarm optimization for task

assignment problem”, Microprocessors and Microsystems, pp. 363–371.

[3] S.H. Bokhari, (1987), “Assignment Problems in Parallel and Distributed Computing”, Kluwer

Academic Publishers, Boston, MA.

[4] V. Chaudhary, J.K. Aggarwal, (1993), “A generalized scheme for mapping parallel algorithms”, IEEE

Transactions on Parallel and Distributed Systems, pp. 328–346.

[5] M.G. Norman, P. Thanisch, (1993), “Models of machines and computation for mapping in

multicomputers”, ACM Computing Surveys pp. 263–302.

[6] YU-KWONG KWOK, ISHFAQ AHMAD, (1999), “Static Scheduling Algorithms for Allocating

Directed Task Graphs to Multiprocessors”, ACM Computing Surveys, Vol. 31, No. 4.

[7] GAREY, M. AND JOHNSON, (1979), “Computers and Intractability: A Guide to the Theory of NP-

Completeness”, W. H. Freeman and Co., New York, NY.

[8] B. Kruatrachue and T.G Lewis, (1988), “Grain Size Determination for Parallel Processing.”, IEEE

Software, pp. 23-32.

[9] G.C. Sih and E.A. Lee, (1993), “A Compile-Time Scheduling Heuristic for Interconnection –

Constrained Heterogeneous Processor Architecture”, IEEE Trans. Parallel and Distributed Systems, pp.

175-186.

[10] M. Wu and D. Gajski, (1990), “Hypertool: A Programming Aid for Message Passing System”, IEEE

Trans. on Parallel and Distributed Systems, vol. 1, no. 3, pp. 330-343.

[11] EI-Rewini, H. and T.G. Lewis, (1990), “Scheduling parallel program tasks onto arbitrary target

Machines”. J. Parallel and Distributed Computing, pp.138-153.

[12] Y.K. Kwok and I. Ahmad, (May 1996), “Dynamic critical-path scheduling: an effective technique

for allocating task graphs to multiprocessors”, IEEE Trans Parallel and Distributed Systems, pp.506–

521.

[13] J. Liou and M.A. Palis, (1997), “A Comparison of General Approaches to MultiProcessor

Scheduling”, Proc. Int
,
l Parallel Processing Symp., pp. 152-156.

[14] T. Yang and A. Gerasoulis, (1994), “DSC: Scheduling Parallel Tasks on an Unbounded Number of

Processors”, IEEE Trans. Parallel and Distributed Systems, vol. 5, no. 9, pp. 951-967.

[15] KIM, S. J. AND BROWNE, J. C. (1988), A general approach to mapping of parallel computation

upon multiprocessor architectures. In Proceedings of International Conference on Parallel Processing,

pp.1–8.

[16] AHMAD, I. AND KWOK, Y.-K. (1998a.), On exploiting task duplication in parallel program

scheduling. IEEE Trans. Parallel Distrib.Syst., pp. 872–892.

[17] Young Choon Lee and Albert Y. Zomaya ,(2007), “An Artificial Immune System for Heterogeneous

Multiprocessor Scheduling with Task Duplication”, Parallel and Distributed Processing symposium.

[18] Annie S. Wu, Han Yu, Shiyuan Jin, Kuo-Chi Lin, and Guy Schiavone, (2004), “An Incremental

Genetic Algorithm Approach to Multiprocessor Scheduling”, IEEE TRANSACTIONS ON PARALLEL

AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 9.

[19] Albert Y. Zomaya and Ben Macey, (1999), “Genetic Scheduling for Parallel Processor Systems:

Comparative Studies and Performance Issues”, IEEE TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS, VOL. 10, NO. 8.

[20] Ayed Salman, Imtiaz Ahmad, Sabah Al-Madani, (2002), “Particle swarm optimization for task

assignment problem”, Microprocessors and Microsystems, pp.363–371.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

12

[21] Yun Wen, Hua Xu, Jiadong Yang , (2010), " A heuristic-based hybrid genetic algorithm for

heterogeneous multiprocessor scheduling ", Genetic And Evolutionary Computation Conference, pp. 729-

736.

[22] A. Kalashnikov, V. Kostenko, (2008), “A parallel algorithm of simulated annealing for

multiprocessor scheduling”, International Journal of Computer and Systems Sciences, 455–463.

[23] V.A.F. Almeida, I.M. Vasconcelos, J.N.C. Arabe and D.A. Menasce, (1992), “Using Random Task

Graphs to Investigate the Potential Benefits of Heterogeneity in Parallel Systems,” proc. of

Supercomputing‘92, pp. 683-691.

[24] A. Gerasoulis, T. Yang, (1994), “Performance bounds for column-block partitioning of parallel

Gaussian-elimination and Gauss–Jordan methods”, Applied Numerical Mathematics, pp.283–297.

[25] M. Cosnard, M. Marrakchi, Y. Robert and D. Trystram, (1988), “Parallel Gaussian Elimination on an

MIMD Computer,” Parallel Computing, 6, pp. 275-296.

[26] R.E. Lord, J.S. Kowalik and S.P. Kumar, (1983), “Solving Linear Algebraic Equations on an MIMD

Computer,”Journal of the ACM, vol. 30, no. 1, pp. 103-117.

[27] M.Y. Wu and D.D. Gajski, (1990), “Hypertool: A Programming Aid for Message-Passing

Systems,” IEEE Trans. on Parallel and Distributed Systems, vol. 1, no. 3, pp. 330-343.

[28] P. Chitra, R. Rajaram, P. Venkatesh, (2011), “Application and comparison of hybrid evolutionary

multiobjective optimization algorithms for solving task scheduling problem on heterogeneous systems”,

Applied Soft Computing, pp. 2725–2734.

[29] Dipankar Dasgupta, Luis Fernando Niño, (2009), “IMMUNOLOGICAL COMPUTATIONTheory

and Applications”, Auerbach Publications, by Taylor & Francis Group, LLC, FL 33487-2742.

[30] N. K. Jerne, (1974), "Towards A Network Theory of the Immune System", Annual Immunology ,pp.

373-389.

[31] R.Hwang, M.Gen and H.Katayama, (2008), "A comparison of multiprocessor task scheduling

algorithms with communication costs", Computers & Operations Research 35, pp.976 – 993.

[32] Vahid Majid Nezhad1, Habib Motee Gader2 and Evgueni Efimov3, (2011),“A Novel Hybrid

Algorithm for Task Graph Scheduling”, IJCSI International Journal of Computer Science Issues, Vol. 8.

[33] R.Hwang, M.Gen and H.Katayama, (2008), "A comparison of multiprocessor task scheduling

algorithms with communication costs", Computers & Operations Research, pp. 976 – 993.

