
International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

DOI : 10.5121/ijdps.2011.2603 23

MANAGEMENT AND PLACEMENT OF

REPLICAS IN A HIERARCHICAL DATA

GRID

Ghalem Belalem
1
 and Bakhta Meroufel

2

1
Department of Computer Science, Faculty of Sciences, University of Oran (Es Senia), Algeria

ghalem1dz@gmail.com

2
Department of Computer Science, Faculty of Sciences, University of Oran (Es Senia), Algeria

bakhtasba@gmail.com

ABSTRACT

In large systems, data management is only possible through the use of replication techniques. In order to

improve availability and ensure fast and efficient access, we propose in this paper a dynamic replication

algorithm which takes into account also the placement of data in a hierarchical data grid. Experimental

results show the effectiveness of our approach in terms of response time and availability of data in the

system.

KEYWORDS

Data Grid, Replication, Data management, Availability.

1. INTRODUCTION

Grid computing is an emerging technology that presents new challenges. The management

aspect of large scale, heterogeneity and dynamicity of the sites are the most important [1].

In large-scale systems such as data grids, data access, pose problems of performance and

quality of service. The use of replication techniques given can implement solutions with more

or less effective in some of these problems [2]. For this we proposed an approach of dynamic

replication in a hierarchical data grid[11]. This approach can create or delete the data according

to their popularity. In our case, we have attempted, through this paper to propose a dynamic

replication approach is to:

• Ensure the desired availability for the data and improve this availability according to

the popularity of this data [12].

• Improve system performance in terms of response time, number of replicas.

• Load balancing between the sites of the grid.

The remainder of this paper is organized as follows: in Section 2, we present a state of the art of

replication. Section 3 studies the topology of work on how to articulate our approach. In

Section 4 we present our approach to dynamic replication. Section 5 shows the different results

obtained by the simulations of our approach. The paper ends with a conclusion and a set of

perspectives.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

24

2. RELATED WORKS

The literature provides much of the work in the field of management and placement of replicas.

In the work [3], the authors compare several dynamic replication strategies in a hierarchical

grid. The strategies are compared by measuring (by simulation) the average response time and

total bandwidth used. To minimize the cost of communication between the replicas, the authors

of [4] used two topologies, hierarchical and ring. The authors tested three scenarios: there is no

replica; replicas are placed at the second level of the tree: the first intermediate nodes and the

last scenario when the replicas are placed at the lowest intermediate nodes. An economic model

based on auctions management (creation and destruction) of replicas is proposed in [5]. In this

system, although this model has been successful, due to its ability to determine the most records

accessed through the history to access and replicate them accordingly, but did not take into

consideration the cost of storage. Other types of algorithms take into account data locality [6].

The servers are grouped into different regions according to the network topology.

Communications between nodes within a region should be quite fast. When the data is needed

on a server and there is more room to store the algorithm BHR (Bandwidth Hierarchy based

Replication) would seek to recover the data in question only if it is not already on one of the

nodes in the same region.

3. USED TOPOLOGY

We used a hierarchical grid in this work because the architecture is similar to the existing grid

managers [7] [8] [9]. For example, in the LCG project (World-Wide Large Hadron Collider

Computing Grid) which consists of 27 countries [10], the system is hierarchical when CERN

(the European Organization for Nuclear Research) is the root of this topology, the root is the 0-

level. There are 11 sites that are direct son of the root and which have the 1-level. The project

EGEE/LCG-2 contains 36 countries and presents an extension of the LCG (provide a diagram

of the grid). The main features of this topology is used [10]:

• A Multi-tier hierarchical topology consists of a root, servers and clients;

• The components of the topology are organized as a tree which minimizes the number of

forwarded messages;

• The data in the first time is only in the root and it can not be removed wherever is its

popularity ;

• Data can be replicated in the servers;

• Clients are the leaves of this topology, they can run read queries with different

frequencies;

• Clients can not store the replicas;

• Servers can store or delete the data as required.

The multilevel structure allows the flexible and scalable data sets and users. Figure 1 shows an

example of hierarchical model used in our work.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

25

4. ROPOSED APPROACH

The principle of our approach to create replicas based on the popularity of such data. In our

system. The root is the only component that contains the data, but it applies the replication

algorithm to create replicas on servers. The leaves of the tree are the client nodes that can run

the query, all nodes except the root and the clients are servers.

Each server stores the number of hits on each of his sons. In Figure 2, we have a system

consisting of a root R, three servers {S1, S2, S3} and three clients {C1, C2, C3}. According to

the history table stored in the server S3 (Father clients {C1, C2, C3}), the client C1 has

consulted the file "A" 6 times (FA (A, C1) = 6), the client C2 accessed file "B" 4 times (FA (B,

C2) = 4) and C3 consulted the file "F" 7 times (AF (F, C3) = 7). So if the request of a client on

a data exceeds the threshold of replication, then the root replicates this data in the father of this

client. If the father can not store the data (for reasons of insufficient storage space) then the root

try with the father of the father and so on until it ends all the great fathers of the client.

In the example in Figure 2, if the threshold is 7, then the data F will be replicated in the server

S3. If S3 can not store this data, then the root is trying to replicate the data F in the grandfather

S1.

Our algorithm is a dynamic replication, a server can delete data with access frequency null or

less then the data that we want to store[13].

To detail the replication process applied by the root, we proposed an algorithm (see Figure 3)

which consists of two steps:

• Line 01-11: apply for each server in the system.

• Line from 12 to 15, apply by the root.

Figure 1. Used topology

Figure 2. Exemple 1 of access frequence

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

26

Each server Si in the system has a view of his sons (List_Son (Si)), their requests and their

access frequency AF to each data. In each period, the server builds a list List_Rep (Si) that

contains data that has a access frequency (AF) that exceeds the replication threshold of the

subject data (see algorithm of Figure 3: line 01 to 11). The AF (Di, Sonj) is the access frequency

of node Sonj on the data Di. The list List_Rep (Si) will be classified in ascending order of access

frequency and will be sent to the root.

The root is trying to replicate each data Di of the list List_Rep (Si) of the server Si by running

the procedure Rep_Procedure (Di, Si) (see algorithm of Figure 3: line 12 to 14). If the server Si

can not store data at home (insufficient memory space), the Si verifies the ability to free up

space by deleting data (replica) unsolicited or rarely (their AF is zero or smaller the AF of the

new data), this verification is performed by the procedure Possible_Space (Si).

If the root is unable to replicate the data Di in the server Si, it repeats the same procedure of

replication Rep_Procedure but with the father of Si (Father (Si)) and then with Father (Father

(Si)) and so on until reaching the root (see Algorithm 2).

Figure 3. Algorithm of replication

Figure 4. Rep_Procedure Algorithm

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

27

To improve the performance of our system, we used a different strategy to calculate the

frequency of a given access.

AF(Di, Nj) =

Where

• m: is the number of the sons of the server Ni.

• Sonj: the son of the affected server Ni.

• Di: the data identified by i.

The access frequency of the data is defined as the sum of the access frequency of all sons who

ask the same data. To fix ideas on this definition, we have the example of Figure 5, the access

frequency of the data X is the sum of access frequencies of C1 and C3.

FA (A, S3) = FA (A, C1) + FA (A, C3)

So if the threshold for replication of the data X is 7, the root replicates this data in the father S3.

5. EXPERIMENTAL RESULTS

To validate our approach of dynamic replication and measure its performance under different

constraints, we conducted a simulator that creates a hierarchical topology and apply our

strategy of replication. Our simulation compares the performance of:

• Approach of non-replication: where all data are in the root and it will never be

replicated elsewhere (No_Rep).

• Our approach of replication in which the access frequency is usually calculated using

the technique as shown in Figure 2 (RD_O).

• Our approach of replication in which the access frequency is calculated using the

technique of sum frequency of son as shown in Figure 3 (RD_S).

5.1 Impact of number of queries

The number of requests plays an important role on the performance of different approaches. We

realized our simulations in a system with: number of levels is 6, number maximum of sons is 3,

time of simulation is 200 seconds, threshold of replication is 3 and the number of data is two.

Figure 5. Exemple 2 of access frequency

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

28

Figure 6 illustrates the impact of the number of queries on the response time of the system. We

note that the response time is fixed in No_rep but other approaches minimize the response time.

The second experiment explains the results obtained in the first experiment (see Figure 7). We

measured the number of replicas in the system with different numbers of queries. The results

show that the number of replicas in the approach RD_S is high compared to the approach

RD_O because in the first approach, the root call the procedure of replication more than the

second approach.

Figure 6. Number of queries vs Response time Figure 7. Number of queries vs Number of

 replicas

5.2 Impact of number of levels

We have also studied the impact of number of levels (the height of the tree) on system

performance. The system is characterized by: number maximum of sons is 3, there is only one

data and the threshold if replication is 3.

According to experiments, the height of the tree affects the response time. The results in Figure

8 indicate that if the number of levels increases, the response time increases for all approaches

because the distance between clients and servers that provide the data increases.

We noticed that the number of replicas varies if the number of levels varies. In Figure 9 the

number of replicas in the approach No_Rep remain zero. For both approaches RD_O RD_S

and, as the number of levels increases, the number of replicas increases to some level where the

number of replicas will decrease because it will be a lot of clients requesting the same data and

it not exceed the predefined threshold.

Figure 9. Number of levels vs Number of replicas

Figure 8. Number of levels vs Response time

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

29

5.3 Impact of the threshold of replication

In the last series of experiments, we studied the impact of the threshold of replication on the

performance. The system has 5 levels, 5 sons at maximum, the number of queries is 100 and there only

one data in the system.

According to Figure 10 which presents the results, we studied the influence of the threshold of

replication on the response time, we noticed that increasing the threshold increases the response

time in both approaches and RD_O RD_S. a small threshold of replication mean the root will

rapidly execute the replication procedure to create a new replicas. In case of a big threshold, the

server will take a long time to pass this threshold witch increase the response time, and this why

the approach (RD_S) gives better results.

To understand the results obtained in the last experiment (impact threshold of response time),

we studied the number of replicas with different threshold of replication and the results are

shown in Figure 11. A high level of replication delays the triggering of replication procedure

which minimizes the number of replicas and therefore increases the response time.

6. CONCLUSION

In this paper, we proposed a dynamic replication strategy that takes into account the access

frequency of the data, our approach can also choose the placement of new replicas in an

efficient manner. Experimental results show that the proposed approach improves system

performance. In our perspective, we propose the improvement of our manager dynamic

replication of data by taking into account the aspect of consistency of the replicas for writing

queries. We propose in the near future to implement our proposal on a real grid-based

middleware Globus.

REFERENCES

[1] P. Asadzadeh, R. Buyya, and C. Ling Kei. Global Grids and Software Toolkits : A Study of

Four Grid Middleware Technologies. Wiley Press, 2005.

[2] C. Baru, R. Moore, and A. Rajasekar. The SDSC storage resource broker. In CASCON’98

conference, volume 38, pages 5–10, Toronto,Canada, 1998.

[3] K. Ranganathan, I. Foster: Identifying Dynamic Replication Strategies for a High Performance

Data Grid. Dans Proc. of the Second International Workshop on Grid Computing (2001).

Figure 10. Threshold of replication vs response time Figure 11. Threshold of replication vs Number of replicas

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

30

[4] H. Lamehamedi, B. Szymanski, Z. Shentu, E. Deelman: Data replication strategies in Grid

environments. In Proceedings of the 5th International Conference (ICA3PP’02). IEEE Press,

Los Alamitos, CA, 2002.

[5] W. Bell, D. G. Cameron, R. Carvajal-Schiaffino, A. P. Millar, K. Stockinger, F. Zini :

Evaluation of an Economy- Based File Replication Strategy in Data-Grids. Dans Third

International Symposium on Cluster Computing and the Grid (CC-GRID) (2003).

[6] S. M. Park, J. H. Kim, Y. B. Ko, W. S. Yoon: Dynamic Data Grid Replication Strategy Based

on Internet Hierarchy. Dans GCC (2) (2003), pp. 838–846.

[7] W. B. David. Evaluation of an economy-based file replication strategy for a data grid. In

International Workshop on Agent based Cluster and Grid Computing, pages 120–126, 2003.

[8] W. Hoschek, F. J. Janez, A. Samar, H. Stockinger, and K. Stockinger. Data management in an

international data grid project. In In Proceedings of GRID Workshop, pages 77–90, 2000.

[9] K. Ranganathan, A. Iamnitchi, and I.T. Foste. Improving data availability through dynamic

modeldriven replication in large peer-to-peer communities. In In 2nd IEEE/ACM International

Symposium on Cluster Computing and the Grid, pages 376–381, 2002.

[10] Worldwide LHC Computing Grid. http://lcg.web.cern.ch/lcg/.

[11] M. Lei, S. Vrbsky, An on-line replication strategy to increase availability in Data Grids.Future

Generation Computer Systems, 24(2): 85-98, 2008.

[12] M. Lei, S. Vrbsky, A data replication strategy to increase availability in Data Grids, in: Grid

Computing and Applications, Las Vegas, NV, 2006, pp. 221–227.

[13] K. Mohammed Madi and S. Hassan, Dynamic Replication Algorithm in Data Grid: Survey,

International Conference on Network Applications, Protocols and Services 2008

(NetApps2008), ISBN 978-983-2078-33-3, on 21 - 22 Nov. 2008.

