
International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

DOI : 10.5121/ijdps.2011.2606 63

Real-Time Scheduling Strategy for Wireless

Sensor Networks O.S

Kayvan Atefi

1
, Mohammad Sadeghi

2
, Arash Atefi

3

1
Faculty of Computer and Mathematical Sciences,UiTM,Shah Alam,Malaysia

k1.educational@gmail.com
2
Faculty of Computer and Mathematical Sciences,UiTM,Shah Alam,Malaysia

m_sadeghi_3d@yahoo.com
3
Faculty of Engineering, OloomTahghighatUniversity, Kermanshah, Iran

arash_atefi@yahoo.com

 Abstract

Most of the tasks in wireless sensor networks (WSN) are requested to run in a real-time way. Neither EDF

nor FIFO can ensure real-time scheduling in WSN. In this paper some characteristics and limitation of

operating design in wireless sensor network are discussed. During this paper the researchers will discuss

about message scheduling and scheduling strategy for sensor network O.S, for this reason the

researchers analysed system architecture of TinyOS, FIFO scheduling TinyOS, task mechanism and

event-driven mechanism. Main purpose of these articles is presenting a real-time scheduling strategy

(RTS). RTS utilizes a pre-emptive way to ensure hard real-time scheduling. The experimental results prove

that RTS has a good performance both in communication throughput and over-load.

Keywords

Wireless sensor networks, Real-Time Scheduling Strategy, Networks O.S

1. INTRODUCTION

The basic functionality of an operating system is to hide the low-level details of the sensor node

by providing a clear interface to the external world. Processor management, memory

management, device management, scheduling policies, multi-threading, and multitasking are

some of the low level services to be provided by an operating system. Operating system should

also provide services like support for dynamic loading and unloading of modules, providing

proper concurrency mechanisms, Application Programming Interface (API) to access underlying

hardware, and enforce proper power management policies. The realization of these services in

WSN is a non-trivial problem, due to the constraints on the resource capabilities. Hence a

suitable operating system is required for WSN to provide these functionalities to facilitate the

user in writing applications easily with little knowledge of the low-level hardware details. Figure

1 show, where operating system stands in the software layers of the WSN. Middleware and

application layers are distributed across the nodes as interacting modules. Core kernel of the

operating system sits at each individual node.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

64

Figure 1: operating system stands in the software layers of the WSN

A common characteristic of many real-time systems is that their requirements specification

includes timing information in the form of deadlines. An acute deadline is represented in
Figure2.

Figure 2: common characteristic of real-time systems

WSN operates at two levels. One is at the network level and the other is at node level. Network

level interests are connectivity, routing, communication channel characteristics, protocols etc.

and node level interests are hardware, radio, CPU, sensors and limited energy. At a higher level
OS for WSN can also be classified as node-level (local) and network-level (distributed).

According to [1], Real time scheduling is included:

• Static table-driven

– Determines at run time when a task begins execution

• Static priority-driven preemptive

– Traditional priority-driven scheduler is used

• Dynamic planning-based

– Feasibility determined at run time

• Dynamic best effort

– No feasibility analysis is performed

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

65

There are some challenges to design an operating system for WSN:

First of all we face restricted resources in wireless sensor nodes to design an operating system.

For instance an operating system should provide necessary mechanisms in order to consume the

power in optimized way to extend the life of the WSN. Periodic sleeping of sensor nodes is one
of the mechanisms to conserve power. The second resource limitation is limited processing

power. Operating system should properly schedule the processor according to the priority of

jobs. As a second challenge in designing an operating system for WSN, portability should be

considered. It means the operating system should be executable on every customized hardware

platforms. The operating system should be written in such a way that it is easily portable to

different hardware platforms with minimal changes. Multitasking is the 3th challenge. At a given

point of time, nodes in the WSN could be doing more than one task.

 In wireless sensor networks, sensor nodes are located on remote-site and thus it is very difficult

to re-gather them. To update or add a program at run-time of the sensor nodes, sensor operating

system must support a dynamic reconfiguration. Many kinds of different mechanisms for

reconfiguring sensor nodes have been developed ranging from full image replacement to virtual

machines.[4] Cite that, Dynamic reconfiguration in operating system kernels allow modifying a

system during its execution, and can be used to implement adaptive systems, dynamic

instrumentation and modules. Dynamic reconfiguration is important in embedded systems,

where one does not necessarily have the luxury to stop a running system.

This paper proposes a real-time scheduling strategy (RTS) that is includedmessage scheduling

and scheduling strategy for sensor network O.S, for this reason the researchers analysed system

architecture of TinyOS, FIFO scheduling TinyOS, task mechanism and event-driven mechanism.

TinyOS is anevent-driven operating system designed for sensor-networknodes that have limited

memory and computational resources.TinyOS enables developers to access low-level hardware

resources at theapplication level, thus resulting in a level of data-acquisitionand communications

flexibility that is unavailable to other existing mainstream wireless communications

technologies.TinyOS is available open-source and wireless-enabled processor modules that

operate with it are commerciallyavailable [6].

On the other hand [3] said TinyOS is designed for Wireless Sensor Network, and it is a

lightweight, low-power embedded operating system. The programming language of TinyOS is

NesC with modular design method. The use of modular design makes it capable to adapt to the

diversity of hardware and makes the applications reuse the general software services and

abstract. TinyOS is a typical Wireless Sensor Network Operating System.

Sensor networks are very active research space, with ongoing work on networking, application

support, radio management, and security as a partial list. A primary purpose of TinyOS is to

enable and accelerate this innovation [7]. Moreover [7] discussed four requirement causes to

design of TinyOS that they are include:1- limited resource 2- reactive concurrency 3- flexibility

and 4- low power.

2. Related works:

Farshchi S, Nuyujukian P, PesterevA , have developed awireless platform for small, low-power,

and low-cost embeddedSensors using COTS microcontrollers and transceivers. They prove

thiseffort led to the development of nesC, an extension to theC programming language designed

to embody the structuringconcepts and execution model of TinyOS. They defined TinyOS is

anevent-driven operating system designed for sensor-networknodes that have limited memory

and computational resources(e.g., 8 kB of program memory, 512 B of RAM). They also

said,TinyOS enables developers to access low-level hardware resources at theapplication level,

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

66

thus resulting in a level of data-acquisitionand communications flexibility that is unavailable to

otherexisting mainstream wireless communications technologies.

ZHAO Zhi-bin and GAO Fuxiangproposed a real-time scheduling strategy for wireless sensor
networks to enhance the communication throughput and reduce the overload. They showed RTS

adopts two-layer priority scheduling strategy according to the demand for real-time analysis, and

solves the real-time task scheduling problems in WSN commendably.They divided all tasks into

two layers and endued diverse priorities. RTS utilizes a preemptive way to ensure hard real-time

scheduling. Their experimental results indicate that RTS has a good communication throughput.

3. Design Characteristics

A. Flexible Architecture

Two things that are affected by the OS architecture are run-time reconfigurability of the services,

and size of the core kernel. Facility of adding kernel services or updating them depends on the

architecture of the operating system. If the architecture allows packing all the required services

together into a single system image, then size of the core kernel will increases.

B. Efficient Execution Model

The execution model provides the abstraction of computational unit and defines services like

synchronization, communication, and scheduling. These abstractions are used by the

programmer for developing applications.

C. Clear Application Programming Interface (API)

APIs play vital role in providing clear separation between the low level node functionalities and

the application program. Operating system should provide comprehensive set of APIs to interact

with system and it’s I/O.

D. Reprogramming

Reprogramming is a mandatory feature for OS and it simplifies the management of software in

sensor nodes. It is the process of dynamically updating the software running on the sensor nodes.

E. Resource Management

Resources available in a typical sensor node are processor, program memory, battery, and etc.
Efficient use of processor involves using a scheduler with optimal scheduling policy. Usage of

memory involves memory protection, dynamic memory allocation, etc. Figure 3 shows the brief

design characteristics of operating system in wireless sensor network.

Figure 3: Operating system in WSN

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

67

F. Real-time Nature

This is the optional design characteristic and is application specific. Real-time applications of

WSN can be classified into periodic and non periodic, critical and non critical. The classical

example for the periodic task is monitoring application, where the data is read from the

environment or habitat in a periodic manner. The critical and non critical classification is based

on whether the execution of the tasks is in specific time or not.

 4. Execution model

Based on the execution model of operating system in wireless sensor network we can classify

these operating systems to three base kinds:

- Event-based O.S
- Thread based O.S

- Hybrid.

A. Event-based

TinyOS is an example of event driven operating system which provides a programming

framework for embedded systems. It has component-based execution model implemented in

nesC. TinyOS concurrency model is based on asynchronous events, tasks and split phase

interfaces. Event handlers may post a task, which is executed by the TinyOS FIFO scheduler.

These tasks are non preemptive and run to completion. However tasks can be preempted by

events but not by other tasks. TinyOS event driven model has obvious disadvantages like low

programming flexibility, non-preemption that are associated with event model.

SOS and EYES are other examples of event driven operating system, that SOS was developed in

C and follows event-driven programming model, and EYES that started with the motivation of

meeting the goals like small size, power awareness, distribution and ability of reconfigure. It

adapted event-driven execution model in order to achieve small size of code and limited

available energy.

B. Thread-based

MantisOS is thread-driven operating system model for sensor networks. Thread is a simple

computational entity which has its own state. Network stack and scheduler are implemented as

threads just like an application. Apart from these threads there is idle thread which runs when all

other threads are blocked. To maintain threads, kernel maintains a thread table that consists of

thread priority, pointer to thread handler and other information about the thread. Scheduling

between the threads is done by means of scheduler that follows priority based scheduling

algorithm with round-robin semantics. Race conditions are avoided by using binary and counting

semaphores.

C. Hybrid

CONTIKI is example of hybrid model; CONTIKI combines the advantages of both events and

threads. It is primarily an event driven model but supports multi-threading as an optional
application level library. Application can link this library if it needs multi-threading. Polling

mechanism is used to avoid race conditions.

5. MESSAGESCHEDULING

According to message scheduling in operating system in wireless sensor network, SOS uses

cooperative scheduling to share the processor between multiple lines of execution by queuing

messages for later execution. On the other hand, TinyOS uses a streamlined scheduling FIFO

message queue that will be discussed later. This creates a system with a very lean scheduling

loop. SOS instead implements priority queues, which can provide responsive servicing of

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

68

interrupts without operating in an interrupt context and more general support for passing

parameters to components. To avoid tightly integrated modules that carefully manage shared

buffers, a result of the inability to pass parameters through the messaging mechanism, messaging
in SOS is designed to handle the passing of parameters. To mitigate memory leaks and simplify

accounting, SOS provides a mechanism for requesting changes in data ownership when

dynamically allocated memory is passed between modules.

Figure 4: Memory Layout of an SOS Message Queue

Figure 4 provides an overview of how message headers are structured and queued. Message

headers within a queue of a given priority form a simple linked list. The information included in

message headers includes complete source and destination information, allowing SOS to directly

insert incoming network messages into the messaging queue. Messages carry a pointer to a data

payload used to transfer simple parameters and more complex data between modules. The SOS

header provides an optimized solution to this common case of passing a few bytes of data

between modules by including a small buffer in the message header that the data payload can be

redirected to, without having to allocate a separate piece of memory.

 SOS uses the high priority queue for time critical messages from ADC interrupts and a limited

subset of timers needed by delay intolerant tasks. Priority queues have allowed SOS to minimize

processing in interrupt contexts by writing interrupt handlers that quickly construct and schedule

a high priority message and then drop out of the interrupt context. This reduces potential

concurrency errors that can result from running in an interrupt context.

6. SCHEDULINGSTRATEGY

According to application of wireless sensor network, most of the tasks are requested to run in a real-time

way. Neither Earliest Deadline First (EDF) nor First in First out(FIFO) can ensure real-time scheduling in

WSN. In [3] a real-time scheduling strategy (RTS) is proposed. In this strategy, all tasks are divided into

two layers and endued diverse priorities. RTS utilizes a preemptive way to ensure hard real-time

scheduling.

A. System Architecture of TinyOS

As I mentioned before TinyOS is developed for the embedded System with high concurrency

and is made in NesC language supporting the Wireless Sensor Network architecture. TinyOS

adopts event-based concurrency model. Event is corresponding to the emergency case such as

external interrupts, and it can preempt tasks or other events and take preference to execute.

In TinyOS there is a widespread use of phased operation, which is dividing the longer operation

into some relatively short ones to avoid busy-waiting. The basis of this division is the beginning
and end of the operation can be separated in time domain.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

69

Figure 5: The framework of TinyOS

Figure 5 shows the framework of TinyOS. To providing favourable modular structure that

supports the diversity in wireless sensor designing and application, the system is composed by

component-based pattern, and primarily consists of master components (including the

scheduler), application components, system service components and hardware abstraction

components. Hardware abstraction components implement the abstraction of wireless sensor

hardware platform, including the sensor subsystem, the wireless communication subsystem, the

input/output devices and the power control system on the bottom layer. System Services

components are composed of three parts including communication services, sensor services and

power management.

B. FIFO Scheduling in TinyOS

In comparison of other category, TinyOS adopts the two-level concurrent models based on the

combination of tasks and event-driven.

• Task Mechanism:

In TinyOS’s task mechanism, we have three basic rules:

First, tasks are equal and there is no concept of priority and no preemption between tasks. All

tasks share one executing space, which saves the memory overhead in run time.

Second, Tasks are managed by a circular task queue in system, and the task scheduling follows

FIFO mode. Tasks are scheduled by the simple FIFO queue. Resources are distributed before,

and currently there can only be seven waiting tasks in the queue. The task-processing model is

shown in Fig 6.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

70

Figure 6: The scheduling strategy of TinyOS

3th, if the task queue is null and there is no events occurring, then the processor will enter into
SLEEP mode automatically, and will be woken up by hardware interruption event subsequently.

This is conducive to saving energy of system.

Figure 7: The function of TinyOS_post

Task is defined by user application, and can be created by applications or event handlers. After

creating the task, it will be posted to the queue. The procedure is shown in Figure 7. The task

scheduler in the core scheduling algorithm returns as soon as it puts the task into the task queue
and the task will be carried out. When the task queue is empty, the task can be submitted.

• Event-driven Mechanism:

Events are generated by hardware interruption such as external interruptions and timer

interruptions directly or indirectly. When receiving event, TinyOS will execute the event

handler corresponding to the event immediately.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

71

Event can preempt the running task. It is an asynchronous, time response fast executive

mode. In the TinyOS scheduling mechanism, the task mechanism is not a real-time one.

It makes some more important or more real-time tasks not be completed before the

deadline and leads to packet-loss, overload, decline of the throughput etc. So it is

applicable to non-preemptive, non-time-critical application. Event handler can preempt

the current running task and this can be applicable to time-critical application.

• Disadvantage of FIFO Scheduling:

In some situations of this scheduling, TinyOS does not work very well and may present

overload, causes the conditions of task-loss, communication throughput declining and cannot

guarantee real-time.

In wireless sensor network, when the processing speed of system tasks is lower than the

frequency of tasks occurring, the task queue will be jammed up soon. It will lead to task losses.

As for the local sensor acquisition rate, we can artificially control, for instance, decreasing the

sampling frequency. Occurrence of this phenomenon is mainly due to that packet sending and

receiving is restricted to the local tasks. When the occurring frequency of local task is too high,

the task queue will be stuffed up soon, and then tasks of transmitting or receiving could be lost,

resulting in packet loss.

Generally, the following situations, TinyOS’s scheduling strategy may also lead to problems.

First, certain tasks (such as encryption and decryption mission in security applications) have

very long implementing time. If some real-time missions enter the task queue after the task at

this time, the real-time will be affected. For the receiving and transmitting of packets, the baud

rate will be affected.

Secondly, when the occurring frequency of local task is high, the task queue will be stuffed up at

a short time; other tasks could be lost; besides, if there are many local tasks, this will also affect

the normal communications.

finaly, when a certain task in the queue is blocked or performs abnormally because of

suddenness, it will affect the subsequent task’s running; even will cause the system go down.

C.Analysis on Improved Scheduling Policies in Wireless Sensor Network operating

System

According to results of analysis on the simple queue scheduling, it has overload, task loss, low

packet throughput, etc. Also, there remains the need to design a multitasking system due to poor

throughput and CPU utilization caused by the adoption of single task kernel.

So, to achieve real-time schedule, priority based preemptive scheduling policy is often used.

According to application requirements many priority-based multitasking scheduling algorithms

are put forward, one of which may be that, for example, each composing phase of the

communication route should work timely to ensure other tasks finish properly. Tasks scheduling

strategy in WSN will decide whether the nodes finish the tasks in time or not.

Priority-based task scheduling strategy divides tasks into three types: sending data packet,

transmitting data packet, and sensing local data according to the functions of different tasks in

network. Therefore, it guarantees the more important task to be run in a priority way. Thus,

throughput of the system is improved.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

72

This scheduling strategy does not behave well to meet the requirement of real-time. Firstly, it

may drop the task before running because the task has exceeded the deadline; secondly, because

of non-preemption, the short-time tasks may be blocked to wait for the long-time ones and it
leads to the overload for short-time tasks.

Earliest Deadline First (EDF) is widely used in real-time system. Preemptive EDF strategy is the

most optimal scheduling for single processor scheduling strategy. That is, if preemptive EDF

can’t schedule a set of tasks in single processor, other scheduling strategy can’t either.

Substantively, it is a dynamic process. The algorithm allows a relatively short task to be a

preferential one, which makes the system flexible and real-time performance improved.

Rate Monotonic scheduling strategy (RM) is a kind of fixed-priority scheduling strategy. Once

the priority of one task is identified according to its periodicity, it will not change with time. A

task in smaller periodicity has higher priority. RM can schedule tasks set while other fixed

priority strategies can.

Fixed-priority strategy is suitable for wireless sensor network operating system, because it needs

to be scheduled one time before running. This fixed-priority will be able to ensure the cyclical

behaviour, and the tasks are scheduled only in one queue.

D. Real-time task scheduling

In RTS, tasks are divided into two priorities, static priority and dynamic priority. To ensure real-

time and major network packets in the wireless network transmitted reliably. First of all, in

accordance with the function of task, it adopts the two relatively static level of priority, which

will not change as the time passes, belonging to the fixed priority. Secondly, tasks deadline and

run time are the two constraints of dynamic priority, which ensures the reliability of real-time

task.

• The static priority:

They divide the tasks into network communication routing tasks and local data processing tasks,

and give the tasks two relatively static priorities, high and low. Network communication routing

tasks is prior to local data processing tasks. Table 1 shows these priorities

Table 1: Static priority of tasks

The static priority of tasks is in top-layer priority. Tasks in low or high static priority are set by

different priorities in bottom-layer, as shown in Table 2. The tasks with high static priority in

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

73

their top-layer priority have dynamic priority in their bottom-layer priority, but the ones with

low static priority in their top level priority have fixed priority in their bottom-layer priority.

Table 2: Two- layer priority of tasks

• The dynamic priority:

When new task comes, its attributes such as arriving time, running time and relative deadline

will be submitted. They decide task’s dynamic priority by the attributes mentioned above. The

determination of dynamic priority is shown in Table 3.

Table 3: the dynamic priority of tasks

• The fixed priority:

Different fixed priority is divided according to arriving time, running time and relative deadline.

What different from dynamic priority is the fixed priority is determined by execution periodicity
and running time for periodic tasks. For non-periodic tasks, the fixed priority is determined by

relative deadline and running time. Fixed priority is determined only when tasks are initialized.

Analysing data shows that the utilization ratio of processor is about 100%. EDF is the optimized

dynamic, preemptive priority scheduling algorithm for single-processor real-time system, that is,

for any real time task set, once there is an algorithm for scheduling, EDF will be there.

E. Taxonomy of real time scheduling:

The blow figure (fig 8) show the taxonomy of real time scheduling

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

74

Figure 8: taxonomy of real time scheduling

F. Scheduling strategy for real-time tasks

Scheduling while task queue is empty:

According to figure 8 if there is more space, new task (&task5) will be inserted to queue rear.
We don’t think about the static priority and use fixed priority to guarantee the task with lower

static priority. This schedule will ease the starving case in local data processing. The fixed

priority for every task is shown in Table 4 and task queue with fixed priority is shown in figure

9. In the queue, fixed priority is sorted but static priority is not. &task2 arrives thirdly, and

&task4 is the second.

Table 4: Two-layer priority of tasks in the queue

Figure 9: Tasks sorted by fixed priority in the queue

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

75

Scheduling when task queue is full:

At first, we need sort the task by static priority. In task queue, the two-layer priority for each task

is shown in Table 5. The full task queue with sorted two-layer priority is shown in figure 10. If

the two-layer priority of current task is higher than the rear, exchange them. Then, insert the rear
task into appropriate location of the queue. At last, abandon current task.

Figure10. Tasks sorted by two-layer priority while queue is full

Table5: two-layer priority of tasks in the queue

G. Scheduling of a Real-Time Process

The below figure (figure 11), show an example of scheduling of a real time process

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

76

Figure 11: scheduling of a real time process

H. Evaluation

In order to evaluate RTS (real time scheduling) strategy, the algorithm is simulated, compared

with TinyOS’s own task scheduling strategy FIFO and task scheduling algorithm EDF is

proposed.

The performance is improved significantly for EDF scheduling algorithm. It can ease

instantaneous overload phenomenon effectively. Thus, in RTS, task set’s dropping rate doesn’t

go up obviously though the utilization rate of processor rising. As shown in Figure 12, four

classes of tasks, which use EDF scheduling strategy, have a little shorter average response time

than those who use FIFO. To sum up, RTS guarantees the system good real-time performance.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

77

Figure 12: The average response time of different tasks

7.CONCLUSION

Some characteristics and limitation of operating design in wireless sensor network were

discussed in this study. In this paper the researchers discussed about message scheduling and

scheduling strategy for sensor network O.S, for this reason the researchers analysed system

architecture of TinyOS, FIFO scheduling TinyOS, task mechanism and event-driven mechanism.

RTS scheduling strategy proposed in these papers reserves the advantage of high utilization ratio

of processor in EDF scheduling strategy. According to RTS, the task with high static priority

will be responded and executed prior to other task. At the same time, RTS absorbs the high

efficiency of RM in dealing with instantaneous overload problem. Therefore instantaneous

overload, which is often happened to low-priority tasks, is solved in RTS.

Through analysis of the experimental results, RTS scheduling strategy has good performance in

communication throughout, dropping ratio of overtime task, and response to real-time task. It is

valuable in the field of task scheduling in wireless sensor network OS. It is an exploration for

WSN real-time research.

Finally, RTS has a good performance both in communication throughput and over-load

8. REFERENCE

[1] N. Audsley and A. Burns,” Real-time system scheduling”, Department of Computer

Science,University of York, UK.,2005

[2] A. Reddy, P. Kumar, D. Janakiram, and G. Ashok Kumar, Operating Systems for Wireless Sensor

Networks: A Survey Technical Report, May 3, 2007.

[3] Z. Zhi-bin and G. Fuxiang, Study on Preemptive Real-Time Scheduling Strategy for Wireless Sensor

Networks, September 2009.

[4] J. Polakovic and J. Stefani, Architecting reconfigurable component-based operating systems, 15

January 2008

[5] S. Yi , H. Min, Y. Cho, and J. Hong, An adaptive dynamic reconfiguration scheme for sensor

operating systems, 26 October 2007

International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.6, November 2011

78

[5] Farshchi S, Nuyujukian P, Pesterev A, et al. “A tinyOS-based wireless neural sensing, archiving,

and hosting system”, IEEE transactions on neural systems and rehabilitation engineering, vol. 18, no. 2,

april 2010

[6] Werner W, M. Rabaeyj , Emile H. L, “ Ambient intelligence”.Nov 9, 2010

[7] Coleri s , Cheung s.y and Varaiya p ,“Sensor Networks for Monitoring Traffic”August 5, 2004

