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ABSTRACT  

This paper presents a comparative analysis of the three widely used parallel sorting algorithms: Odd-

Even sort, Rank sort and Bitonic sort in terms of sorting rate, sorting time and speed-up on CPU and 

different GPU architectures. Alongside we have implemented novel parallel algorithm: min-max butterfly 

network, for finding minimum and maximum in large data sets. All algorithms have been implemented 

exploiting data parallelism model, for achieving high performance, as available on multi-core GPUs 

using the OpenCL specification. Our results depicts minimum speed-up19x of bitonic sort against odd-

even sorting technique for small queue sizes on CPU and maximum of 2300x speed-up for very large 

queue sizes on Nvidia Quadro 6000 GPU architecture. Our implementation of full-butterfly network 

sorting results in relatively better performance than all of the three sorting techniques: bitonic, odd-even 

and rank sort. For min-max butterfly network, our findings report high speed-up of Nvidia quadro 6000 

GPU for high data set size reaching 2
24

 with much lower sorting time. 
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1. INTRODUCTION 

Parallelism on chip level is the hub for advancements in micro processor architectures for high 

performance computing. As a result of which multi-core CPUs [1] are commonly available in 

the market. These core-processors, in personal computers, were not sufficient for high data-

computation intensive tasks. As a result of collective efforts by industry and academia, modular 

and specialized hardware in the form of sound cards or graphic accelerators are increasingly 

present in most personal computers. These cards provide much high performance as compared 

to legacy on-board units. Recently, graphics cards or graphics processing units (GPU), 

introduced primarily for high-end gaming requiring high resolution, are now intensively being 

used, as a co-processor to the CPU, for general purpose computing[2, 3]. The GPU itself is a 

multi-core processor having support for thousands of threads [4] running concurrently. GPUs 

are result of dozens of streaming processors with hundreds of core aligned in a particular way 

forming a single hardware unit. Thread management at such hardware level requires context-

switching time close to null otherwise penalizing performance. Apart from high-end games, 

general purpose CPU-bound applications which have significant data in-dependency are well 

suited for such devices. Hence data parallel codes are efficiently performed since the hardware 

can be classified as SIMT (single-instruction, multiple threads). Performance evaluation in 

GFLOPS (Giga Floating Point Operations per Second) shows that GPUs outperforms their CPU 

counterparts. For example a high-end Core I7 processor (3.46 GHz) delivers up to a peak of 

55.36 GFLOPs1. Table-1 reports some architecture details of GPUs versus Intel Core2 system 

that we have used for our implementation of sorting algorithms. The devices include both high-

end graphics card like Quadro 6000 comprising of 14 stream processors with 32 cores each, and 

                                                
1 Intel Core I7 Specification, www.intel.com 
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also low-end graphic cards that is GeForce GT 320M with 3 processors of 8 cores each. One 

such architecture of GTX 260 with 27 processors having 8 cores each, is depicted in Fig. 1. To 

low-end we have used GT 320 M as is more ideally suitable for laptops and hence the fewer 

cores provide good balance for battery power. The high powerful Quadro-6000 and GTX-260 is 

well suited for desktops with power requirement of 204W and 182W respectively.

 

 

Architecture 

Details 

NVIDIA Intel 

Quadro 

6000 

GTX 

260 

GT 

320M 

Core2 

Quad 

Q8400 

Total Cores 448 216 24 4 

Micro 

Processors 

14 27 3 1 

Clock Rate 

(MHz) 

1147 1242 1100 2660 

FLOPs 1030.4 874.8 158 42.56 

Mem. 

Bandwidth 

(GB/s) 

144 

 

91.36 9.95 - 

   Table 1Architecture details of GPUs and CPU 

 

Figure 1GTX-260 Device Archite

 

To program a GPU, one needs vendor provided API's which is NVIDIAs CUDA2, ATIs 

FireStream3 or the OpenCL specification by Khronos group4 . One difference between CUDA 

and OpenCL is that CUDA is specific for GPU devices whereas OpenCL is heterogeneous and 

targets all devices conforming its specification [5], [6]. This may include GPUs and/or CPUs 

but for to achieve high performance, it primarily focuses on the GPUs. OpenCL adopts C-style 

and is an extension of C99 with some extra keywords and a slightly modified syntax for threads 

driving kernels. OpenCL runs two pieces of codes. One is kernel, also called device program 

which is a specific piece of code running on device, is executed concurrently by several threads 

and this is where task parallelism takes place consisting of thousands of threads on the target 

device. The other, called a host program, runs entirely on CPU side that launches kernels i.e. 

SIMT based programs. Thread management is hardware based and programmer only organizes 

the work-domain into several work-items divided into one or more work-groups. The overall 

problem domain, called the ND-Range, can support up to three dimensions. A work-item or 

thread which is the basic execution unit in NDRange, is identified by a global and local 

addressing scheme in NDRange for each dimension of NDRange and work-groups. Global 

addressing obtained by  is unique for all threads, whereas any two threads of 

                                                
2 Nvidia Cuda GPGPU framework.www.nvidia.com 
3
 AtiFirestream DAAMIT GPGPU Framework. www.amd.com 

4
 OpenCL Specification. www.khronos.org/opencl 
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different groups can have same local address. This scheme is outlined in Fig. 2 for a 2 

dimensional problem.  
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Figure 2 ND Range Adressing Scheme 

 

A single dimensional address can be computed as: )*( idididd groupgroupglobal =  
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Here, sizegroup and NDRange  is set in host program by the programmer. The 

dimensional limits differs from device to device with a limit of up to maximum of 3 

dimensions 0,1 and 2. For Quadro 6000 maximum size for the 3-dimensions are 

1024*1024*64 and 512*512*64 for both GTX260 and GT320M. This corresponds to 

approximately 67 and 16 million threads for Quadro and GTX,respectively. All threads 

are executed in form of thread blocks containing 32 threads, referred to as warps. 

However, some devices support execution of half warps. Our focus in this paper is to 

report performance of sorting algorithms using graphics cards which is of significant 

importance to various computer science applications. The choice of sorting technique is 

vital in performance for some applications, for instance discrete event simulations, 

where sorting frequent events can directly affect the performance of simulation. The 
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algorithms discussed int the following are bitonic, odd-even, and rank sorting 

algorithms. 

 

2. PARALLEL SORTING ALGORITHMS 

Sorting on GPU require transferring data from main memory to on-board GPU global memory. 

Although on-device bandwidth is in the range of 144Gb/s, thus only those sorting techniques are 

efficient which require minimum amount of synchronization because the PCI bandwidth is to 

the range of 2.5Gb/s. i.e., synchronization and memory transfers between CPU and GPU will 

affect system performance adversely. Compared to serial sorting algorithms, parallel algorithms 

are designed requiring high data independence between various elements for achieving better 

performance. Those techniques which involve large data dependency are categorized as 

sequential sorting algorithms. 

2.1. Odd-Even Sort 

The odd-even sort is a parallel sorting algorithm and is based on bubble-sort technique. 

Adjacent pairs of items in an array are exchanged if they are found to be out of order. What 

makes the technique distinct from bubble-sort is the technique of working on disjointed pairs, 

i.e., by using alternating pairs of odd-even and even-odd elements of the array. The technique 

works in multiple passes on a queue Q of size N. In each pass, elements at odd-numbered 

positions perform a comparison check based on bubble-sort, after which elements at even-

numbered positions do the same. The maximum number of iterations or passes for odd-even sort 

is
2

N . Total running time for this technique is )2(log NΟ .  The algorithm works as:- 
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2.2. Rank Sort 

There are two phases of the rank-sort algorithm. In the first phase, for each element in 

queue Q of size N , the total number of elements less than itself is maintained in another data 

structure of same size N . This is called the ranking phase and is depicted in Algorithm-2. Since 

each element n   is compared against 1−n other elements, therefore there are a total of )1( −nn   

total computational steps. But since the comparison requires sharing of data and not changing of 

data, the comparison can be made in )(NΟ total steps for N processors. This also means that 

the technique is feasible for shared memory architectures. The second phase involves sorting of 

elements in queue Q   based on its rank. The phase is shown in Algorithm-2. The second phase 

sorting can be performed in )2(log nΟ steps. For optimization, the number of elements is 

divided based on number of processors using 
p

nm =  . 
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2.3. Bitonic Sort 

Bitonic sort with the property that sequence of comparisons is data-independent makes it one of 

the fastest and suitable parallel sorting algorithms. To sort an arbitrary sequence bitonic sort 

have two steps. In the first step it makes the arbitrary sequence in to bitonic sequence. A bitonic 

sequence is a sequence which either monotonically increases or decreases, reaches a single 

maximum or minimum, and then after that maximum or minimum value it again monotonically 

increases or decreases. For example, the two sequences 3 5 8 9 7 4 2 1 and 5 8 9 7 4 2 1 3 are 

bitonic. The first one increases from 3 to 9, then decreases. The second one can be converted to 

the first one by cyclically shifting. In the second step the bitonic sequence is sorted in such a 

way that, lets we have a bitonic sequence N  with length 
k

n 2= , which would require k  steps 

to sort an entire length of n elements. In the first step )0(N  would be compared to ( )
2

nN , 

( )1N with ( )12 +nN   up to ( )12 −nN  with ( )1−nN  and elements are exchanged according 

either subsequence from ( )0N  to ( )2
nN  and from ( )12 +nN  up to ( )1−nN .  Then in the 

second step same procedure would be applied to each subsequence and each subsequence would 

yield another subsequence and after the 
th

k  step it yields the 
k2  sub-sequences of length 1 so 

all the elements in the bitonic sequence are being sorted. Bitonic sort consists of )log( 2
nnΟ   

comparators as in every step 2
n  compare/exchange operations are performed and total number 

of steps are nk log= , so in parallel processing it would take n  processor to sort it with 

)(log 2
nΟ  complexity. The total number of steps required in bitonic sort in both steps that are 

creating a bitonic sequence and the sorting
2

)1( +kk
. For example arbitrary sequence of 16 

elements (
42 ) would take 10 steps. 

2.4. Min-max Butterfly Network 

Butterfly network is a special form of hypercube. A k-dimensional butterfly has 
k

kk 2)1( +   

vertices and 
12 +k

k edges [7]. In this case vertices represent input data whereas edges represent 

possible data movements. We are considering 2X2 butterfly-network, acting as a comparator, 

placing minimum and maximum number at their respective upper and lower leaves. The min-

max butterfly of N numbers has N2log stages resulting into a total complexity of 

NN
22 log butterflies in terms of comparators or cross points with 2

N  as the number of 2x2 

butterflies in each stage. The min-max butterfly network is of significance importance to several 

network applications and dynamic systems involving minimum and maximum values/quantities. 

The butterfly-network, in general, has its roots in many diverse areas: DSP-FFT calculation, 

Switching Fabric-Benes Networks, Network Flows-Hamiltonian, cycle construction, min-max 

fairness problems etc. This paper exploits the butterfly network in a parallel way for finding 

minimum and maximum values of the input data. The Fig. 3 shows a schematic of a min-max 

butterfly of 8 random numbers x(0),x(1)...x(7)  in increasing order. The input to stage 1 is 

obtained from a random variate generator. At each stage a single butterfly compares two 

numbers and places it at upper and lower level accordingly. At last stage i.e. 
th

N2log  stage 

minimum and maximum values are output at upper and lower leaf of first and last butterfly 

respectively. In this case x(0)  and x(7) are the resulting min-max values. The stages of min-max 

butterfly structure could not be parallelized as output of any stage is   is input to subsequent 

stage 1+is  and hence algorithm works stage-by-stage sequentially. For efficient resource 

utilization and high performance, we have introduced parallelism inside stage.  
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Referring to Fig. 3 it can be judged that at any stage Nsi 2log<  parallelism can be imposed by 

executing similar operations concurrently. For example at stage 1s each 2x2 butterfly can be 

executed in parallel constrained by maximum number of threads running in parallel imposed by 

underlying hardware architecture. Degree of parallelism remains constant throughout all stages 

Nss 221 log..., . 

 

Figure 3 Min-Max 8x8 Butterfly 

 
The min-max butterfly algorithm works as follows;- 
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3. RELATED WORK 

Sorting is one of the widely studied algorithmic topics for the last three decades. Due to space 

limitation for mentioning different kinds of sorting algorithms, we discuss only relevant parallel 

sorting techniques on GPUs in this section. An overview of sorting algorithms in parallel is 

given in [8]. A quick-sort implementation on GPU using CUDA is considered in [9] which 

results quick-sort as an efficient alternative to both bitonic and radix sort over GPU's for larger 

data sequences. Moreover bitonic sort is suggested for smaller sequences. The quick-sort 

algorithm discussed in [9] uses a divide-and-conquer approach for sorting, forming left and 

right sequences depending on whether current value is greater or smaller than pivot value. For 

each recursive call, a new pivot value has to be selected. On the GPU, [9] have proposed two 

steps (1) sub-sequences creation, and (2) assigning each sub-sequence to thread for sorting. The 

overall complexity of above GPU-quick sort technique is )log( nnΟ , with a worst case 

of )( 2
nΟ . 

A merge and radix-sort implementation for GPU's is provided in [10]. Here, radix sort first 

divides full sequence n  into p
n thread blocks with p as total available threads. Each sequence 

then is locally sorted by radix sort on-chip shared memory reducing number of scatters to global 

memory and maximizing their coherence. Scattered I/O is efficient by placing single procedure 

call to write data to a single data stream coming from multiple buffers. But it has no support in 

all GPU devices and thus all writes are sequential [11]. In recent cards, including the NVIDIA 

G80 series and AMD R600 series this is however no longer a problem. Their technique achieves 

complexity of )( tΟ  with t  threads handling b2  buckets. The merge sort [10] follows the 

same divide-and-conquer technique where complete sequence is divided into p   same size tiles. 

Afterwards all tiles are sorted in parallel using odd-even sort with p thread blocks, and then 

merged together using merge-sort conventions on a tree of plog  depth. This technique is well 

suitable for external sorting, where a processor has access only to a small memory address 

space. Moreover, degree of parallelism is reduced as higher levels are sorted and thus not fully 

utilizing parallel GPU architecture. An adaptive bitonic-scheme is proposed in [12]. Their 

technique sorts n  values using p stream processors achieving optimum complexity of ( )
p

nn log
Ο  

. Bitonic sort has also been implemented in [13] using Imagine stream processor. An overview 

of sorting queues for traffic simulations is covered in [14]. Their approach is to study the 

behavior of relatively large groups of transport agents. 

4. PERFORMANCE ANALYSIS 

Several different C data structures and built-in routines are usually used for sorting algorithm 

implementation. In OpenCL framework this is not the case because only a few supported math 

functions, most of these are absent. Hence they have to be implemented explicitly by 

developers. Moreover, as memory cannot be allocated dynamically in kernels, all memory has 

to be allocated before. 

4.1. Experimental Setup 

This section is dedicated to examine performance of our sorting algorithms. The performance 

tests are carried out on varying queue sizes where each queue size is a value of power 2. The 

input data type is float for all algorithms. Random numbers are generated following uniform 

and/or exponential distributions to populate the input queue size. For uniform distribution, value 

ranges from 1 and
n2 . All necessary variable initializations for input/output, random variate 

generators, output from the queues are performed locally on the CPU, whereas actual sorting 

implementation is carried out entirety on GPU side. The GPU devices for running our 
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simulations are the NVIDIA Quadro 6000, NVIDIA GeForce GTX 260 and NVIDIA GeForce 

GT 320M. The GT320M, designed for notebooks, consumes less power and has less cores with 

1GB global memory for the device. The GTX260, on the other hand, is a high-end graphics card 

with large number of cores, 216 in number and 895MB of global memory. The NVIDIA Quadro 

6000, built on innovative NVIDIA fermi architecture, supports 14 micro-processors having 32 

cores each, thus resulting into 448 cores in total, arranged as array of streaming multi-

processors. For comparison with CPU we have implemented the same algorithms specific to be 

run sequentially on CPUs. We have used Intel Core2Quad CPU Q8400 with 2.66 GHz 

processor and 4GB of random memory. 

4.2. Results and Discussion 

4.2.1. Sorting Time 

Sorting time is recorded as the actual sorting duration of the queue in seconds and does not take 

into account any memory copy and other contention times. Fig. 4 reports sorting times of 

bitonic, odd-even and rank sort on different GPU devices and CPU. Data in-dependency in case 

of bitonic and odd-even sorts makes them suitable for parallel systems. Fig. 4.a and 4.b illustrate 

how  faster bitonic and odd-even sort run on GPU devices and get considerable speedup over 

their respective serial implementation on CPU. While on the other hand as shown in Fig. 4.c 

rank sort performs considerably well on CPU rather than on GPU devices because of the data 

dependency during sorting. On quadro 6000, bitonic sort has recorded minimum sorting time for 

very large queue size i.e. 
252 as 1.97 seconds and 0.0012 seconds for queue size 

152 . For odd-

even sort it is 0.23 seconds for queue size 
152 and for rank sort it is 28.8 seconds for queue 

size
152 . On the GTX 260, rank-sort has recorded maximum sorting time for queues size 

152 as 

47.2s. Whereas equivalent sized queue using bitonic sort has recorded time of 0.003 seconds 

and odd-even sort 0.7 seconds. On the GT 320M, for queue size 
152 , sorting time for rank-sort 

recorded is 283 seconds or 4m : 43s, which is huge as expected. The time for complete odd-

even sort on the GT320M recorded as 2.17 seconds and 0.016 seconds for bitonic sort. From our 

results, we see average speed-up of 2.73 for odd-even sort on GTX260 vs GT 320M and speed-

up of 12.11 on Quadro 6000 vs GT 320M. In case of bitonic sort the average speedup is 18.93 

when Quadro 6000 is used and 10.11 if GTX 260 is used, over GT 320M respectively. Whereas 

for rank sort an average speed-up of 9.25 and 5.79 is achieved respectively on Quadro 6000 and 

GTX260. This show that both odd-even and rank-sort will achieve considerable speed-up if 

number of on-device cores increases. Sorting time for min-max butterfly and full-butterfly 

network sorting, in both cases, in relatively lower than sorting times of all three: bitonic, odd-

even and rank sort. Performance is improved because of the parallel nature of the algorithm and 

better code optimization. Interestingly, for complete descending ordered data, min-max 

butterfly,besides its sole purpose of finding minimum and maximum in data, gives complete 

sorted data in less sorting time than others. Fig. 7.a and Fig. 8.b shows our results for min-max 

butterfly for large queue sizes.  

4.2.2. Sorting Rate 

Fig. 5 shows sorting rate of bitonic, odd-even and rank sort, which is determined as the ratio of 

queue length and sorting time. For smaller queue sizes ≈  212, rank-sort has a rounded rate of 

800 elements on the GT320M, 4600 elements on the GTX260 and 9000 elements on Quadro 

6000. In contrast, odd-even sort shows a rounded rate of 31,000 elements on GT320M, rate of 

69,000 on the GTX260 and 0.2 million elements on Quadro 6000. The bitonic sort shows a 

rounded rate of 1.4 million elements on the GT320M, 2.9 million on the GTX260 and 9.5 

million elements on Quadro 6000. In case of serial implementation on Intel Q8400 CPU the 

sorting rate is 0.9 million, 49,000 and 36,000 elements for bitonic, odd-even and rank sort 

respectively for same queue size. However, in case of odd-even and rank sort we can observe 

that the sorting rate approaches to zero as the size of queue increases. Of these, rank-sort 
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converges more quickly than odd-even sort. This suggests that both odd-even and rank-sort do 

not scale well for large queue sizes. But on the other hand bitonic sort performs well for all 

cases on Quadro 6000 and GTX 260. Bitonic sort gives rounded sorting rate of 19 million 10 

million elements on Quadro 6000 and GTX 260 respectively even for a very large queue size of 
232  . Sorting rates for min-max butterfly are shown in Fig. 7.b for different GPU architectures 

and Intel system.  

4.2.3. Speedup 

Fig. 6 shows different speedups of different algorithms and architectures. Speedup of bitonic 

sort over odd-even on the GT 320M is recorded 45.04x for queue size 
122 and speed-up of 

332.7x for queue size
172 . Whereas on the GTX 260 the speed-up of bitonic sort is 42.4x for 

queue size 
122 and 567.91x for queue size 

172 and on Quadro 6000 the speed-up bitonic sort is 

44.47x for queue size 
122 and 405.3x for queue size 

172 over odd-even sort. The reduced speed-

up on the Quadro 6000 even though it has 18x more cores than the GT320 suggests that bitonic 

sort may have reduced performance edge over odd-even sort as the degree of parallelism 

increases. Fig. 6.a and 6.b show the speed up achieved on Quadro 6000 against other 

architectures for bitonic and odd-even sort respectively. As can be seen from figures, speedup 

increases by increasing queue size. A speedup comparison of different GPUs against Intel CPU 

for rank-sort is highlighted in Fig. 6.c. As shown here, the rank sort performs considerably well 

on CPU rather than on GPU devices because of the data dependency during sorting as it is not 

designed specifically for parallel systems. One thing is clear until now that increasing of number 

of cores on GPU, speed up of sorting algorithms also increases. A speedup improvement, on 

different GPU and CPU architectures, is drawn in Fig. 7.c and Fig. 8 for both min-max butterfly 

and full-butterfly sorting respectively. Full-butterfly gives complete sorting of large random 

data and has good performance relatively to other sorting algorithms, discussed here. Due to 

content and space limitation, we let algorithm and implementation details of full-butterfly 

network sorting techniques to next paper.  
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Figure 4 Sorting Time of different algorithms on different architectures 
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Figure 5 Sorting rate of different algorithms on different architectures 
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Figure 6 SpeedUp among different architectures for different algorithms 
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Figure 7 Min-max Butterfly 
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5. CONCLUSION 

We tested performance of parallel bitonic, odd-even and rank-sort algorithms for GPUs and 

comparison with their serial implementation on CPU. It is shown that performance is affected 

mainly by two things: nature of algorithm and hardware architecture. It is shown that bitonic 

sort, easily parallizable, has maximum of 2300x speed-up against odd-even sorting technique on 

Quadro 6000 GPU, whereas rank sort performs well on CPU as data dependency of that 

algorithm. The performance of our algorithms: min-max butterfly and full-butterfly sort is 

relatively higher than the rest. Future work will be dedicated to design and implementation 

details of our full-butterfly sort and a feasibility report of parallel sorting algorithms 

for operationhold _ . 
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