
International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.6, November 2012

DOI : 10.5121/ijdps.2012.3609 107

FAST PARALLEL SORTING ALGORITHMS ON GPUS

Bilal Jan
1,3

, Bartolomeo Montrucchio
1
, Carlo Ragusa

2
, Fiaz Gul Khan

1
 and

Omar Khan
1

1
 Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino, I-10129 taly

2
 Dipartimento di Ingegneria Elettrica, Politecnico di Torino, Torino, I-10129 Italy

3Bilal.Jan@polito.it

ABSTRACT

This paper presents a comparative analysis of the three widely used parallel sorting algorithms: Odd-

Even sort, Rank sort and Bitonic sort in terms of sorting rate, sorting time and speed-up on CPU and

different GPU architectures. Alongside we have implemented novel parallel algorithm: min-max butterfly

network, for finding minimum and maximum in large data sets. All algorithms have been implemented

exploiting data parallelism model, for achieving high performance, as available on multi-core GPUs

using the OpenCL specification. Our results depicts minimum speed-up19x of bitonic sort against odd-

even sorting technique for small queue sizes on CPU and maximum of 2300x speed-up for very large

queue sizes on Nvidia Quadro 6000 GPU architecture. Our implementation of full-butterfly network

sorting results in relatively better performance than all of the three sorting techniques: bitonic, odd-even

and rank sort. For min-max butterfly network, our findings report high speed-up of Nvidia quadro 6000

GPU for high data set size reaching 2
24

 with much lower sorting time.

KEYWORDS

Parallel Computing, Parallel Sorting Algorithms, GPUs, Butterfly Network, OpenCL

1. INTRODUCTION

Parallelism on chip level is the hub for advancements in micro processor architectures for high

performance computing. As a result of which multi-core CPUs [1] are commonly available in

the market. These core-processors, in personal computers, were not sufficient for high data-

computation intensive tasks. As a result of collective efforts by industry and academia, modular

and specialized hardware in the form of sound cards or graphic accelerators are increasingly

present in most personal computers. These cards provide much high performance as compared

to legacy on-board units. Recently, graphics cards or graphics processing units (GPU),

introduced primarily for high-end gaming requiring high resolution, are now intensively being

used, as a co-processor to the CPU, for general purpose computing[2, 3]. The GPU itself is a

multi-core processor having support for thousands of threads [4] running concurrently. GPUs

are result of dozens of streaming processors with hundreds of core aligned in a particular way

forming a single hardware unit. Thread management at such hardware level requires context-

switching time close to null otherwise penalizing performance. Apart from high-end games,

general purpose CPU-bound applications which have significant data in-dependency are well

suited for such devices. Hence data parallel codes are efficiently performed since the hardware

can be classified as SIMT (single-instruction, multiple threads). Performance evaluation in

GFLOPS (Giga Floating Point Operations per Second) shows that GPUs outperforms their CPU

counterparts. For example a high-end Core I7 processor (3.46 GHz) delivers up to a peak of

55.36 GFLOPs1. Table-1 reports some architecture details of GPUs versus Intel Core2 system

that we have used for our implementation of sorting algorithms. The devices include both high-

end graphics card like Quadro 6000 comprising of 14 stream processors with 32 cores each, and

1 Intel Core I7 Specification, www.intel.com

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.6, November 2012

108

also low-end graphic cards that is GeForce GT 320M with 3 processors of 8 cores each. One

such architecture of GTX 260 with 27 processors having 8 cores each, is depicted in Fig. 1. To

low-end we have used GT 320 M as is more ideally suitable for laptops and hence the fewer

cores provide good balance for battery power. The high powerful Quadro-6000 and GTX-260 is

well suited for desktops with power requirement of 204W and 182W respectively.

Architecture

Details

NVIDIA Intel

Quadro

6000

GTX

260

GT

320M

Core2

Quad

Q8400

Total Cores 448 216 24 4

Micro

Processors

14 27 3 1

Clock Rate

(MHz)

1147 1242 1100 2660

FLOPs 1030.4 874.8 158 42.56

Mem.

Bandwidth

(GB/s)

144

91.36 9.95 -

 Table 1Architecture details of GPUs and CPU

Figure 1GTX-260 Device Archite

To program a GPU, one needs vendor provided API's which is NVIDIAs CUDA2, ATIs

FireStream3 or the OpenCL specification by Khronos group4 . One difference between CUDA

and OpenCL is that CUDA is specific for GPU devices whereas OpenCL is heterogeneous and

targets all devices conforming its specification [5], [6]. This may include GPUs and/or CPUs

but for to achieve high performance, it primarily focuses on the GPUs. OpenCL adopts C-style

and is an extension of C99 with some extra keywords and a slightly modified syntax for threads

driving kernels. OpenCL runs two pieces of codes. One is kernel, also called device program

which is a specific piece of code running on device, is executed concurrently by several threads

and this is where task parallelism takes place consisting of thousands of threads on the target

device. The other, called a host program, runs entirely on CPU side that launches kernels i.e.

SIMT based programs. Thread management is hardware based and programmer only organizes

the work-domain into several work-items divided into one or more work-groups. The overall

problem domain, called the ND-Range, can support up to three dimensions. A work-item or

thread which is the basic execution unit in NDRange, is identified by a global and local

addressing scheme in NDRange for each dimension of NDRange and work-groups. Global

addressing obtained by is unique for all threads, whereas any two threads of

2 Nvidia Cuda GPGPU framework.www.nvidia.com
3
 AtiFirestream DAAMIT GPGPU Framework. www.amd.com

4
 OpenCL Specification. www.khronos.org/opencl

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.6, November 2012

109

different groups can have same local address. This scheme is outlined in Fig. 2 for a 2

dimensional problem.

W
o
rk
g
ro
u
p
 S
iz
e
 Y

N
D
R
a
n
g
e
 Y

Figure 2 ND Range Adressing Scheme

A single dimensional address can be computed as:)*(idididd groupgroupglobal =

Provided that it fulfils the following expressions:

=

=

≤≤

=

02%
)max(

*)max(

0

)*(

id

sizeid

sizeid

idididd

group

NDRange

groupgroupNDRange

globallocal

groupgroupglobal

Here, sizegroup and NDRange is set in host program by the programmer. The

dimensional limits differs from device to device with a limit of up to maximum of 3

dimensions 0,1 and 2. For Quadro 6000 maximum size for the 3-dimensions are

1024*1024*64 and 512*512*64 for both GTX260 and GT320M. This corresponds to

approximately 67 and 16 million threads for Quadro and GTX,respectively. All threads

are executed in form of thread blocks containing 32 threads, referred to as warps.

However, some devices support execution of half warps. Our focus in this paper is to

report performance of sorting algorithms using graphics cards which is of significant

importance to various computer science applications. The choice of sorting technique is

vital in performance for some applications, for instance discrete event simulations,

where sorting frequent events can directly affect the performance of simulation. The

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.6, November 2012

110

algorithms discussed int the following are bitonic, odd-even, and rank sorting

algorithms.

2. PARALLEL SORTING ALGORITHMS

Sorting on GPU require transferring data from main memory to on-board GPU global memory.

Although on-device bandwidth is in the range of 144Gb/s, thus only those sorting techniques are

efficient which require minimum amount of synchronization because the PCI bandwidth is to

the range of 2.5Gb/s. i.e., synchronization and memory transfers between CPU and GPU will

affect system performance adversely. Compared to serial sorting algorithms, parallel algorithms

are designed requiring high data independence between various elements for achieving better

performance. Those techniques which involve large data dependency are categorized as

sequential sorting algorithms.

2.1. Odd-Even Sort

The odd-even sort is a parallel sorting algorithm and is based on bubble-sort technique.

Adjacent pairs of items in an array are exchanged if they are found to be out of order. What

makes the technique distinct from bubble-sort is the technique of working on disjointed pairs,

i.e., by using alternating pairs of odd-even and even-odd elements of the array. The technique

works in multiple passes on a queue Q of size N. In each pass, elements at odd-numbered

positions perform a comparison check based on bubble-sort, after which elements at even-

numbered positions do the same. The maximum number of iterations or passes for odd-even sort

is
2

N . Total running time for this technique is)2(log NΟ . The algorithm works as:-

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.6, November 2012

111

2.2. Rank Sort

There are two phases of the rank-sort algorithm. In the first phase, for each element in

queue Q of size N , the total number of elements less than itself is maintained in another data

structure of same size N . This is called the ranking phase and is depicted in Algorithm-2. Since

each element n is compared against 1−n other elements, therefore there are a total of)1(−nn

total computational steps. But since the comparison requires sharing of data and not changing of

data, the comparison can be made in)(NΟ total steps for N processors. This also means that

the technique is feasible for shared memory architectures. The second phase involves sorting of

elements in queue Q based on its rank. The phase is shown in Algorithm-2. The second phase

sorting can be performed in)2(log nΟ steps. For optimization, the number of elements is

divided based on number of processors using
p

nm = .

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.6, November 2012

112

2.3. Bitonic Sort

Bitonic sort with the property that sequence of comparisons is data-independent makes it one of

the fastest and suitable parallel sorting algorithms. To sort an arbitrary sequence bitonic sort

have two steps. In the first step it makes the arbitrary sequence in to bitonic sequence. A bitonic

sequence is a sequence which either monotonically increases or decreases, reaches a single

maximum or minimum, and then after that maximum or minimum value it again monotonically

increases or decreases. For example, the two sequences 3 5 8 9 7 4 2 1 and 5 8 9 7 4 2 1 3 are

bitonic. The first one increases from 3 to 9, then decreases. The second one can be converted to

the first one by cyclically shifting. In the second step the bitonic sequence is sorted in such a

way that, lets we have a bitonic sequence N with length
k

n 2= , which would require k steps

to sort an entire length of n elements. In the first step)0(N would be compared to ()
2

nN ,

()1N with ()12 +nN up to ()12 −nN with ()1−nN and elements are exchanged according

either subsequence from ()0N to ()2
nN and from ()12 +nN up to ()1−nN . Then in the

second step same procedure would be applied to each subsequence and each subsequence would

yield another subsequence and after the
th

k step it yields the
k2 sub-sequences of length 1 so

all the elements in the bitonic sequence are being sorted. Bitonic sort consists of)log(2
nnΟ

comparators as in every step 2
n compare/exchange operations are performed and total number

of steps are nk log= , so in parallel processing it would take n processor to sort it with

)(log 2
nΟ complexity. The total number of steps required in bitonic sort in both steps that are

creating a bitonic sequence and the sorting
2

)1(+kk
. For example arbitrary sequence of 16

elements (
42) would take 10 steps.

2.4. Min-max Butterfly Network

Butterfly network is a special form of hypercube. A k-dimensional butterfly has
k

kk 2)1(+

vertices and
12 +k

k edges [7]. In this case vertices represent input data whereas edges represent

possible data movements. We are considering 2X2 butterfly-network, acting as a comparator,

placing minimum and maximum number at their respective upper and lower leaves. The min-

max butterfly of N numbers has N2log stages resulting into a total complexity of

NN
22 log butterflies in terms of comparators or cross points with 2

N as the number of 2x2

butterflies in each stage. The min-max butterfly network is of significance importance to several

network applications and dynamic systems involving minimum and maximum values/quantities.

The butterfly-network, in general, has its roots in many diverse areas: DSP-FFT calculation,

Switching Fabric-Benes Networks, Network Flows-Hamiltonian, cycle construction, min-max

fairness problems etc. This paper exploits the butterfly network in a parallel way for finding

minimum and maximum values of the input data. The Fig. 3 shows a schematic of a min-max

butterfly of 8 random numbers x(0),x(1)...x(7) in increasing order. The input to stage 1 is

obtained from a random variate generator. At each stage a single butterfly compares two

numbers and places it at upper and lower level accordingly. At last stage i.e.
th

N2log stage

minimum and maximum values are output at upper and lower leaf of first and last butterfly

respectively. In this case x(0) and x(7) are the resulting min-max values. The stages of min-max

butterfly structure could not be parallelized as output of any stage is is input to subsequent

stage 1+is and hence algorithm works stage-by-stage sequentially. For efficient resource

utilization and high performance, we have introduced parallelism inside stage.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.6, November 2012

113

Referring to Fig. 3 it can be judged that at any stage Nsi 2log< parallelism can be imposed by

executing similar operations concurrently. For example at stage 1s each 2x2 butterfly can be

executed in parallel constrained by maximum number of threads running in parallel imposed by

underlying hardware architecture. Degree of parallelism remains constant throughout all stages

Nss 221 log..., .

Figure 3 Min-Max 8x8 Butterfly

The min-max butterfly algorithm works as follows;-

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.6, November 2012

114

3. RELATED WORK

Sorting is one of the widely studied algorithmic topics for the last three decades. Due to space

limitation for mentioning different kinds of sorting algorithms, we discuss only relevant parallel

sorting techniques on GPUs in this section. An overview of sorting algorithms in parallel is

given in [8]. A quick-sort implementation on GPU using CUDA is considered in [9] which

results quick-sort as an efficient alternative to both bitonic and radix sort over GPU's for larger

data sequences. Moreover bitonic sort is suggested for smaller sequences. The quick-sort

algorithm discussed in [9] uses a divide-and-conquer approach for sorting, forming left and

right sequences depending on whether current value is greater or smaller than pivot value. For

each recursive call, a new pivot value has to be selected. On the GPU, [9] have proposed two

steps (1) sub-sequences creation, and (2) assigning each sub-sequence to thread for sorting. The

overall complexity of above GPU-quick sort technique is)log(nnΟ , with a worst case

of)(2
nΟ .

A merge and radix-sort implementation for GPU's is provided in [10]. Here, radix sort first

divides full sequence n into p
n thread blocks with p as total available threads. Each sequence

then is locally sorted by radix sort on-chip shared memory reducing number of scatters to global

memory and maximizing their coherence. Scattered I/O is efficient by placing single procedure

call to write data to a single data stream coming from multiple buffers. But it has no support in

all GPU devices and thus all writes are sequential [11]. In recent cards, including the NVIDIA

G80 series and AMD R600 series this is however no longer a problem. Their technique achieves

complexity of)(tΟ with t threads handling b2 buckets. The merge sort [10] follows the

same divide-and-conquer technique where complete sequence is divided into p same size tiles.

Afterwards all tiles are sorted in parallel using odd-even sort with p thread blocks, and then

merged together using merge-sort conventions on a tree of plog depth. This technique is well

suitable for external sorting, where a processor has access only to a small memory address

space. Moreover, degree of parallelism is reduced as higher levels are sorted and thus not fully

utilizing parallel GPU architecture. An adaptive bitonic-scheme is proposed in [12]. Their

technique sorts n values using p stream processors achieving optimum complexity of ()
p

nn log
Ο

. Bitonic sort has also been implemented in [13] using Imagine stream processor. An overview

of sorting queues for traffic simulations is covered in [14]. Their approach is to study the

behavior of relatively large groups of transport agents.

4. PERFORMANCE ANALYSIS

Several different C data structures and built-in routines are usually used for sorting algorithm

implementation. In OpenCL framework this is not the case because only a few supported math

functions, most of these are absent. Hence they have to be implemented explicitly by

developers. Moreover, as memory cannot be allocated dynamically in kernels, all memory has

to be allocated before.

4.1. Experimental Setup

This section is dedicated to examine performance of our sorting algorithms. The performance

tests are carried out on varying queue sizes where each queue size is a value of power 2. The

input data type is float for all algorithms. Random numbers are generated following uniform

and/or exponential distributions to populate the input queue size. For uniform distribution, value

ranges from 1 and
n2 . All necessary variable initializations for input/output, random variate

generators, output from the queues are performed locally on the CPU, whereas actual sorting

implementation is carried out entirety on GPU side. The GPU devices for running our

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.6, November 2012

115

simulations are the NVIDIA Quadro 6000, NVIDIA GeForce GTX 260 and NVIDIA GeForce

GT 320M. The GT320M, designed for notebooks, consumes less power and has less cores with

1GB global memory for the device. The GTX260, on the other hand, is a high-end graphics card

with large number of cores, 216 in number and 895MB of global memory. The NVIDIA Quadro

6000, built on innovative NVIDIA fermi architecture, supports 14 micro-processors having 32

cores each, thus resulting into 448 cores in total, arranged as array of streaming multi-

processors. For comparison with CPU we have implemented the same algorithms specific to be

run sequentially on CPUs. We have used Intel Core2Quad CPU Q8400 with 2.66 GHz

processor and 4GB of random memory.

4.2. Results and Discussion

4.2.1. Sorting Time

Sorting time is recorded as the actual sorting duration of the queue in seconds and does not take

into account any memory copy and other contention times. Fig. 4 reports sorting times of

bitonic, odd-even and rank sort on different GPU devices and CPU. Data in-dependency in case

of bitonic and odd-even sorts makes them suitable for parallel systems. Fig. 4.a and 4.b illustrate

how faster bitonic and odd-even sort run on GPU devices and get considerable speedup over

their respective serial implementation on CPU. While on the other hand as shown in Fig. 4.c

rank sort performs considerably well on CPU rather than on GPU devices because of the data

dependency during sorting. On quadro 6000, bitonic sort has recorded minimum sorting time for

very large queue size i.e.
252 as 1.97 seconds and 0.0012 seconds for queue size

152 . For odd-

even sort it is 0.23 seconds for queue size
152 and for rank sort it is 28.8 seconds for queue

size
152 . On the GTX 260, rank-sort has recorded maximum sorting time for queues size

152 as

47.2s. Whereas equivalent sized queue using bitonic sort has recorded time of 0.003 seconds

and odd-even sort 0.7 seconds. On the GT 320M, for queue size
152 , sorting time for rank-sort

recorded is 283 seconds or 4m : 43s, which is huge as expected. The time for complete odd-

even sort on the GT320M recorded as 2.17 seconds and 0.016 seconds for bitonic sort. From our

results, we see average speed-up of 2.73 for odd-even sort on GTX260 vs GT 320M and speed-

up of 12.11 on Quadro 6000 vs GT 320M. In case of bitonic sort the average speedup is 18.93

when Quadro 6000 is used and 10.11 if GTX 260 is used, over GT 320M respectively. Whereas

for rank sort an average speed-up of 9.25 and 5.79 is achieved respectively on Quadro 6000 and

GTX260. This show that both odd-even and rank-sort will achieve considerable speed-up if

number of on-device cores increases. Sorting time for min-max butterfly and full-butterfly

network sorting, in both cases, in relatively lower than sorting times of all three: bitonic, odd-

even and rank sort. Performance is improved because of the parallel nature of the algorithm and

better code optimization. Interestingly, for complete descending ordered data, min-max

butterfly,besides its sole purpose of finding minimum and maximum in data, gives complete

sorted data in less sorting time than others. Fig. 7.a and Fig. 8.b shows our results for min-max

butterfly for large queue sizes.

4.2.2. Sorting Rate

Fig. 5 shows sorting rate of bitonic, odd-even and rank sort, which is determined as the ratio of

queue length and sorting time. For smaller queue sizes ≈ 212, rank-sort has a rounded rate of

800 elements on the GT320M, 4600 elements on the GTX260 and 9000 elements on Quadro

6000. In contrast, odd-even sort shows a rounded rate of 31,000 elements on GT320M, rate of

69,000 on the GTX260 and 0.2 million elements on Quadro 6000. The bitonic sort shows a

rounded rate of 1.4 million elements on the GT320M, 2.9 million on the GTX260 and 9.5

million elements on Quadro 6000. In case of serial implementation on Intel Q8400 CPU the

sorting rate is 0.9 million, 49,000 and 36,000 elements for bitonic, odd-even and rank sort

respectively for same queue size. However, in case of odd-even and rank sort we can observe

that the sorting rate approaches to zero as the size of queue increases. Of these, rank-sort

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.6, November 2012

116

converges more quickly than odd-even sort. This suggests that both odd-even and rank-sort do

not scale well for large queue sizes. But on the other hand bitonic sort performs well for all

cases on Quadro 6000 and GTX 260. Bitonic sort gives rounded sorting rate of 19 million 10

million elements on Quadro 6000 and GTX 260 respectively even for a very large queue size of
232 . Sorting rates for min-max butterfly are shown in Fig. 7.b for different GPU architectures

and Intel system.

4.2.3. Speedup

Fig. 6 shows different speedups of different algorithms and architectures. Speedup of bitonic

sort over odd-even on the GT 320M is recorded 45.04x for queue size
122 and speed-up of

332.7x for queue size
172 . Whereas on the GTX 260 the speed-up of bitonic sort is 42.4x for

queue size
122 and 567.91x for queue size

172 and on Quadro 6000 the speed-up bitonic sort is

44.47x for queue size
122 and 405.3x for queue size

172 over odd-even sort. The reduced speed-

up on the Quadro 6000 even though it has 18x more cores than the GT320 suggests that bitonic

sort may have reduced performance edge over odd-even sort as the degree of parallelism

increases. Fig. 6.a and 6.b show the speed up achieved on Quadro 6000 against other

architectures for bitonic and odd-even sort respectively. As can be seen from figures, speedup

increases by increasing queue size. A speedup comparison of different GPUs against Intel CPU

for rank-sort is highlighted in Fig. 6.c. As shown here, the rank sort performs considerably well

on CPU rather than on GPU devices because of the data dependency during sorting as it is not

designed specifically for parallel systems. One thing is clear until now that increasing of number

of cores on GPU, speed up of sorting algorithms also increases. A speedup improvement, on

different GPU and CPU architectures, is drawn in Fig. 7.c and Fig. 8 for both min-max butterfly

and full-butterfly sorting respectively. Full-butterfly gives complete sorting of large random

data and has good performance relatively to other sorting algorithms, discussed here. Due to

content and space limitation, we let algorithm and implementation details of full-butterfly

network sorting techniques to next paper.

 0

 5

 10

 15

 20

 25

 30

 10 12 14 16 18 20 22 24 26

T
im

e
 (

se
c
o
n
d
s)

Number of Elements 2
n

GTX 260

Core 2 Quad CPU

GT 320M

Quadro 6000

 0

 20

 40

 60

 80

 100

 120

 15 16 17 18 19 20

Number of Elements 2
n

GTX 260

Core 2 Quad CPU

GT 320M

Quadro 6000

 0

 50

 100

 150

 200

 250

 300

 10 11 12 13 14 15 16 17

Number of Elements 2
n

GTX 260

Core 2 Quad CPU

GT 320M

Quadro 6000

(a) Bitonic sort (b) Odd-Even sort (c) Rank sort

Figure 4 Sorting Time of different algorithms on different architectures

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.6, November 2012

117

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 12 14 16 18 20 22 24 26

S
o

rt
in

g
 R

at
e

Number of Elements 2
n

GTX 260

Core 2 Quad CPU

GT 320M

Quadro 6000

 0

 50000

 100000

 150000

 200000

 250000

 12 13 14 15 16 17 18 19 20

Number of Elements 2
n

GTX 260

Core 2 Quad CPU

GT 320M

Quadro 6000

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 10 11 12 13 14 15 16 17

Number of Elements 2
n

GTX 260

Core 2 Quad CPU

GT 320M

Quadro 6000

(a) Bitonic sort (b) Odd-Even sort (c) Rank sort

Figure 5 Sorting rate of different algorithms on different architectures

 0

 10

 20

 30

 40

 50

 60

 70

 10 12 14 16 18 20 22 24

S
p
ee

d
U

p

Number of Elements 2
n

GTX 260

Core 2 Quad CPU

GT 320M

 0

 10

 20

 30

 40

 50

 60

 10 11 12 13 14 15 16 17 18 19

Number of Elements 2
n

GTX 260

Core 2 Quad CPU

GT 320M

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 10 11 12 13 14 15

Number of Elements 2
n

GTX 260

Quadro 6000

GT 320M

(a) Quadro6000 for Bitonic sort b) Quadro for Odd-Even sort (c) GPUs vs CPUS Rank sort

Figure 6 SpeedUp among different architectures for different algorithms

 0.0001

 0.001

 0.01

 0.1

 1

 10

 10 12 14 16 18 20 22 24

T
im

e
in

 s
ec

o
n

d
s

(l
o

g
)

Number of Elements 2
n

GTX 260

Core 2 Quad CPU

GT 320M

Quadro 6000

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 10 12 14 16 18 20 22 24

S
o

rt
in

g
 R

at
e

Number of Elements 2
n

GTX 260

Core 2 Quad CPU

GT 320M

Quadro 6000

 0

 2

 4

 6

 8

 10

 12

 14

 10 12 14 16 18 20 22 24

S
p

ee
d

U
p

 o
v

er
 B

it
o

n
ic

 S
o

rt

Number of Elements 2
n

GTX 260

Core 2 Quad CPU

GT 320M

Quadro 6000

(a) Sorting time b) Sorting rate (c) speed up

Figure 7 Min-max Butterfly

 0.1

 1

 10

 100

 1000

 10000

 100000

 10 11 12 13 14 15 16

S
p
ee

d
U

p
 (

lo
g
)

Number of Elements 2
n

Bitonic Sort

Odd-Even Sort

Rank Sort

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10 11 12 13 14 15 16

T
im

e
in

 s
ec

o
n
d
s

(l
o
g
)

Number of Elements 2
n

test2

Bitonic Sort

Odd-Even Sort

Rank Sort

Full Butterfly Sort

(a) Speedup against all b) Sorting time

Figure 8 Performance Comparison of Full-Butterfly sort and others

International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.6, November 2012

118

5. CONCLUSION

We tested performance of parallel bitonic, odd-even and rank-sort algorithms for GPUs and

comparison with their serial implementation on CPU. It is shown that performance is affected

mainly by two things: nature of algorithm and hardware architecture. It is shown that bitonic

sort, easily parallizable, has maximum of 2300x speed-up against odd-even sorting technique on

Quadro 6000 GPU, whereas rank sort performs well on CPU as data dependency of that

algorithm. The performance of our algorithms: min-max butterfly and full-butterfly sort is

relatively higher than the rest. Future work will be dedicated to design and implementation

details of our full-butterfly sort and a feasibility report of parallel sorting algorithms

for operationhold _ .

REFERENCES

[1] M. Creeger, “Multicore cpus for the masses”, Queue, vol. 3, pp. 64-ff, Sep. 2005.

[2] H. Hacker, C. Trinitis, J. Weidendorfer, and M. Brehm, “Considering GPGPU for HPC centers:

Is it worth the effort?,” in Facing the Multicore-Challenge (R. Keller, D. Kramer, and J.-P.

Weiss, eds.), vol. 6310 of Lecture Notes in Computer Science, pp. 118–130, Springer, 2010.

[3] J. Nickolls and W. J. Dally, “The GPU computing era,” IEEE Micro,vol. 30, no. 2, pp. 56–69,

2010.

[4] Y. Zhang and J. D. Owens, “A quantitative performance analysis model for GPU architectures,”

in HPCA, pp. 382–393, IEEE Computer Society,2011.

[5] M. Garland, “Parallel computing with CUDA,” in IPDPS, p. 1, IEEE,2010.

[6] V. V. Kindratenko, J. Enos, G. Shi, M. T. Showerman, G. W. Arnold, J. E. Stone, J. C. Phillips,

and W. mei W. Hwu, “GPU clusters for high-performance computing,” in CLUSTER, pp. 1–8,

IEEE, 2009.

[7] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees,

Hypercubes. Morgan Kaufmann Publishers, Inc., 1992.

[8] S. G. Akl, Parallel Sorting Algorithms. Academic Press, 1985.

[9] D. Cederman and P. Tsigas, “GPU-quicksort: A practical quicksort algorithm for graphics

processors,” ACM Journal of Experimental Algorithmics,vol. 14, 2009.

[10] N. Satish, M. Harris, and M. Garland, “Designing efficient sorting algorithms for many core

GPUs,” in Proc. 23rd IEEE International Symposium on Parallel and Distributed Processing

(23rd IPDPS’09), (Rome, Italy), pp. 1–10, IEEE Computer Society, May 2009.

[11] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens, “Scan primitives for GPU computing,” in

Graphics Hardware (M. Segal and T. Aila, eds.), (San Diego, California, USA), pp. 97–106,

Eurographics Association, 2007.

[12] A. Gres and G. Zachmann, “GPU-bisort: Optimal parallel sorting on stream architectures,” in

Proc. IEEE International Parallel & Distributed Processing Symposium (20th IPDPS’06),

(Rhodes Island, Greece), IEEE Computer Society, Apr. 2006.

[13] T. J. Purcell, C. Donner, M. Cammarano, H. W. Jensen, and P. Hanrahan, “Photon mapping on

programmable graphics hardware,” in Proceedings of Graphics Hardware 2003, pp. 41–50,

2003.

[14] D. Strippgen and K. Nagel, “Using common graphics hardware for multi-agent traffic simulation

with CUDA,” in SimuTools (O. Dalle, G. A. Wainer, L. F. Perrone, and G. Stea, eds.), p. 62,

ICST, 2009.

