International Journal of Embedded Systems and Aatitins (IJESA) Vol.2, No.2, June 2012

Srinivas Nidhraand Jagruthi Dondéti

School of Computing, Blekinge Institute of TechriplpKarlskrona, Sweden
nidhra.srinivas@gmail.com
2Jawaharlal Nehru Technological University, Hydedbandhra Pradesh, India
jagruthi.sri@gmail.com

ABSTRACT

There are several methods for automatic test casemtion has been proposed in the past. But mfost o
these techniques are structural testing technidghasrequire the understanding of the internal wogkof

the program. There is less practical coverage bfedting techniques together. In this paper wedcmted

a literature study on all testing techniques togetthat are related to both Black and White boxites
technigques, moreover we assume a case situatidnsafance premium calculation for driver and we
derive the test cases and test data for white bstirtg methods such as Branch testing, Statemstimde
Condition Coverage testing, multiple condition aage testing, in the similar way we derive the testes
and test data for the black box testing method$ sag: Equivalence partitioning and Boundary value
analysis.

The overall aim of this literature study is to dllgaexplain different testing techniques along watltase
situation and their advantages.

KEYWORDS
Software testing, Functional testing, Structuradtiieg, test cases, black box testing, white bosintgs
Testing techniques.

1.INTRODUCTION

Software testing is a most often used techniquedadfying and validating the quality of softward |
Software testing is the procedure of executingagm@m or system with the intent of nding faults
[10Q]. It is measured to be labour intensive andeespve, which accounts for > 50 % of the total cost
of software development [11] [2]Software testing is a significant activity of theftevare
development life cycle (SDLC). It helps in developithe confidence of a developer that a program
does what it is intended to do so. In other wovgscan say it's a process of executing a progratim wi
intends to find errors (Biswal et al. 2010) [8].the language of Verification and Validation (V&V
black box testing is often used for validation.(aee we building the right software?) and white bo
testing is often used for verification (i.e. are luglding the software right?) [2-4][11]. This diy
emphasizes the need to investigate various tes#iolgniques in software testing field; we have
conducted a literature review to obtain the reviéam state-of-art.

2.RELATED WORK -TAXONOMY OF TESTING TECHNIQUES

Traditionally Software testing techniques can beabty classi ed into black-box testing and white-
box testing [5][12]. Black box testing is also called &sctional testing, a functional testing
technique that designs test cases based on thenition from the speci catiof]. With black box
testing, the software tester should not (or doda}¥ nave access to the internal source code itself.
Black box testing not concern with the internal heeusms of a system; these are focus solely on the
outputs generated in response to selected inputseaecution condition§5]. The code is purely

DOI : 10.5121/ijesa.2012.2204 29

International Journal of Embedded Systems and Aatitins (IJESA) Vol.2, No.2, June 2012

considered to be a “big black box” to the testeovdan't see inside the box. The software tester
knows only that information can be input into tHadk box, and the black box will send something
back out. This can be done purely based on tharezgent specification knowledge; the tester knows
what to expect the black box to send out and testrake sure the black box sends out what it's
supposed to send out [6].

On the other side white box testing is also cafledstructural testing or glass box testing, strattu
testing technique that designs test cases bas#uednformation derived from source code [bhe
white box tester (most often the developer of e} knows what the code looks like and writes test
cases by executing methods with certain paramgggré/hite box testing is concern with the internal
mechanism of a systems, it mainly focus on corfitoat or data flow of a programs [1] [5] [18].

White-box and black-box testing are considered esponding to each other. Many researchers
underline that, to test software more correctlyisitessential to cover both speci cation and code
actions [5] [4] [13].

Software testing is a vast area that mainly cemsisdifferent technical and non-technical arsash

as Requirements Specifications, maintenance, pgpdesign and implementation, and management
issues in software engineering. Our study focusethe state of the art in describing differentitegst
techniques, before stepping into any detail ofrtfauration study of these techniques, let us have a
brief look at some technical concepts that ardiveldo our work.

2.1. The Testing Spectrum
Software testing is involved in each stage of safeMife cycle, but the way of testing conducted at
each stage of software development is differentiture and it has different objectives.

Unit testing is a code based testing which is performed by ldpees, this testing is mainly done to
test each and individual units separately. Thig testing can be done for small units of code or
generally no larger than a class. [13].

Integration testing validates that two or more units or other inteigrat work together properly, and
inclines to focus on the interfaces specified in-level design [13].

System testingreveals that the system works end-to-end in aymtamh-like location to provide the
business functions specified in the high-level gie$l3].

Acceptance testingis conducted by business owners, the purpose adptance testing is to test
whether the system does in fact, meet their busirezgiirements [13].

Regression Testingis the testing of software after changes has Im&de; this testing is done to
make sure that the reliability of each softwareask, testing after changes has been made to ensure
that changes did not introduce any new errorsthcsystem [13].

Alpha Testing Usually in the existence of the developer at thestigper’s site will be done.

Beta TestingDone at the customer’s site with no developertia si

Functional Testingis done for a finished application; this testingaserify that it provides all of the
behaviors required of it [13].

Tablel. Testing Spectrum

Testing Opacity Specification Who will do | General Scope
Type this testing?
Unit White Box Low-Level Generally For small unit
Testing Design Actual | Programmers| of code
Code structure | who write generally no
code they test| larger than a
class
Integration White & Low and High | Generally For multiple
Black Box Level Design Programmers| classes
Testing who write
code they test|

30

International Journal of Embedded Systems and Aatitins (IJESA) Vol.2, No.2, June 2012

Functional Black Box | High Level Independent | For Entire
Testing Design Testers will product
Test
System Black Box | Requirements | Independent | For Entire
Testing Analysis phase | Testers will product in
Test representative
environments
Acceptance Black Box | Requirements | Customers Entire product
Testing Analysis Phase | Side in customer’s
environment
Beta Black Box | Client Adhoc Customers Entire product
Testing Request Side in customer’s
environment
Regression Black & Changed Generally This can be for
White Box Documentation | Programmers| any of the
Testing High-Level or above
Design independent
Testers

2.2. Functional Technique and Structural Technique

The information flow of testing techniques is shownFigure 1. Moreover testing involves the
outline of proper inputs, implementation of thetaafre over the input, and the analysis of the dutpu
The “Software Configuration” contains requiremespecification, design specification, source code,
and so on. The “Test Configuration” includes teses, test plan and procedures, and testing[&jols
[7]. Grounded on the testing information flow testing technigue stipulates the strategy used in
testing to select input test cases and analysedsslts. Various techniques reveal different igwal
aspects of a software system, and there are tworroafegories of testing techniques, functional and
structural [6] [7].

Functional Testing the software program or system under test isrgbdeas a Black box’. The
choice of test cases for functional testing is tase therequirement or design specificationof the
software entity under test. Examples of expecemiilts sometimes are calleéebkt oracles include
requirement/design specifications, hand calculatddes, and simulated results. Functional testing
mainly focus on externdlehaviour of the software entity [6] [7].

Structural Testing the software entity is viewed as wliite box’. The selection of test cases is
based on the implementation of the software enfithe goal of selecting such test cases is to cause
the execution of specific spots in the softwarétgrdéuch as specific statements, program branches
paths. The expected results are evaluated ondd severage criteria. Examples of coverage dater
include path coverage, branch coverage, and datadbverage. Structural testing highlights on the
internal structuref the software entity [18].

2.3. Scope of the Study

In articles [6] [7] [29] author’'s provided the diffent testing technique but not able to explain
elaborately and not covered all testing technidogsther, In this paper, we focus on all Functional
and Structural Testing Techniques and we examiffereint examples for each and every testing
technique, and we consider a case of driver's hrste premium calculation, and we provide a detail
study of both black and white box testing technique

Scope covers the following testing techniqueshasva in Figurel

31

International Journal of Embedded Systems and Aatitins (IJESA) Vol.2, No.2, June 2012

State Transon Diagrams

Orthogoral Amrays
]
Figurel. Testing Techniques

2.4 Research Questions:

RQ1: What are the different Black box and White boxitestechniques?
RQ 1.1: Usefulness of testing techniques?

3.RESEARCH METHODOLOGY

A. Literature Review

The literature review was performed according ® gidelines proposed by B. Kitchenham'’s [30]
which were adopted for searching different testiechniques from literature review. Over all 29
articles was found those are most relevant to iberature study. Among those articles 5 are grey
literature articles and 4 are book related infofamatOver all we find 12 Journals and 8 conference
papers. The database was taken in such a manreit t@aers most of the journals as well as
conference papers. All the articles are relatesting techniques. In 29 articles authors speakitab
testing techniques in one another manner. The rityajof articles mainly focus on case studies,
theoretical reports, literature study, experiersgmorts and field studies.

3.1 Data Retrieval-Quantitative Study
In order to retrieve the data from literature stgdive framed the search terms

Search

We used the following Boolean search string to emste captured a wide variety of papers related to
black and white box testing techniques in softwasting. Over all we cover three databases and we
got total set of 1954 articles without any refinem&Ve limit language as English.

Search terms:
For IEEE and Engineering village we use the follogvsearch terms separately for black box and
white box testing techniques.

IEEE: "Black box" and "Software testing" Result¥19
"White box" and "software testing" Results 90
Engineering Village: "Black box" and "Software fagt' Results 410
"White box" and "software testing" Resulfsl
Science Direct : (Black box) AND (test*) Resuld76
(White box) AND (test*) Results 415

32

International Journal of Embedded Systems and Aatitins (IJESA) Vol.2, No.2, June 2012

Note: here we did further refinement and consider ordftweare and computer science papers.
Moreover we considered a few papers from Googlelactand those are purely Grey literature
papers.

Selection Criteria:

—_———
SeienceDirect
Engineering Village

S/ 217 Duglicates were
/. Pavers J Removed used Zoero
/. Pavers / 24 Duglicated Articles
i Not in English
W Language J

810 Articles were
removed based on Title

412 Articles were
removed based on
Abstract'Conclusion

399 Articles were ‘

| 4Google Books w7 removed based on
5 Grey Literatures }— Poers / Inclusion Exclusion

Criteria

| Finally
20

Papers .‘";

Figure2. Selection Criteria

4. DIFFERENT TESTING TECHNIQUES
4.1 Qualitative data collection

Functional Testing the software program or system under test iwatieas a black box’. Black

Box Testing: it is testing based on the requiremepiecifications and there is no need to examining
the code in black box testing. This is purely dbased on customers view point only tester knows the
set of inputs and predictable outputs. Black kesting is done on the completely finished prodéit

[71.

Why Black Box Testing:

Black box testing plays a significant role in safte testing, it aid in overall functionality valigtn

of the system. Black box testing is done based ustomers’ requirements-so any incomplete or
unpredictable requirements can be easily identidied it can be addressed later. Black box testing i
done based on end user perspective. The main iarmmertof black box testing it handles both valid
and invalid inputs from customer’s perspecf{ive

When Black Box Testing:

Black box testing is done from beginning of thetwafe project life cycle. All the testing team
members need to be involved from beginning of ttegegt. During black box testing testers need to
be involved from customers’ requirements gathednd analysis phase. In the design phase test data
and test scenarios need to be preppfed

Advantages:

The main advantage of black box testing is thattets no need to have knowledge on specific
programming language, not only programming languagfealso knowledge on implementation. In
black box testing both programmers and testersndependent of each other. Another advantage is
that testing is done from user’s point of view. Hignificant advantage of black box testing is that
helps to expose any ambiguities or inconsisteriniéise requirements specifications.

33

International Journal of Embedded Systems and Aatitins (IJESA) Vol.2, No.2, June 2012

Black box testing techniques are [29]:

Equivalence Class Partitioning

Boundary Value Analysis

Decision Tables

State Transition Diagrams (or) State Transitiongbams
Orthogonal Arrays

All Pairs Technique

4.1.1 Equivalence Class Partitioning

Equivalence class testing is based upon the assmripit a program’s input and output domains can b
partitioned into a finite number of (valid and ifid classes such that all cases in a single pantéxercise

the same functionality or exhibit the same behavi@®] [29]. The partitioning is done such thaeth
program behaves in a similar way to every inputigdbelonging to an equivalence class. Test cages ar
designed to test the input or output domain partiti Equivalence class is determined by examiaird)
analysing the input data range. Only one test frage each partition is required, which reducesnbmber

of test cases necessary to achieve functional aged20] [29].The success of this approach depends upon
the tester being able to identify partitions of thput and output spaces for which, in reality, sdistinct
sequences of program source code to be executed [I]

Equivalence Class Partitioning- Test Cas€®0]:

The Steps for creating test cases are as follows

a. define the equivalence classes

b. Write the initial test case that cover as magyalid equivalence classes as possible.

c. Continue writing test cases until all of theidaquivalence classes have been included.
d. finally write one test case for each invalidssla

Equivalence Class Partitioning- Advantages:

a. It eradicates the need for exhaustive testing, lvtsiaot feasible.

b. One of the advantages of equivalence class pontjois; it enables a tester to cover a large
domain of inputs or outputs with a smaller subsédated from an equivalence class.

c. Itallows a tester to select a subset of test mpuith a high chance of identifying a defect.

Equivalence Class Partitioning- Limitations:

a. One of the limitations of this technique is thahiikes the assumption that the data in the same
equivalence class is processed in the same wayelsysteni7] [20].

b. Equivalence partitioning is not a stand-alone méttaodetermine test case. It has to be
supplemented blgoundary value analysif7] [20].

4.1.2 Boundary Value Analysis

Boundary value analysis is performed by creatisgstéhat exercise the edges of the input and output
classes identified in the specification. Test casasbe derived from tHboundaries’ of equivalence
classes. Typically programming errors occur atlibandaries of equivalence classes are known as
“Boundary Value Analysis”. Generally some time programmers fail to checkcisppeprocessing
required especially at boundaries of equivalenesses. A general example is programmers may
improperly use < instead of <=. The choices of laup values include above, below and on the
boundary of the clad3] [20] [29].

Boundary Value Analysis- Limitations [20]:

a. One of the limitations of boundary value analysisticannot be used for Boolean and logical
variables.

b. Cannot estimate boundary analysis for some casisasucountries.

c. Not that useful for strongly-typed languages.

34

International Journal of Embedded Systems and Aatitins (IJESA) Vol.2, No.2, June 2012

Table2. For Appendix-A Deriving Equivalence ClasstRioning and Boundary Value Analysis
for Driver insurance premium

[Conditions | Value Test Test | Test Test Test Test
Parameter casel | casel | cased | cased | caseS | caseb
Age Valid | Integer 1-65 20 30 47 - -
Group

Invalid -2 70 12.1

Integer <1, =70

Decimal

Number

Calculation [+ %
Age Operators .-
Invalid K%
Group (1.5.".#.@. other [# @

Gender Sting="female” | Female | Male | female

Valid or “male”

Group

Gender ae. A-EGL, K L M
Invalid g, n-z, N-Z, 0-

Group 9

Married True or False T F T

Valid

Invalid & $ @
Married

4.1.3 Decision Tables

Decision tables are human readable rules usedpt@sscthe test experts or design experts knowledge
in a compact form [14]. Decision Tables can be uskdn the outcome or the logic involved in the
program is based on a set of decisions and ruléshwteed to be followed. Decision table mainly
consists of four areas called the condition sthb,dondition entry, the action stub and finallyi@tt
entry [2] [19] [29].

Decision Tables-ApproacH29]:

The Steps for using Decision Table testing areangdoelow:

Stepl: Analyse the given test inputs or requiresiant list out the various conditions in the decisi
table.

Step2: Calculate the number of possible combinat{®ules).

Step3: Fill Columns of the decision table with@dksible combinations (Rules).

Step4: Find out Cases where the values assumeddnyable are immaterial for a given combination.
Fill the same by “Don’t care” Symbol.

Step5: For each of the combination of values, fintthe action or expected result.

Step6: Create at least one Test case for eachlfulee rules are binary, a single test for each
combination is probably sufficient. Else if a caimh is a range of values, consider testing at tioth
low and high end of range.

Example:

Consider bank software responsible for debitingnfan account. The relevant conditions and actions
are:

C1: The account number is correct

C2: The Signature matches

C3: There is enough money in the account

Al: Give money

A2: Give Statement indicating insufficient funds

A3: Call vigilance to check for fraud!

For the above situation the decision table for bsofkware consists of:
Input:

35

International Journal of Embedded Systems and Aatitins (IJESA) Vol.2, No.2, June 2012

C1: Account No: Correct, Incorrect

C2: Signature: Match, not match

C3: Enough money: Yes, No

Outputs:-

Al: Give Money

A2: Give Statement of insufficient funds
A3: Call vigilance

Now Rules are:

Al when correct account no,
A2 when signature matched
A3 when sufficient money

Table3. Decision table Bamk account

Condition Account No. Signature Money Actions
Entries

1 Cormect Match Yes Al

2 Cormect Match No A2

3 Comect Not match Yes ?

4 Comect Not match No ?

5 Incorrect Match Yes A3

6 Incorrect Match No ?

7 Incorrect Not match Yes ?

8 Incorrect Not match No ?

? : There are no rules define for rest of the jilggs

4.1.4 State Transition Diagrams (or) State Graphs

State Graph is an excellent tool to capture cettgias of system requirements and document internal
system design. When a system must remember whpehag before or when valid and invalid orders
of operation exists, and then state transitiorirtgstould be used. This state graphs are used when
system moves from one state to another state. Gtapds are represented with symbols, circle id use
to represent state, arrows are used to represamgition, and event is represented by label on the
transition. Thus from the starting state to the stade the various transition and routes are repted

in the form of a transition diagram as mentioned[[22] [28].

Example:

Here we have to model the starship Enterpriseadtthree impulse drive settings: drive (d), neytral
and reserve (r) . The ship itself has three ptesstates: such as moving forward (F), moving
backward (B) and stopped (S). The combinations litkvimpulse thrusters are firing and how the
ship moves create nine states:

dF | .nF | rF
.ds .nS | IS
.dB .nB | .rB

The impulse driver thruster control requires that go through neutral to get to drive or reversé. A
thrusters are turned ain neutral: d< >n< >r. The possible inputs areddesr, n>n, d>n, n>d, n>r,
and r>n.

36

International Journal of Embedded Systems and Aaiptins (IJESA) Vol.2, No.2, June 2012

Fi>n

Figure3. State graph

Table4. gtaable
STATE r>r | ro>n|n>n|n>r|n>d|d>d]|d>n| r>d| d>r

RE | RB | NB INNINNANNNNNINNINNRN
RS | RB [NS ESNERONDONISHIOOERORNY
R RS [NF ARSI ARSI SN
NB_ NSNSNDNNY NB | RB [DB NSRS
NS NS 85 | RS | D5 RSO SRT
NE_RSSEBONN NE R T 0F RSSO
NN NN ool
DS ISONVISNNNSNINSNINNT oF | vs RN
DF_ RONSNBNNNNIONRNN 0F T ve IR RSS

4.1.5 Orthogonal Arrays

Orthogonal Array Testing Strategy (OATS) is a systdcal, statistical way of testing pair-wise
interactions by deriving suitable small set of &Estes from a large number of scenarios. Thentesti
strategy can be used to reduce the number ofdestinations and provide maximum coverage with a
minimum number of test cases. OATS utilizes aayaof values representing variable factors that are
combined pair-wise rather than representing allliaations of factors and levels.

Example for OATS:

Here we have considered 3 parameters named aB-afvd C and it has positive values as 1, 2 and 3.
Testing all combinations of the 3 parameters woukblve executing a total of 27 test cases.
Generally while programming works start a faultlwrilostly occurs for two parameters, not for three.
In this case the fault may occur for each of thes? cases as: A=1, B=1, C=1, A=1, B=1, C=2, and
A=1, B=1, C=3. The usefully of OATS is no need tm rall the 27 test cases, only 9 test cases are
enough to test. The 9 scenarios outlined in Tab{eb the next screen) address all possible pairs
within the three parameters.

Table5.Pair-wise Combination of Parameters- Sample array

© 0N AN
W WwWwnNN = = -
W N = ON =N«
N W= W= N <N

37

International Journal of Embedded Systems and Aatitins (IJESA) Vol.2, No.2, June 2012

All possible pairwise combinations between paransefeand B B and C and_C and Aare displayed

in Table 5 here nine scenarios provide the samerage as executing all 27 scenarios. This same
concept is applied to more complex scenarios wtesting an application might require 10,000+ test
cases and utilizing OATS, it can be reduced sigaiftly in the number of test scenarios, such asndow
to 1,000 or less test cases to execute.

4.1.6 All Pairs Testing
This is an accepted technique for verifying a @mimber of parameters with a finite number of
values and keeping the number of test cases rdasona

4.2 Structural Testing:

Structural Testing the software unit is seen aswite box’. The choice of test cases is grounded
on theimplementation of the software entity. Design test cases thatlhesinternal functioning of the
software from the developer’'s perspective, whit Ixesting mainly focus on internal logic and
structure of the code. White-box is done when tlegy@mmmer has techniques full knowledge on the
program structure. With this technique it is pokesib test every branch and decision in the program
When the internal structure is known it is inteirgsto look at different coverage criteria. Onetlod
crucial one is decision coverage. The test is peeonly if the tester recognizes what the progam i
supposed to do. The tester can then see if thggrgoroseparates from its intended goal [6] [18] [29]

Why and When White-Box Testing:

White box testing is mainly used for detecting tagierrors in the program code. It is used for
debugging a code, finding random typographical refr@and uncovering incorrect programming
assumptions [29].

White box testing is done at low level design anglementable code. It can be applied at all lepEls
system development especially Unit, system andjiat®on testing. White box testing can be used for
other development artefacts like requirements aimlgesigning and test cases [18].

White box testing techniques are:
1. Static white box testing

a. Desk checking

b. Code walkthrough

c. Formal Inspections

2. Structural White box testing
a. Control flow/ Coverage testing
b. Basic path testing
c. Loop testing
d. Data flow testing

4.2.1 Static white box testing

Static white box testing which involves only theusme code of the product and not the binaries or
executable, static white box testing will be doredobe the code is executed or completed. For static
white box testing only selected peoples are inwbieefind out the defects in the code. The main aim
of the static testing is to check whether the dsdeccording to the Functional requirements, design
coding standards, all functionalities covered amdrénandling [18] [29].

4.2.1.1 Static white box testing: Desk checking

Desk checking is the primary testing done on tteec&tatic checking will be done by programmers
before compiled or executed, if any error is fihésigoing to check by author and he will corrduet t
code, in this process the code is compared withiregents specification or design to see that the
designed code is according to client adhoc req(23ts

Advantages of Desk Checking:

38

International Journal of Embedded Systems and Aatitins (IJESA) Vol.2, No.2, June 2012

In this process the authors who have knowledgehénprogramming language very well will be
involved in desk checking testing. This can be deery quickly without much dependency on other
developers or testers. The main advantages aretslafetected in this stage are easily located and
correct at same time.

4.2.1.2 Static white box testing: Code walkthrough

This testing is also known as technical code watkigh, in this testing process a group of technical
people go through the code. This is one type ofi-$éammal review technique. In Code walkthrough
process a high level employees involved such dmieal leads, database administrators and one or
more peers. The people who involved in this tecdriode walkthrough they raise questions on code
to author, in this process author explains theclegid if there is any mistake in the logic, theecisl
corrected immediately [29].

Advantages of Code walkthrough:

The main advantage of code walkthrough is that gioap of technical leads who have experience in
programming look through the code, so the defdwis dre related to database or code can be easily
identified. More over this process aid to ensueg girogram follows the proper coding standards.[29]

4.2.1.3 Static white box testing: Formal Inspectionor Fagan Inspection process.

Inspection is a formal, efficient and economicatmoe of finding errors in design and code [15]s It’
a formal review and aimed at detecting all faulislations and other side effects. According toBJ.
Fagan “A defect is an instance in which a requingnige not satisfied” [16]. Fagan inspection process
is a structured process of finding defects in tfevided source code.

Fagan inspection consists of following phases [17].

Planning: In planning phase Moderator arrange the avaitghiff the right participants and arrange
suitable meeting place and time.

Overview: All inspection participants are given documentataf design where it includes overall
view of design and even detailed design in speaiféas like paths, logic of code and so on.
Preparation: Using design documentation we tried to understarddesign and its logic. Depending
on historical inspections and its ranking or ermgestried to increase the error detection, so iate
fruitful areas can be concentrated.

Inspection: Inspection meeting involves the process in whioh code is inspected and defects are
found. Defects are noted down and handed to theaut

Rework: Rework is done to fix the defect. The code iseaed by the author.

Follow up: Follow up is done by the moderator to ensuretti@tefect has been fixed correctly

Table6. Minutes of Meeting format during Inspectfocess

No | Date of Meeting | Actions Items Inspections Meeting Reviews
Chaired by Attended by | Start Time | End Time

1| 12-02-10 Review Moderator Team 13:00 15:00

2| 16-02-10 Review Moderator Team 10:00 12:00

301 19-02-10 Review Moderator Team 15:00 17:00

4] 26-02-10 Review Moderator Team 13:00 15:00

5[28-02-10 Review Moderator Team 15:00 17:00

Example of Inspection Check list after finding Datfein a code:

39

International Journal of Embedded Systems and Aatitins (IJESA) Vol.2, No.2, June 2012

Table7. Check list of Fagan Inspection process

Assigned Date I 09/02/10 I Finished Date I 04/03/10
Submitted to course coordinator Wasif Afzal
Subject Tnspection Summary Report for Code Review
Priority | High:15 | Low: 22 | Medium : 40
Number of Faults Found FT

Re-Inspection Required (Y/IN) N

Total Number of Inspection meetings =

Total Inspection time (Hrs) 10

Moderator Author Recorder Reader Inspector
Srinivas Maanasa } Matthias Aparna Sudhakar

4.2.2 Structural white box testing

Structural testing
Testing take into account the code, code strucintesnal design and how they are coded.
Commonly used techniques for structural testind26&[29]:

1. Control Flow/Coverage Testing
a.Statement coverage
b.Branch coverage
c.Decision/Condition Coverage
d.Function Coverage

2. Basis Path Testing
a.Flow Graph Notation
b.Cyclomatic Complexity
c.Deriving Test Cases
d.Graph Matrices

3. Loop Testing
a.Simple Loops
b.Nested loops
c.Concatenated loops
d.Unstructured loop
4. Data Flow testing
4.2.2.1 Coverage Testing- Statement Coverage

In a Statement Testing each node or statementsrarersed at least once, statement testing also
known as node coverage [23] [24] [29].

Example: For Appendix-Ahere we provided the Flow chat for driver’'s inswapremium calculation
and deriving the test cases for statement coveEah node is traversed at least once in this case:

40

International Journal of Embedded Systems and Aaiptins (IJESA) Vol.2, No.2, June 2012

age<i3
ard
gender =male
and
mearried

L1

false
C

D Presmium = premium + 1000
true

i Framium T premium - 100 I

E

gendar = famals
ar
married

false Py,
false and
aga <=5

Figure4. Flow chat for drivers insurance premiudcaation

s

SO

NI
&

Figure5. Flow Graph for Statement Coverage
Note: Statement coverage must satisfy each node traversed TC1:
{age=20, gender=male , married = false}
Path P1: {A, C, G}
TC2: {age=60, gendermale , married=true}
Path P2: {A, B, D, E, F, G}.

Table8. Test cases for Stat@nCoverage

TINo | Condition Input/Test Data Expected
Result
1 (age < 23) && (gender.equals(“male™ age=20 1300
)) & &
(Imarried) | gender="male"
married=false
2 (married) || gender. age=60 50
equals("female™) gender="male",
(age>=46 &&
age<=63) married=true

International Journal of Embedded Systems and Aatitins (IJESA) Vol.2, No.2, June 2012

4.2.2.2 Coverage Testing- Branch Coverage

In a branch testing each edge is traversed atdemst The outcome possibilities are at leastdnok
false. The decision coverage or branch coveragksdsknown as Edge coverage [6].

Decision Coveragefor each decision, decision coverage measuresticergage of the total number
of paths traversed through the decision point etést. If each possible path has been travensed i
decision point, it achieves full coverage [6] [234] [29].

From the Figure6, we are drawing the flow graphBmnch coverage for Appendix -A

Figure6. Flowaph for Branch Coverage

The Path for Branch coverage is:

TC1: {age=20, gendemnale , married = false}
Branch Coverage Path P1: {A, C, G}

TC2: {age=60, gendermale , married=true}
Branch Coverage PathP2: {A, B, D, E, F, G}
TC3: {age = 35, gender = ,femalemarried=false}
Branch Coverage Path P3: {A, B, D, E, G}
TC4: {age = 35, gendermale , married=false}
Branch Coverage Path P4: {A, B, G}.

TIno: | Condition Input/Test Date Expected
Result
1 (age<23) && (gender.equals (“male™) && | Age=20, gender="male” | 1300
('married) . married = false
2 (Married) | gender.equals (“female™) Age =60, | 50
(age>=46 && age<=65) gender="male", married
=true
3 (married) || gender.equals (“female™) Age=35, 200
gender="female’,
married=false
4 (mamied) || gender.equals(“female™) Apge=33, 300
gender="male”,
married=false

Table 9: Test cases for Branch Coverage

4.2.2.3 Coverage Testing- Decision/Condition Coverage

Here condition is to verify that all condition exgsion within each branch will be tested (the &me

the false condition of each sub-expression withendecision branch must be tested at least oné time
[6] [18] [29].

Condition A condition is a Boolean valued expression thainoa be broken down into simpler
Boolean expressions [2]. A decision is often cosgobof several Boolean conditions [6].
From the Figure7, we are drawing the Control floapd for Conditional coverage

42

International Journal of Embedded Systems and Aatitins (IJESA) Vol.2, No.2, June 2012

Figure7. Flow Graph for Condition Coverage

Deriving the test cases for pseudo code shown jseAgix A, the below Table 10-12 shows the test
cases for each condition for condition coverage.

Table10. Conditional test cases for condition i§é&=46 and age<=65)

TC Input/Test Age=| Age=
No data =46 =65 Result
1 Age=50 T T T
2 Age=30 F T F
3 Age=69 T F F
4 Age=40 F F F
Tablell. Conditionaltest cases for condition
if (married || | Tnout/tect dat.
“ » ICNo | Input/test data gender.equals
gender.equals(“female”) v (“female
i) married Result]
1 gender="female® T T T
married=true
2 gender="male", F T T
married=true
3 gender="female™ T F T
married=false
4 gender="male", F F F
married=false

Tablel2. Conditional test cases for condition i©25 && gender.equals(“male”)&& 'married)

TC Age| gender| !marrie| Results
No Input/ test data = = d
25 Male
1 age=20, T T T T
gender="male™"
married=false
2 age=41, F F F F
gender="female®,
married=true
3 age=24, T T F F
gender="male",
married=true
4 age=17, T F T F

gender =, _female®
married=false
age=27. F T T F
gender="male",
.married=false
(4] age=15, T F F F
gender="female®,
married=true

7 age=060. F F T F
gender="female"™,
married=false

8 age=4&, F T F F
gender="male"",
married=true

[

43

International Journal of Embedded Systems and Aatitins (IJESA) Vol.2, No.2, June 2012

TC1 :{ age =20, gendermale , married=false}
Condition coverage path P1 :{ A, B, C, D, P}
TC2: {age=60, gendermale married=true}
Condition coverage path P2: {A, E, G, H, |, J, P}
TC3: {age=35, genderfemale , married=false}
Condition coverage path P3: {A, E, H, P}

TC4: {age=35, gendermale , married= false}
Condition coverage path P4: {A, E, F, P}

4.2.2.4 Coverage Testing- Function Coverage

In Function coverage, most programs are realizedalling a set of functions; in this requirements o
a product are mapped to functions during the degigse. Each function is the smallest logical unit
that does a specific functionality; there couldfliections for computing the average of 10 numbers,
inserting a row into the database, calculatingpiteanium etc.

Tests are written to exercise each of the diffef@mttions in the code [26] [27].

4.2.2.5 Basic Path Testing- Flow Graph Notation
A control flow graph (CFG) is a directed graph thabsists of two types: node and control flow. (1)
Node: expressed by a labeled circle, representimg ar more statements, decision condition,
procedures of program, or convergence of two orenmades. (2) Control flow: expressed by arc with
arrow or line, can be called an edge, represerttiegprogram control flow.In a CFG, a node
including condition is called a predicate node, addes from the predicate node must converge at a
certain node. Area defined by edges and nodegeised to as region [8].
On a flow Graph:

a. Inflow graphs the symbol arrows called as Edgasripresent the flow of control

b. Circles are called as nodes, which represent ongoe actions.

c. Areas bounded by edges and nodes called regions

d. A predicate node is a node containing a condition
Any procedural design can be translated into a ficaph.

Figure8. Different control Flow Graph Notations

4.2.2.6 Basic Path Testing- Cyclomatic Complexity

The notion of cyclomatic complexity was presentgdMicCabe. Cyclomatic complexity is software
metric that delivers a quantitative degree of tbgidal difficulty of a program. Cyclomatic
Complexity(CYC) is derived as the number of edges of the prograordrol- ow graph minus the
number of its nodes plus two times the number ofliitked components. Cyclomatic complexity
purely depend on the Control Flow Graph (CFG) efthogram to be tested [5-9].

McCabe was also given calculation formula of comityeof a program structure.
V(G =e—-n+2.

An alternate way of computing the cyclomatic comjtieof a program from an inspection of its
control flow graph is as follows:

V(G) = total number of non-overlapping bounded oagt 1
i.e. V(G) =P+1
where P is the number of binary decision predicates

44

International Journal of Embedded Systems and Aatitins (IJESA) Vol.2, No.2, June 2012

Steps to arrive at Cyclomatic Complexity:
1. Draw a corresponding flow graph

2. Determine Cyclomatic complexity

3. Determine independent paths

4. Prepare test cases

Example of Cyclomatic complexity: Consider a PseGdde
. do while not eof

. Read Record

.ifrecord field 1 =0

. then process record

. store in buffer;

. increment counter

. else if record field 2 =0
. then reset counter

. else process record

10. store in file

11. end if

12. endif

13. enddo

O©CoO~NOOUTAWNE

Figure9. Flow Chart for Pseudo Code Figure 10. CYC for Pseudo Code

Determining the cyclomatic complexity for Figure 10
Path 1: 1-13

Path 2: 1-2-3-7-8-11-12-1-13

Path 3: 1-2-3-9-10-11-12-1-13

Path 4: 1-2-3-4-5-6-12-1-13

Is the path:
1-2-3-4-5-6-12-1-2-3-7-8-11-12-1-13 Independent?

4.2.2.7 Basic Path Testing- Deriving Test Cases

In this testing we have to use the design or coda&fawing the corresponding control flow graphs,
and have to determine the Cyclomatic complexitthefresultant flow graph V (G), after this we have
to find the linearly independent paths. Finallypaee the test cases that will force execution chea
path in the basis set [5] [6] [8] [9] [29].

For example if we have six independent paths, tieshould have six test cases.
For each test case we need to define the inputuatioth and expected output.

4.2.2.8 Basic Path Testing- Graph Matrices
Graph matrices are used for derivation of flow grapd determination of a set of basis paths [29].

Software tools to do this can use a graph matrix

45

International Journal of Embedded Systems and Aatitins (IJESA) Vol.2, No.2, June 2012

Graph matrix:
a. lIs square with #sides equal to #nodes
b. Rows and columns correspond to the nodes.
c. Entries correspond to the edges.
1. Can associate a number with each edge entry.
2. Use avalue of 1 to calculate the Cyclomatic Coxiple
a. For each row, sum column values and subtract 1
b. Sum these totals and add 1
3. Interesting link weights are
a. Probability that a link (edge) will be executed
b. Processing time for traversal of a link
c. Memory required during traversal of a link
d. Resources required during traversal of a link

4.2.2.9 Loop Testing
1. Errors often occur near the beginnings and endlseolbop; in loop testing path has to cover at
least once.
a. Selects test paths according to the location dhifieins and use of variables.
2. Test for loop (iterations)
a. Loop testing
b. Loop fundamental to many algorithms.
c. Can define loops as simple, concatenated, nested ynstructured

Simple Loops [29]:

Simple loops of size n:

Skip loop entirely;

Only one passes through loop;

Two passes through loop;

M passes through loop where, m<n.

(n-1), n and (n+1) passes through the loop,

Where n is the maximum number of allowable pads®aigh the loop [29].
A typical Simple Testing loop is shown in figurell

Nested Testing [29]:

In this loop the number of probable tests increasethe number of levels of nesting grows.
Start with inner loop. Set all other loops to minimvalues.

Conduct simple loop testing on inner loop.

Work outwards.

Continue until all loops are tested.

A typical Nested Testing loop is shown in figurell

Concatenated loop [29]:

If independent loops, use simple loop testing.

If dependent, treat as nested loops. A typical atemated loop is shown in figurell
Unstructured loops [29]:

Don't test-redesign. A typical unstructured loopli®wn in figurell

Figurell. Different Loop Testing's

46

International Journal of Embedded Systems and Aatitins (IJESA) Vol.2, No.2, June 2012

4.2.2.10 Data Flow Testing

1. Data flow testing looks at the lifecycle of a pewtar piece of data (i.e. a variable) in an
application [29].

2. Variables that contain data are created, used itlad kdestroyed)

3. Concerned with the flow of data in the program

4. By looking at patterns of data usage, risky aréa®de can be found and more test cases can be
applied.

5. Dataflow testing uses control flow graphs to expltire unreasonable things that can happen to
data.

6. Data can be used in 2 ways- Defined and used.

Data Flow Testing_ Techniqug29]:
Data can be defined.
Example of defined data (Def)
Int x;
X=atb;
Scanf(&x, &y);
X [i-1] = a+b;
Data can be used in a variable for performing soomeputations
Example of used data (Use)
A=X+2; (Data In X is being used for calculations)
Printf(“value of x = “, x);
1f(X<10)

Select paths through the program’s control flow tesd the status of data in each of these paths.
Pick enough paths to ensure that every data obgecbeen initialized prior to use or all defined
objects have been used for something.

All the def criteria (for definitions of all varidés) must be exercised

All the use criteria of all variable definitions silbe covered.

5. RESULTS

The data obtained from the literature are studieth lguantitatively and qualitatively; shown in
section 3 and section 4. Quantitative data maimgu$ on number of articles obtained, their
categorization, section criteria and articles basegears Etc. Whereas qualitative data mainly $ocu
on testing techniques and their methods, modelgaradges, case situations etc. We carefully
retrieved the qualitative data from 29 articles amdfind different testing techniques and we predid

a few examples and case situations to explain igf bmanner. From section 4 the qualitative data
reveals that there are different testing technigeests, from 29 articles each and every testing
technique is considered carefully and we examieenthnd we proposed in this article. A few articles
results are not so relevant to our study neversselee modified those data according to our studies
and included those papers.

6. CONCLUSION AND FUTURE WORK

In this paper we proposed both black box and wiite testing techniques. A few cases and examples
are considered outside of this study, those casdsesiamples are only used to provide a clear
explanation regarding testing techniques. In thidyswe cover almost all testing techniques reladed
both black box and white box, nonetheless our shalyfew limitations we don’t not validate these
techniques from industrial perspectives, we comsiieonly from literature perspectives i.e. from
state-of-art, our future work is to check the ukigband usefulness of each and every techniqum fro
state-of-practice.

47

International Journal of Embedded Systems and Aatitins (IJESA) Vol.2, No.2, June 2012

ACKNOWLEDGEMENTS

Heartfelt appreciations to Nidhra Bikshamaiah, MiddKamalamma, Dondeti Nageswar rao, Dondeti
Prasanna and all our family members for alwaysdeinr side with love and affection and inspire us
for higher education. And we would like to thanka$if Afzal, for his support to this study.

REFERENCES

(1]

(2]

3]
[4]
(3]
(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]
[14]
[15]

[16]
[17]
[18]
[19]

[20]

[21]

D. Shao, S. Khurshid, and D. E. Perry, “A Cage White-box Testing Using Declarative
Specifications Poster Abstract,” in Testing: Acadterand Industrial Conference Practice and
Research Techniques - MUTATION, 2007. TAICPART-MUTI®N 2007, 2007, p. 137.

M. Sharma and B. S. Chandra, “Automatic Generabf Test Suites from Decision Table - Theory
and Implementation,” in Software Engineering Advesic(ICSEA), 2010 Fifth International
Conference on, 2010, pp. 459 —464.

M. R. Keyvanpour, H. Homayouni, and H. Shirazesutomatic Software Test Case Generation,”
Journal of Software Engineering, vol. 5, no. 3, b-101, Mar. 2011.

M. Shaw, “What makes good research in softwemgineering?,” International Journal on Software
Tools for Technology Transfer (STTT), vol. 4, nopp. 1-7, 2002.

H. Liu and H. B. Kuan Tan, “Covering code belmvon input validation in functional testing,”
Information and Software Technology, vol. 51, nopR. 546-553, Feb. 2009.

P. Mitra, S. Chatterjee, and N. Ali, “Graphicaialysis of MC/DC using automated software testing
in Electronics Computer Technology (ICECT), 201# &nternational Conference on, 2011, vol. 3,
pp. 145 —149.

T. Murnane and K. Reed, “On the effectivenegsnwtation analysis as a black box testing
technique,” in Software Engineering Conference,122@roceedings. 2001 Australian, 2001, pp. 12 —
20.

Z. Zhonglin and M. Lingxia, “An improved methaaf acquiring basis path for software testing,” in
Computer Science and Education (ICCSE), 2010 S#rrational Conference on, 2010, pp. 1891 —
1894.

F. Lammermann, A. Baresel, and J. Wegener, [i&atang evolutionary testability for structure-
oriented testing with software measurements,” AggbBoft Computing, vol. 8, no. 2, pp. 1018-1028,
Mar. 2008.

G. J. Myers, T. Badgett, T. M. Thomas, andS@ndler, The Art of Software Testing. John Wiley &
Sons, 2004.

“Jess,”http://www.jessrules.com/, Accessed/ i, 2010

J. H. Hayes and A. J. Offutt, “Increased saiitev reliability through input validation analysiada
testing,” in Software Reliability Engineering, 1999roceedings. 10th International Symposium on,
1999, pp. 199 —209.

P. Jorgensen, Software testing: a craftmap{s@ach, CRC Press, 2002. p. 359.

B. Beizer, Software Testing Techniques. DrezshtPress, 2002.

S. R. Rakitin, Software Verification and Vadidon for Practitioners and Managers. Artech House,
2001.

T. Gilb, D. Graham, and S. Finzi, Softwaregastion. Addison-Wesley, 1993.

M. E. Fagan, “Design and code inspectionseiduce errors in program development,” IBM Systems
Journal, vol. 15, no. 3, pp. 182 -211, 1976.

F. Saglietti, N. Oster, and F. Pinte, “Whitedagrey-box verification and validation approachas
safety- and security-critical software systemsfotmation Security Technical Report, vol. 13, np. 1
pp. 10-16, 2008.

S. Noikajana and T. Suwannasart, “Web Serviest Case Generation Based on Decision Table
(Short Paper),” in Quality Software, 2008. QSIC8."The Eighth International Conference on, 2008,
pp. 321 —326.

T. Murnane, K. Reed, and R. Hall, “On the Lmsbility of Two Representations of Equivalence
Partitioning and Boundary Value Analysis,” in Sofie Engineering Conference, 2007. ASWEC
2007. 18th Australian, 2007, pp. 274 —283.

G. Scollo and S. Zecchini, “Architectural Urliesting,” Electronic Notes in Theoretical Computer
Science, vol. 111, no. 0, pp. 27-52, Jan. 2005.

48

International Journal of Embedded Systems and Aatitins (IJESA) Vol.2, No.2, June 2012

[22] L. Ran, C. Dyreson, A. Andrews, R. Bryce, a@d Mallery, “Building test cases and oracles to
automate the testing of web database applicatidngtmation and Software Technology, vol. 51,
no. 2, pp. 460-477, Feb. 2009.

[23] S. Liu and Y. Chen, “A relation-based methazmbining functional and structural testing for test
case generation,” Journal of Systems and Softwate81, no. 2, pp. 234-248, Feb. 2008.

[24] P. G. Frankl and E. J. Weyuker, “Testing seafiterto detect and reduce risk,” Journal of Systents
Software, vol. 53, no. 3, pp. 275-286, Sep. 2000.

[25] A. S. Boujarwah and K. Saleh, “Compiler tease generation methods: a survey and assessment,”
Information and Software Technology, vol. 39, nopp. 617—-625, 1997.

[26] Y.-D. Lin, C.-H. Chou, Y.-C. Lai, T.-Y. Huang. Chung, J.-T. Hung, and F. C. Lin, “Test coverag
optimization for large code problems,” Journal gsms and Software, vol. 85, no. 1, pp. 16-27,
Jan. 2012.

[27] Y.-C. Huang, K.-L. Peng, and C.-Y. Huang, “Astory-based cost-cognizant test case prioritiratio
technique in regression testing,” Journal of Systemd Software, vol. 85, no. 3, pp. 626-637, Mar.
2012.

[28] Kansomkeat, Supaporn, Rivepiboon, and Wanchtitomated-generating test case using UML
statechart diagrams,” Proceedings of the 2003 dnmaszarch conference of the South African
institute of computer scientists and informatiochteologists on Enablement through technology
,2003.

[29] http://lwww.internetjournals.net/journals/tif@9/January/Paper%2006.pdf

[30] B. Kitchenham and S. Charters, “Guidelines gerforming systematic literature reviews in softeva
engineering,” Version, vol. 2, 2007, pp. 2007-01.

APPENDIX-A
Assumption study for: Equivalence class partitigniBoundary value analysis, Statement Coverage,
Branch Coverage, Decision/Condition coverage.

1. The average cost of an insurance premium faredsiis €300, however, this premium can increase or
decrease depending on three factors: Age, gendemanital status. Drivers that are below the ag@5f
male and single face an additional premium incref€4000. If a driver outside of this bracket iammed

or female their premium reduces by €100, and ifettege aged between 46 and 65 inclusive, their jprem
goes down by another €150.

Pseudo-Code:

import java.io.BufferedReader;
import java.io.lOException;

import java.io.InputStreamReader;

public class demo {

public static void main(String[] args)throws
IOException {

int age = 0;

boolean married = false;

String gender = null;

BufferedReader br = new BufferedReader(new
InputStreamReader(System.in));

try {

System.out.printin("enter age:");

age = Integer.parselnt(br.readLine());
System.out.printin("eneter married :");

married = Boolean.parseBoolean(br.readLine());
System.out.printin("enter gender :");

gender = br.readLine();

}catch(Throwable e) {

e.printStackTrace();

}

System.out.printin(“enter age:" +age);
System.out.printin("eneter married :" +married);

49

International Journal of Embedded Systems and Aatitins (IJESA) Vol.2, No.2, June 2012

System.out.printin("enter gender :" +gender);
perdetails (age, gender, married);

private static int perdetails(int age, String gemde
boolean married) {

int premimum = 300;

if((age < 25) && (gender.equals("'male")) &&
(fmarried)){

premimum = premimum + 1000;

}

else{

if (married || gender.equals(“female")){
premimum = premimum - 100;

if((age >= 46) && (age <= 65)){

premimum = premimum - 150;

}

}

}

System.out.printin("premimum® + premimum);
return premimum;

}
}

Authors

Srinivas Nidhra

Srinivas Nidhra received Master's Degree in
computer science from Blekinge Institute of
Technology, Karlskrona, Sweden. His research
interests include global software engineering, IT
security, programming languages and software
testing.

Jagruthi Dondeti

Jagruthi Dondeti received Bachelors of
Technology in Computer Science Engineering
from Jawaharlal Nehru Technological
University, Hyderabad, India. Her research
interests include IT Security emphasis on
cryptography and Network Security.

