
International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

DOI : 10.5121/ijesa.2015.5101 1

TIME CRITICAL MULTITASKING FOR MULTICORE

MICROCONTROLLER USING XMOS
®
 KIT

Prerna Saini

1,
 Ankit Bansal

2
and Abhishek Sharma

3

1,3
Department of Electronics and Communication Engineering, LNM Institute of

Information Technology, Jaipur, India

2
Department of Electronics and Communication Engineering, GLA University, Mathura,

India

ABSTRACT

This paper presents the research work on multicore microcontrollers using parallel, and time critical

programming for the embedded systems. Due to the high complexity and limitations, it is very hard to work

on the application development phase on such architectures. The experimental results mentioned in the

paper are based on xCORE multicore microcontroller form XMOS
®
. The paper also imitates multi-tasking

and parallel programming for the same platform. The tasks assigned to multiple cores are executed

simultaneously, which saves the time and energy. The relative study for multicore processor and multicore

controller concludes that micro architecture based controller having multiple cores illustrates better

performance in time critical multi-tasking environment. The research work mentioned here not only

illustrates the functionality of multicore microcontroller, but also express the novel technique of

programming, profiling and optimization on such platforms in real time environments.

KEYWORDS

Multicore microcontroller, xCORE, xTIMEcomposer, Multitasking, Parallel programming, Time slicing,

Embedded System, Time critical programming.

1.INTRODUCTION

In the present era of technology, computational power [1] plays an important role. The multicore

microprocessor devices [2] are already available in CISC architecture which used to perform non

real time computing. Recently there has been a huge demand of high computing speed in time

critical system, mostly in real time embedded device. Technology is growing exponentially every

day with the demand of more power and processing handling capabilities. The basic need of a

multicore system is the distributed and parallel computing [3]. Time consumption is the drawback

of single core processors, so multicore [4] technology is used to achieve efficiency through

parallel processing. Parallel processing [5] is the simultaneous use of more than one CPU to

execute a program or multiple computational threads. The main goal of parallel processing is a

high performance [6] computing, which speedup the execution time of the program. Parallel [7]

processing makes programs run faster because there are more engines (CPUs or cores) workingon

it. It increases the efficiency, safe execution time, take less energy and retain the time. Multicore

has two or more CPUs while the single core has only one core inside it as illustrated in figure1.

To enhance the performance [8] of single core processor, it is mandatory to increase the

frequency as CPU load increases. It causes heat losses and leakage current so rather than increase

the clock frequency of single core, manufacture switched to multicore to avoid the power [9]

consumption problem and to increase speed and efficiency.

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

2

Figure 1. Block Diagram of Single-core and Multi-core Processor

As the number of the taskis rapidly increasingthe user wants to perform more than one task at a

time, but a computer with a single-core performs one operation at a time [10]. Although with

software threads, some amount of parallelization is possible, but it does not give satisfactory

results. In multicore scenario, it is possible to perform operations at comparatively high speed

[11] to perform paralleled task and save time. Table 1 represents the difference between single

core and multicore and shows that multicore has more advantage over single core with respect to

processing speed, power and operation handling ability etc.

Table 1. Comparison between single core and multi core system

Parameter Single-Core Multi-Core

No of cores One primary core Two or more separate core

Processing Sequential Parallel

SMT Not Possible Possible

Power Low High

Speed Slow Fast

Efficiency Low High

Operation One task at a time Multitasking

The multi-processing system has two types, namely homogeneous and heterogeneous. If all the

cores are identical and have the same features like message passing system, cache, threading,

share memory and resources then it is called homogeneous multi-core processors. In

heterogeneous [12] systems all the cores have different features; it can vary clock cycles

according to system requirements to achieve low power or ultra-low power mode.Flynn’s

taxonomy is a specific classification of parallel computer architectures that are based on the

number of concurrent instruction (single or multiple) and data streams (single or multiple)

available in the architecture [13]. Figure2 shows the evolution of multicore era thatevery single

processor replaced by a multicore processor to get high performance [14]. At the present time,

there is vast use of multicore [15] system. In future, no filed will be untouched with multicore

system.The first dual core microprocessor was Power-4 [16], [17] which was designed by the

IBM® in 2001.

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

3

Figure 2. Evaluation Era of Multicore system

Amdahl’s law [18] is used to find out the speedup of a multicore system. Speedup is how much

time taken by a program to execute through the single core divide by the time taken by a program

when n number of processors execute in parallel manner as illustrated in equation 1 and 2 which

shows that as the number of cores in a processor is increased, the speed of a system is also

enhanced, but it is impossible to fully parallelize the program. Suppose a program takes 10 hours

using single core and a particular portion of that program which cannot be parallelized take at

least 1 hour, then by increasing the number of cores, execution time and speedup of the system

cannot be changed. By increasing the number of cores somehow speed up is increased, but it

depends upon how much a program can be parallelized.

���� = ��1� �� + 1� �1 − ���																				 . . . �1�

���� = ��1�
���� =

��1�
��1� �� + �

� �1 − ���
= 1
� + �

� �1 − ��
													… �2�

In parallel processing [19], every core executes the multiple set of instructions as an individual

processing unit. The CPU istreated as a single unitso the end user can divide the whole task into

subsection and send to various cores. Due to parallel processing all the core work simultaneously

so it enhances processing speed and save the time. Important of parallelism is increased because

complex problems can be split into smaller programs that can be executed at the same time to

reduce execution time. Basically parallelism is subdivided in two broad areas i.e. Instruction

level parallelism (ILP) and threads level parallelism. ILP tells, how many simultaneous

instructions can be executed, and thread level parallelism (TLP), is about how many simultaneous

threads can be executed. In a multicore system Parallelization is possible because it spilt threads

and assigns it to each core and all works simultaneously. Execution within a processor is very

quick and inexpensive for the time. Task parallelism is shown in figure 3.

0

50

100

150

1999 2001 2003 2005 2007 2009 2011 2013 2015

N
u

m
b

er
 o

f
co

re
s

Year

Evaluation of Multicore

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

4

Figure 3. Multithreading in multicore systems

The microprocessor has only CPU, it does not have RAM, ROM and other peripheral on the chip,

but the microcontroller contain all the basic components as shown in figure 4. A microcontroller

has two kinds of design mechanics, i.e. UMA (Unified Memory Architecture) and NUMA (Non

Unified Memory Architecture), although it can also be distinguished by Single Instruction

Multiple Data (SIMD) and Multiple Instruction Multiple Data(MIMD). Table 2 illustrated the

difference between microcontroller and microprocessor which show that the microcontroller has

more advantage over microprocessor.

Table 2. Difference between microcontroller and microprocessor

Parameter Microcontroller Microprocessor

Meaning Computer on chip CPU on chip

Inbuilt components CPU, Memory & Peripheral

Unit

CPU ONLY

Memory Architecture UMA UMA and NUMA

Purpose Specific General

Chips All components on chip Multiple chip for components

Circuit Simple Complex

No of Registers More Less

Operation Registers based Memory based

Clock Frequency Low High

Cost Low High

Speed Fast Fastest

.

There are vast applications of multicore microprocessors. The market trends show that in general

purpose computing processors are playing a key role. The entire major manufacturer is deploying

their Integrated Circuit(IC) with its functionality. Processors are designed for general purpose; it

can’t be used in embedded application for that user need multicore microcontroller. Multicore

microcontroller [20] is used in embedded application and Real Time Operating System(RTOS) in

which time is a major factor. In real time application multicore microcontroller play a major role.

In all major time critical operations, including defence, military, medical, industrial, etc. handled

by multicore microcontroller. Recently mangalyaan launched in Indiain Mars orbit in low cost is

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

5

managed by multicore microcontroller. Table 3 compares the multicore microcontroller and

multicore microprocessor and show that multicore microcontroller has a huge advantage over

multicore microprocessor.

Figure 4. Illustrating Multicore Microcontroller vs Multicore Microprocessor

Table 3. Distinction between multicore microcontroller and multicore microprocessor

Parameters Multicore Microcontroller Multicore Microprocessor

Architecture Harvard Von Neumann

Instruction Set RISC CISC

Power M Hz G Hz

Execution time In nano sec or micro sec In milisec or in sec

Cost Chip Expensive

Interrupt Given by the program Hardware and Software Interrupt

Priority Not define, All are executed

parallel

Masskable and Non Maskable

Cache Not used Used

Tile Define Not define

Time Critical Analysis Can be done Can not done

Power conception Low High

Power Saving Mode Available Not Available

Application Embedded system and RTOS General purpose

2. XMOS
®

 STARTKIT

startKIT [21] is a xCORE multicore microcontroller that has eight 32 bit logical processor cores

on two tiles as shown in figure5 which is taken from XMOS
®
 XS architecture [22]. The size of

startKIT is very small. The startKIT dimensions are 94 x 50mm. The startKIT require 5V which

are given by Micro-USB cable. The regulator is used to convert this 5V to 1V and 3V which is

used by external devices. Table 4 gives the overview of startKIT. It is very easy to use and simple

to program. User can easily design complex embedded system using high level language. Each

core acts as separately and able to run multiple real time tasks simultaneously. It provides 500

million instructions per second (MIPS) which make this more powerful than conventional

microcontroller. It provides a uniquely scalable, timing deterministic architecture that provides

extremely low latency and an I/O response that is 100 times faster than standard processors. If a

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

6

core is waiting for data, the xTIME hardware scheduler will pass the execution resource to the

next core making efficient use of the available processor resource and saving power.

XMOS® provides xTIMEcomposer [23] IDE for designing applications. It supports high level

languages like C,C++, XC (extension of C). It has inbuilt debugger, compiler, simulator and

editor. xTIMEcomposer provide many functionalities to improve the performance and check

various parameters like time, delay. xTIMEcomposer provide XMOS® Timing Analyser (XTA

[24]) tool which allow developers to identify worst case and best case execution time for code

blocks and functions. It also provides xSCOPE [25] which allow capturing the data from running

time. Figure 6 explains the architecture of XMOS® startKIT. startKIT has two tiles. Tile 0 is

dedicated to the integrated debugger and Tile 1 is user-programmable. It has 8 cores with 500

MIPS. Micro-USB connector (B) is used as a debugger. It connects to the host PC and allows

running the program.

Dimension 94 x 50mm

No of Core 8

No of Tiles 2

Word Length 32 Bit

Architecture RISC

Cache Not Used

Clock Freq. 500 MHz

SRAM 64 KB

FLASH 256K Bytes

Voltage 5V, 3V3, GND

Programming

Language

High Level

Language

Table 4. XMOS
®

 startKIT overview Figure 5. XMOS
®

 architecture [22]

startKIT provide GPIO pins which allow developers to reconfigure the capabilities of devices to

support many different applications. PCle slot is used to extend the hardware capabilities, 1*5

PCIs connected (J6) and 1*12 GPIO header (J7) is used to connect external hardware or

peripheral. If PCIs slot is not used, then the user can use GPIO header [26]. The startKIT is

compatible with the Raspberry Pi connection. The developer can connect Raspberry Pi board with

startKIT using 2*13 Raspberry Pi headers. It is compatible with Raspberry Pi [26] connection. It

disables the LED and push button so the usercannot use LED and button in the Raspberry Pi

header. XMOS® Links (E)1x13 pin GPIO header (J8) used for connecting multiple startKITs

together.The startKIT provides two and four-zone capacitive touch slider which is illustrated as

an F in figure 6.The startKIT has nine 3*3 green LED as shown in section G.ThestartKIT has two

additional green LED as a display in H.It has 256 KBytesof Serial Peripheral Interface (SPI)

FLASH memory (I), which can be configured by the program.startKIT has one push button (J)

which used as input and its status can be checked by software.startKIT provide 2*3 analogy input

header (K) which is used to give analogyinput.Tile 1 is clocked at 500 MHz, and the I/O ports are

100MHz. The startKIT board is clocked at 24MHz by a crystal oscillator as shown in L.

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

Figure

2.1. TASK PARALLELIZATION

XMOS

®
 [27] use ‘par’constructs

(a) [27]. The compiler automatically checks how m

one core whichever is free. The user can assign the task based on event occurs.

‘select’ keyword as illustrated in figure 7

occur and handle the event which

by the function of interrupt service routine

time stamping.Time stamping manages multiple events with a microcontroller that all require

different timing. For example, you might want to control a servomotor (which requires a 20

millisecond delay), blink an LED once a second, and read some sensors (which should be read as

frequently as possible. One way to handle this is to keep track of a time stamp for each event.

channel is used to communicate between the tasks.

memory. It creates a hang up situations

data at the same time. Channel [27

presenttask is finished now and so

as shown in figure 7 (c) [27]. Sometimes microcontroller can be in

has to wait for some time. XMOS

100 time units led will be high and after the wait for 100 time unit led

Figure 7. Time critical analysis and multitasking using XMOS

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

Figure 6. Architecture [24] of XMOS
®

 startKIT

ARALLELIZATION IN XMOS
®

 STARTKITARCHITECTURE

constructs which allow several tasks to run parallel as illustrated in figure 7

]. The compiler automatically checks how many cores are used and allocatesthe one task to

is free. The user can assign the task based on event occurs. XMOS

yword as illustrated in figure 7 (b) [27] which pause the task and wait for the event to

occur and handle the event which isoccurring which is used as an interrupt. The event is assigned

by the function of interrupt service routine (ISR). Multicore system also allows channelling and

manages multiple events with a microcontroller that all require

different timing. For example, you might want to control a servomotor (which requires a 20

link an LED once a second, and read some sensors (which should be read as

frequently as possible. One way to handle this is to keep track of a time stamp for each event.

channel is used to communicate between the tasks. The user performs tasks parallel with sha

memory. It creates a hang up situations when both the process tries to change or use the same

annel [27] resolves this issue. It sends the signal to processor that

and so anothertask can be performed. XMOS® used ‘chan

]. Sometimes microcontroller can be ina busy state,at that time user

wait for some time. XMOS
®
time stamping explain in figure 7 (d) [27] in which after the

led will be high and after the wait for 100 time unit led will on low stage

Figure 7. Time critical analysis and multitasking using XMOS® startKIT

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

7

allel as illustrated in figure 7

any cores are used and allocatesthe one task to

XMOS® used

] which pause the task and wait for the event to

is used as an interrupt. The event is assigned

(ISR). Multicore system also allows channelling and

manages multiple events with a microcontroller that all require

different timing. For example, you might want to control a servomotor (which requires a 20

link an LED once a second, and read some sensors (which should be read as

frequently as possible. One way to handle this is to keep track of a time stamp for each event. The

tasks parallel with shared

when both the process tries to change or use the same

signal to processor that

han’ keyword

at that time user

] in which after the

low stage.

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

8

3. EXPERIMENTAL RESULTS

Experimental results mentioned in this section is based on time critical analysis of sequential and

parallel task on multi core microcontroller XMOS
®
 and the multicore microprocessor i3 and i5.

3.1. Time critical analysis of sequential and parallel tasks on multicore

microprocessor

Analysis of the sequential and parallel [28] behaviors are observed that there is a huge difference

in their execution time. Multithread program [29] in c executed using POSIX and the thread level

parallelism (TLP) is shown in figure 8. First, it is triedwith two threads then four and eight

threads are usedand shown in figure 8 which is just giving the status of the tread. The results are

checked with the help of profiling, which is obtainedatthe table5. The same process is applied to a

different machine.

Figure 8. Flow chart of thread level parallelism

Nothe same thingng is done by simple sequential c code as shown in figure 9 and obtain the

sequential table as illustrated in table 6 afteanalyzingng the each function execution time as well

aprogramme execution time. The same analysisis done with various otherarchitectures [30]

andthe difference in their execution time and the cache misses by the processor are examined

First program load in the cache then it will be executed. If any variable's value or any instruction

is not available in cache [31] then processor first fetches the instruction which takes some time

that is called cache misses.

Figure9. Flow chart of sequential program

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

9

Table 5 Multi-thread Profiling

Architecture Compiler No of Threads Compile time(sec) Exc. time of each

function(sec)

Cache Misses (%)

Intel i3 Gcc 2 real =5.002

user =9.976

sys =0.022

Firstthread = 5.64

Secondthread =4.44

I1 Misses =0.48

D1 Misses =1.1

LLi Misses =0.29

LLd Misses =0.6

LL Misses =0.3

Intel i5 Gcc 2 real =5.002

user =5.580

sys =0.003

Firstthread = 1.18

Secondthread =0.21

I1 Misses =0.46

D1 Misses =1.1

LLi Misses =0.25

LLd Misses =0.6

LL Misses =0.3

Intel i3 Gcc 4 real =5.002

user =18.481

sys =0.0721

Firstthread =4.57

Secondthread =3.54

Thirdthread =2.42

Fourththread =2.04

I1 Misses =0.49

D1 Misses =1.1

LLi Misses =0.25

LLd Misses =0.6

LL Misses =0.3

Intel i5 Gcc 4 real =5.002

user =16.712

sys =0.004

Firstthread =1.28

Secondthread =1.21

Thirdthread =1.06

Fourththread =0.95

I1 Misses =0.48

D1 Misses =1.1

LLi Misses =0.20

LLd Misses =0.6

LL Misses =0.3

Intel i3 Gcc 8 real =5.003

user =21.538

sys =0.052

Firstthread = 1.25

Secondthread =1.11

Thirdthread =1.03

Fourththread =0.79

Fifththread=0.67

Sixththread=0.50

Sevenththread=0.22

Eighththread=0.11

I1 Misses =0.50

D1 Misses =1.1

LLi Misses =0.25

LLd Misses =0.6

LL Misses =0.3

Intel i5 Gcc 8 real =5.003

user =19.948

sys =0.004

Firstthread = 2.70

Secondthread =1.29

Thirdthread =0.19

Fourththread =0.64

Fifththread=0.64

Sixththread=0.73

Sevenththread=0.65

Eighththread=0.18

I1 Misses =0.49

D1 Misses =1.1

LLi Misses =0.24

LLd Misses =0.6

LL Misses =0.3

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

10

Table6. Sequential Profiling Table

Architecture Compiler No of

Functions

Compile time(sec) Exc. time of

each

function(sec)

Cache Misses (%)

Intel i3 Gcc 2 real =30.528

user =30.480

sys =0.044

First = 15.40

Second =15.41

I1 Misses =0.49

D1 Misses =1.1

LLi Misses =0.25

LLd Misses =0.6

LL Misses =0.3

Intel i5 Gcc 2 real =18.579

user =18.580

sys =0.008

First = 9.14

Second =9.13

I1 Misses =0.48

D1 Misses =1.1

LLi Misses =0.25

LLd Misses =0.6

LL Misses =0.3

Intel i3 Gcc 4 real =1m0.987

user =1m0.911

sys =0m0.068

First = 15.39

Second =15.41

Third =15.40

Fourth =15.30

I1 Misses =0.48

D1 Misses =1.1

LLi Misses =0.25

LLd Misses =0.6

LL Misses =0.3

Intel i5 Gcc 4 real =37.332

user =37.340

sys =0.016

First = 9.47

Second =9.28

Third =9.22

Fourth =9.22

I1 Misses =0.46

D1 Misses =1.1

LLi Misses =0.25

LLd Misses =0.6

LL Misses =0.3

Intel i3 Gcc 8 real =2m2.215

user =2m2.030

sys =0m0.160

First = 15.39

Second =15.34

Third =15.32

Fourth =15.31

Fifth=15.34

Sixth=15.32

Seventh=15.34

Eighth=15.32

I1 Misses =0.48

D1 Misses =1.1

LLi Misses =0.25

LLd Misses =0.6

LL Misses =0.3

Intel i5 Gcc 8 real =1m13.649

user =1m13.692

sys =0.024

First = 9.27

Second =9.27

Third =9.26

Fourth =9.26

Fifth=9.25

Sixth=9.24

Seventh=9.22

Eighth=9.13

I1 Misses =0.48

D1 Misses =1.1

LLi Misses =0.25

LLd Misses =0.6

LL Misses =0.3

Various architectures used different frequency which affects the execution time. The

experimental results mentioned in table 5 and table 6 explain how function execution time varies

with architecture which is illustrated in figure 10. Not only the architecture but also the number of

threads [32] is important the execution time of a machine. In parallelcomputation all the CPUs are

treated as individual entity which are connected to each other for better communication and it

executes all the threads at the same time, which could be proven with the help of figure 11, it

could also be observed with the same diagram that every function has a different time boundation

that is also known as time bounded computation.The execution speed of Intel
®
 i3 to Intel

®
 [33] i5

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

11

reduces as the frequency of the device increases its results are illustrated in table

6.Aftercomparing the results mentioned in tables 5 and 9 the conclusion is that the good amount

of possibility that multicore arc. For controllers are very effective and efficient for time critical

execution.

 Figure 10 shows the execution time depends upon the architecture also. As Intel
®
 i5 has higher

frequency [34] than Intel® i3 and also Intel® i3 has only 2 cores (dual core) and Intel® i5 has four

courses. Intel® i5 has less execution time in comparison to Intel® i3. Execution time reduces as

the frequency and number of core increases. Even applying the same code for different-2

processors, then also we get different-2 time. As it is noticed that in every caseexecution time is

less in parallel of Intel® i5 than Intel® i3 (which has number of cores) as shown in figure 11 that's

proves requirement of multi-core and parallel processing is increasing rapidly.

Figure10. Function Execution time

Figure 11. Total execution time

Although same program is used for sequential as well as the parallel processing, but in the

parallel processing Intel® i3 takes almost 5 sec and Intel® i5 takes 2 sec and in case of sequential

program Intel
®
 i3 takes 15 sec and Intel

®
 i5 takes 9 sec which is shown in figure10. The total

execution time [35] depends upon the architecture and the number of threads or function used by

the program. As the number of threads and function increases, total execution time of the

processor increases as we used same threads and the same program. Using
®
i3 with 2 functions in

a parallel program is given worst execution time, whereas in Intel® i5 with same 2 functions in

parallel processing [36] gives best result as illustrated in figure 11.

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

12

3.2. Time Critical analysis of sequential and parallel task on Multi core

microcontroller

Results show that the development of parallel program by xtime composer for SK131552, the

task mentioned in the core has the special property of activating and setting a specific character

using 3x3 led matrix which is communicating through inbuilt com port i.e. 32 which is 20 bits

long. The 1st bit from first led & 2nd bit from second led & 3rd bit assign to third led. 8th bit,

9th, 10th, 11th, 12th, 13th bit assigns to fourth, fifth, sixth, seventh, eighth & ninth led

respectively, Others are don’t care. The words like ‘Y’ ‘O’ ‘U’ ‘K’ is as shown in figure 12(a)-

(d).

Figure 12(a). Display Y 3*3 LED Figure 12(b). Display O 3*3 LED

Figure 12(c). Display U 3*3 LED Figure 12(d). Display K 3*3 LED

The sequential flow chart of spinning ball is shown in Figure 13 in which 3x3 led glows and

rotate in a circle.Figure 14 shows the flow chart of a pattern shift in which LEDs of the first

column, then second, then third column, then first, second then third row glows and are repeated

again in the same manner.

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

13

Figure 13. Sequential execution of spinning ball

program

Figure 14. Sequential execution of pattern

formation program

Parallelization is demonstrated using the servo motor. Flow chart of Servo motor control is shown

in figure 15 using xTOOLS [27] the obtained result is shown in figure 16. The platform summary

shows the how many cores, timer, memory and channel used by the program. It also displays the

value of timer and how much memory occupied by the program. startKIT [27] has 8 logical cores,

32 channels, 655036 bites memory space and 10 timer. Table 7 illustrates how many of them are

occupied by this program.

Figure 15. Flow chart of servo motor control Figure16. Analysis

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

14

Table 7. Result of servo motor control

Name Used Free

Chanends 0% 100%

Logical Cores 1(12.5%) 7(97.5%)

Memory 336bit(0.51%) 65200bit(99.49%)

Timer 1(10%) 9(90%)

Multitasking [36] is also performed in this which 4 tasks perform simultaneously as shown in

figure 17, with the help of ‘par’ keyword. First two cores are assigned to blink the two additional

led and third core is assigned to display ‘+’ and fourth core is used to display ‘X’ in 3x3 led.

Third and fourth core work on same 3x3 led so it required channel by using ‘chan’ keyword to

assign the task so that both cannot overlap also profiling is done using gproof and noted that how

much time is taken by all the functions and result [37] is shown in table 8 and its profiling graph

is illustrated in figure 18. How much memory, channels, logical cores and timer used by this

program is illustrated in table 9. In this program stack is also used so memory is occupied by

stacking as well as program.

Figure17. Flow chart of multitasking

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

15

Table 8. Execution time of each thread

Function Name Time

task1 125ns

task2 152ns

task3 2.548 micro sec

task4 3.45 micro sec

Table 9. Result of multitasking

Name Used Free

Chanends 3(9.38%) 29(90.63%)

Logical Cores 4(50%) 4(50%)

Memory(Stack) 604(0.92%) 60812(92.79%)

Memory(Program) 4120(6.29%)

Timers 4(40%) 6(60%)

From the experimental results we can illustrate that the time taken by the sequential programming

on multicore[38] microcontroller is in ‘micro seconds’ whereas time [39] taken by the multicore

microprocessor is in ‘seconds’ and ‘minutes’ which proves that the sequential task on

microcontroller can be done faster than the microprocessor. Similarly, the time taken for task

parallelization on multicore [40] microcontroller is in ‘nanoseconds’ whereas multicore

microprocessor takes ‘seconds’ which again proves that the parallel task on microcontroller can

be done faster than the microprocessor.

4. CONCLUSIONS

It can be seen that the time critical analysis on micro controller, task parallelization for complex

programming structures can be compiled in less time, although it has been observed that these

techniques of programming are easy for an advanced developer but tough for a new or the

beginners. Using above mentioned results user easily analyze the performance of multicore

microcontroller. The task Parallelization for multicore controller is still a challenge due to its

complex programming structure, but it gives high versatility and reliability to perform real-time

operations. The Future focus of the research is to implement it in automation control system using

SPI and I2C interfaces.In this research every thread is assigned by the controller to its different

cores by itself, future goal will concentrate by hand on assignment of threads on the cores. Also

in this paper time critical analysis results and examples are restricted only for basic

applications.Future work will be focused on expansion of present experimentations on time

critical analysis on real time applications and embedded system.

ACKNOWLEDGEMENTS

The authors would like to thank to Dr. Abhishek Sharma for their guidance and constant

supervision as well as for providing necessary information regarding the project & also for their

support in completing the project. The authors would like to express gratitude towards parents &

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

16

member of LNMIIT for their kind co-operation and encouragement which help in completion of

this project. Thanks and appreciations also go to the Texas instrumental Lab.

REFERENCES

[1] Flores A., Aragon, Acacio, “Sim-PowerCMP: A detailed Simulator for Energy Consumption Analysis

in Future Embedded CMP Architecture”, pp 752-757,AINAW-21st International Conference IEEE,

2007.

[2] Balaji Venu, “Multi-Core Processors-An Overview”, pp: 1-6, Cornell University Library,2011.

[3] David E. Culler, Jaswinder Pal Singh and Anoop Gupta, Parallel Computing Architecture. San

Francisco, CA: Morgan Kaunfmann, 1999.

[4] Jiang-Yi Shi, “Optimization of Shared Memory Controller for Multi-core System”, pp 287-289,

ICSICT-10th IEEE International Conference, 2010.

[5] M. Sasikumar, Dinesh Shikhare and P. Ravi Praskash(2000), “Parallel processing Architecture” in

Introduction to Parallel Processing,9th Ed, India, Eastern Economy Edition, 2006,ch 2, pp 19-37.

[6] Georg Haner and Gerhard Wellein,” Basics of Parallelization” in Introduction to High Performance

Computing for Computing for Scientifics and Engineers, 1 Ed. Boca Raton, FL: CRC Press, 2011,ch

5, pp 115-140.

[7] Tao Cui, Franchetti, “Optimized Parallel Distribution Load Flow Solver on Commodity Multi-Core

CPU”, pp 1-6, IEEE, 2012.

[8] Koen De Bosschere, Wayne Luk, Xavier Martorell, Nacho Navarro, Mike O’Boyle, Dionisios

Pnevmatikatos, Alex Ramirez, Pascal Sainrat, Andrew Seznec, Per Stenstr¨om, and Olivier Temam,

“High-Performance Embedded Architecture and Compilation Roadmap”, pp.5-29, HiPEAC I, LNCS

4050, 2007.

[9] Kushal Datta , Arindam Mukherjee, Guangyi Cao , Rohith Tenneti , Vinay Vijendra Kumar Lakshmi,

Arun Ravindran and Bharat S. Joshi, “CASPER: Embedding Power Estimation and Hardware-

Controlled Power Management in a Cycle-Accurate Micro Architecture Simulation Platform for

Many-Core Multi-Threading Hetregeneous Processors”, JLPEA,2(1), pp 30-68, 2012.

[10] Wei Tong, Moreira O., Nas R., Van Berkel K., “Hard-Real-Time Scheduling on a Weakly

Programmable Multi-core Processor with Application to Multi-standard Channel Decoding”, pp 151-

160, RTAS-IEEE 18th , 2012.

[11] Georgios Kornaros, “Multi-core Architectures for Embedded Systems” in Multi-Core Embedded

System, 1st Ed, Boca Raton, FL: Taylor & Francis Groups, 2010, ch 1,pp 1-27.

[12] Goehringer, Chemaou, Huebner, “Invited paper: On-chip Monitoring for Adaptive Heterogeneous

Multicore System”, pp 1-7, ReCoSoC 7th IEEE International Workshop, 2012.

[13] Mekelle and Ethiopia, “Concurrent Approach to Flynn’s SPMD Classification”, pp 79-81, IJCSIS,

2010

[14] Shameem Akhter and Jason Roberts, Multi-Core Programming. Richard Bowles, US: Intel press,

2006.

[15] Gepner, Kowalik, “Multi-Core Processors: New Way to Achieve High System Performance”, pp 9-

13, International symposium on parallel computing in electrical engineering, IEEE, 2006.

[16] J. Kahle, “The IBM Power4 Processor,”Microprocessor Forum presentation reported in: K.

Diefendorff, “Power4 Focuses on Memory Bandwidth”,pp. 11-17, Microprocessor Report, Oct. 6,

1999.

[17] J.M. Tendler et al., “Power4 System Microarchitecture”, pp. 5-26, IBM J. Research and

Development, vol. 46, no. 1, Jan. 2002.

[18] Peter Pacheco,”Shared-Memory Programming with pthread” in An Introduction to Parallel

Programming, 1 Ed. Burlington, MA: Morgan Kaufma, 2011, ch 4, pp 151-208.

[19] Mark D. Hill, Michael R. Marty, “Amdahl’s Law in the Multicore Era”,pp 33-38, IEEE Computer

Society,2008.

[20] Pornsoongsong W., Chongstitvatana P.“A Parallel Compiler for Multi-core Microcontrollers”, pp

373-377,DICTAP-2nd International Conference IEEE, 2012.

[21] startKIT Hardware Manual[Online]. Available:

https://www.xmos.com/support/xkits?subcategory=Starter%20Kits&product=17441&secure=1,

Febrerury 25th, 2013.

[22] “xCORE Multicore Microcontroller”, XMos, 16th sep, 2013.

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

17

[23] “Next-Generation XTIMEcomposer Studio Makes Developing Multicore code easy” Internet:

http://eecatalog.com/multicore/2013/07/18/next-generation-xtimecomposer-studio-makes-developing-

multicore-code-easy/, July 18th, 2013 [October 16th, 2014].

[24] “XMOS XTA TIMING ANALYZER”, XMos whitepaper, 8thMay 2013.

[25] “XSCOPE Library API”, XMos, November 12th, 2013.

[26] XMOS Programming Guide [Online].

Available:https://www.xmos.com/support/xkits?subcategory=Starter%20Kits&product=17441&comp

onent=17653, October 9th, 2014[November 6th 2014].

[27] startKIT Tutorial[Online]. Available:

https://www.xmos.com/support/xkits?subcategory=Starter%20Kits&product=17441&component=17

263, November 20th, 2013[October 12th, 2014].

[28] Simon Marlow, “Parallel Programing Using Thread” in Parallel and Concurrent Programming in

Haskell, 1st Ed. Sebastopol, CA:O’Reilly, 2013, pp 225-240.

[29] Stephen W. Keckler, Kunle Olukotun and H. Peter Hofstee(2009),”Speculatively Multithreaded

Architectures” in Multicore Processors and System, Springer, New York, 2009,ch 4,pp 111-140.

[30] Anders Pettersson, Henrik Thane, “Testing of MultiTasking Real-Time System with Critical

Sections”, pp 578-594, RTCSA, 2004.

[31] Vipin S. Bhure, Praveen R. Chakole, “Design of Cache Controller for Multi-core Processor System”,

pp 167-173, IJECSE, ISSN: 2277-1956, IJECSE, 2012.

[32] Caprita, H.V., Popa M., “Design Methord of Multithreaded Architectures for Multicore

Microcontrollers”, pp 427-432, SACI-6th IEEE international Symposium, 2011.

[33] Stephen Blair-Chappel and Andrew Stokes, “Nine tips to parallel programming heaven” in Parallel

Programming with Intel Parallel Studio XE, 1stEd, Indianapolis, IN: John Wiley & Sons, 2012, ch

14,sec 3, pp 397-410.

[34] Spyros Blanas, Yinan Li, Jignesh M. Patel, “Design and Evaluation of Many Memory Hash Joint

Algorithms for Multi-Core CPUs”, pp 37-48, SIGMOD, 2011.

[35] N. Ramasubramanian, Srinivas V.V., Chaitanya V., “Studies on Performance Aspect of Scheduling

Algorithms on Multicore Platform”, IJARCCSE, vol. 2, issue 2, 2012.

[36] Blake, Dreslinski, Mudge, “A Survey of Multicore Processors”, pp 26-37,Signal Processing Magazine

IEEE, 2009.

[37] Jiang-Yi Shi, Ai-Nv An, Kang Li, Hao, Yue, Pei-Yan Liu, Ying Kang, “Optimization of Shared

Memory Controller for Multi-Core System”, pp 287-289,ICSICT-10th IEEE international

conference, 2010.

[38] Jun Xu, Yongxin Zhu, Jiang L., Junjie Ni, Kai Zheng, “A Simulation for Multi-Core Processor

Micro-Architecture Featuring Inter-Core Communication, Power and Thermal Behavior”, pp237-

242,ICESS Symposia IEEE, 2008.

[39] Gerassimos Barlas, “Time measurement”, Multicore and GPU Programming, 1st Ed Waltham, MA:

Morgan Kaufmann, 2015, APP. C,pp 635-638 .

[40] Reinaldo Bergamaschi, Indira Nair, Gero Dittmann, Hiren Patel, Geert Janssen, Nagu Dhanwada,

Alper Buyuktosunoglu, Emrah Acar, Gi-Joon Nam, Guoling Han, Dorothy Kucar, Pradip Bose, John

Darringer, “Performance Modeling for Early Analysis of Multi-Core System”, pp 209-214,

Code+ISSS Proceedings of the 5th IEEE, 2007.

AUTHORS

Prerna Saini is pursuing B. Tech in the branch Electronics and Communication

Engineering at the LNM Institute of Information Technology, Jaipur (Rajasthan), India. Her

area of interests is embedded System, Multicore Microcontroller and Microprocessor and

High Performance Computing.

Ankit Bansal is pursuing B. Tech in the branch Electronics and Communication

Engineering at GLA University, Mathura (U.P), India. His current interests are in

Embedded System, Multicore Microcontroller and Microprocessor and cloud computing.

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

18

Abhishek Sharma obtained his B. Tech degree in ECE from Jiwaji University, Gwalior,

India. He worked with two Telecom Companies i.e. ZTE and Huawei. After he worked in

CNR, Milan as Research Engineer. He finished his Ph. D in multicore and many core

systems in 2010 from university of Genoa, Italy. He is currently working as Assistant

Professor in the Dept. of ECE in LNMIIT, Jaipur (Rajasthan), India. His current research

interest includes high performance embedded system, many cores and multicore

architecture.

